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Motivation

• Games generalize single objective opt. to have multiple

objectives, each with their own parameters.

• But, single-objective opt. methods often don’t work for

games.

• Gidel et al. [1] show a negative momentum coefficient can

help opt. in adversarial games.

• But, can harm performance if the game is non-adversarial,

and requires alternating updates costing 2 grad. evaluations

per iteration.
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Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.

2. Is tractable to analyze with Euler’s formula.

3. Is trivial to implement.

4. Only introduces a single optimization hyperparameter.

5. Robustly converges in non-adversarial games.
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Actual JAX [2] Complex Momentum implementation

changes in green

mass = .8 + .3j

def momentum(step_size, mass):

...

def update(i, g, state):

x, velocity = state

velocity = mass * velocity + g

x=x-jnp.real(step_size(i)* velocity)

return x, velocity

...
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Background: Minimization with momentum

• The standard minimization problem for loss L with

parameters θ:

θ∗ := argminθL(θ) (1)

• The loss gradient at parameters θj denoted by:

g j:=g(θj):=∇θL(θ)|θj (2)

• We can locally optimize loss using SGD with momentum:

µj+1 = βµj − g j , θj+1 = θj + αµj+1 (SGDm)
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Setting up the notation for our method

• Optimization in games generalizes single-objective

minimization:

θ∗
A := argminθALA(θA,θ

∗
B(θA)),θ

∗
B(θA) := argminθBLB(θA,θB)

(3)

• Notation: Concatenate the players’ params and grads together

ω := [θA,θB ], ĝ j :== [g j
A, g

j
B ] (4)

• Simultaneous SGD is a common gradient-based opt. strategy:

θj+1
A =θj

A− αg j
A,θ

j+1
B =θj

B− αg j
B ⇐⇒ ωj+1=ωj− αĝ j

(SimSGD)
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Our Method - Complex Momentum (CM)

• Or, (simultaneous) SGD with (negative [1]) momentum:

µj+1 = βµj − ĝ j , ωj+1 = ωj + αµj+1 (SimSGDm)

• We make β ∈ C instead of R. Then µj+1 ∈ C, but need
R-valued parameter update. We simply take the real part:

µj+1 = βµj − ĝ j , ωj+1 = ωj + ℜ(αµj+1) (SimCM)
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Using CM on a Dirac-GAN
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CM connects Classic & Negative Momentum

• By combining Euler’s Formula and µj+1=−
∑k=j

k=0 β
k ĝ j−k :

ℜ(µj+1)=−
k=j∑
k=0

cos(k arg(β)) |β|k ĝ j−k (5)

0 10 20 30 40 50
Iteration j

1

0

1

(
) d

ep
en

da
nc

e 
on

 g
j  a

t i
te

ra
tio

n 
50

arg( )=0 (classical)
arg( )=8  (ours)
arg( )=  (negative)

C
o
effi

ci
en
t
fo
r
ĝ
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Comparing optimization algorithms
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Training BigGAN with a Complex Adam

Algorithm 1 Complex Adam variant without mo-
mentum bias-correction

1: β1∈C, β2∈ [0,1)

2: α∈R+, ϵ∈R+

3: for j = 1 . . .N do

4: µj+1=β1µ
j − g j

5: v j+1=β2v j+(1−β2)(g j)2

6: v̂ j+1= v j+1

1−(β2)j

7: ωj+1=ωj + α ℜ(µj )√
v̂ j+1+ϵ

return ωN
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Training BigGAN with a Complex Adam

CIFAR-10 IS

Discriminator β1 Max Mean

0, BigGAN’s [3] 9.10 8.93

.8 exp(iπ/8), ours 9.25(+.15) 8.97(+.04)

.8, ablation 9.05(−.05) 7.19(−1.7)
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Experimental takeaways

• Using an almost-positive complex momentum – i.e., arg(β) is

near, but not 0 – allows convergence in any setup with 1 grad.

eval.

• Almost-positive momentum approaches classical momentum,

gaining similar acceleration properties in cooperative games.

• A default of arg(β) = π/8 did well across our experiments.

• We were able to extend our method to more sophisticated

optimizers, training BigGAN to better inception scores.
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Thanks!

Jonathan Lorraine
David Acuna Paul Vicol David Duvenaud
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Summary

• Script for associated talk is here.

• Animation of our method is here.
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Comparing optimization algorithms
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Future Directions

gradient

µ

update

α

β

(a) Classical

gradient

ℜ(µ) ℑ(µ)

update

ℑ(β)

α

ℜ(β)

−ℑ(β)

ℜ(β)

(b) Complex (ours)

gradient

µ(1) µ(2)

update

β(1,2)

α(1)

β(1,1)

β(2,1)

α(2)

β(2,2)

(c) Recurrently linked (future)

• How to best extend to Adam?

• What assumptions about game eigenstructure are useful for

realistic problems like GANs?
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