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e Games generalize single objective opt. to have multiple
objectives, each with their own parameters.

e But, single-objective opt. methods often don't work for
games.

e Gidel et al. [1] show a negative momentum coefficient can
help opt. in adversarial games.

e But, can harm performance if the game is non-adversarial,
and requires alternating updates costing 2 grad. evaluations

per iteration.
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Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.
Is tractable to analyze with Euler's formula.
Is trivial to implement.

Only introduces a single optimization hyperparameter.
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Robustly converges in non-adversarial games.



Actual JAX [2] Complex Momentum implementation

changes in

mass = .8 +

def momentum(step_size, mass):

def update(i, g, state):

X, velocity = state
velocity = mass * velocity + g
X=x- (step_size(i)*velocity)

return x, velocity
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Background: Minimization with momentum

e The standard minimization problem for loss £ with
parameters 6:
0" := argming L(0) (1)

e The loss gradient at parameters &/ denoted by:

g =g(0):=VoL(0)|y (2)

e We can locally optimize loss using SGD with momentum:

Wt =pp —g/, oM =60+ apt! (SGDm)
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e Notation: Concatenate the players' params and grads together

w:=[64,05], & :==Ig} gl (4)
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Setting up the notation for our method

e Simultaneous SGD is a common gradient-based opt. strategy:

0 — 6] — agl 0 6] — agl > W= ag)
(SimSGD)

e Or, (simultaneous) SGD with (negative [1]) momentum:



Our Method - Complex Momentum (CM)

e Or, (simultaneous) SGD with (negative [1]) momentum:
Wt =8 — g/, W= 4+ aptt (SimSGDm)

e We make 8 € C instead of R. Then ,uj+1 € C, but need
R-valued parameter update. We simply take the real part:

=0 — g, W=+ R(ap)  (SImCM)



Using CM on a Dirac-GAN
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CM connects Classic & Negative Momentum

e By combining Euler's Formula and uf+1:—2£i{) pkgi=k.
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Comparing optimization algorithms
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Training BigGAN with a Complex Adam

Algorithm 1 Complex Adam variant without mo-
mentum bias-correction
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Training BigGAN with a Complex Adam

CIFAR-10 IS
Discriminator 81  Max Mean
0, BigGAN’s [3] 9.10 8.93
.8exp(im/g), ours 9.25( ) 8.97( )
.8, ablation 9.05(—.05) 7.19(—1.7)
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Experimental takeaways

e Using an almost-positive complex momentum — i.e., arg(3) is
near, but not 0 — allows convergence in any setup with 1 grad.

eval.

e Almost-positive momentum approaches classical momentum,
gaining similar acceleration properties in cooperative games.

o A default of arg() = 7/8 did well across our experiments.

e We were able to extend our method to more sophisticated
optimizers, training BigGAN to better inception scores.
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Thanks!

Jonathan Lorraine

David Acuna Paul Vicol David Duvenaud
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e Script for associated talk is here.

e Animation of our method is here.
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https://docs.google.com/document/d/1cZDzyOI4la6zAEoyO1mP18iQx23n9k-paiphw4eAh4k/edit?usp=sharing
https://drive.google.com/file/d/1aYCIZgnA4oaY3hYcQBG4eb6OPCWVogS3/view?usp=sharing

Comparing optimization algorithms
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Future Directions

- radient
:
( .

o
(a) Classical (b) Complex (ours) (c) Recurrently linked (future)

e How to best extend to Adam?

e What assumptions about game eigenstructure are useful for
realistic problems like GANs?
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