
Complex Momentum for Optimization in

Games

Artificial Intelligence and Statistics (AISTATS) 2022

Jonathan Lorraine1,2, David Acuna1,2,3, Paul Vicol1,2, David Duvenaud1,2

March 14th, 2022

University of Toronto1, Vector Institute2, NVIDIA3

1

Motivation

• Games generalize single objective opt. to have multiple

objectives, each with their own parameters.

• But, single-objective opt. methods often don’t work for

games.

• Gidel et al. [1] show a negative momentum coefficient can

help opt. in adversarial games.

• But, can harm performance if the game is non-adversarial,

and requires alternating updates costing 2 grad. evaluations

per iteration.

2

Motivation

• Games generalize single objective opt. to have multiple

objectives, each with their own parameters.

• But, single-objective opt. methods often don’t work for

games.

• Gidel et al. [1] show a negative momentum coefficient can

help opt. in adversarial games.

• But, can harm performance if the game is non-adversarial,

and requires alternating updates costing 2 grad. evaluations

per iteration.

2

Motivation

• Games generalize single objective opt. to have multiple

objectives, each with their own parameters.

• But, single-objective opt. methods often don’t work for

games.

• Gidel et al. [1] show a negative momentum coefficient can

help opt. in adversarial games.

• But, can harm performance if the game is non-adversarial,

and requires alternating updates costing 2 grad. evaluations

per iteration.

2

Motivation

• Games generalize single objective opt. to have multiple

objectives, each with their own parameters.

• But, single-objective opt. methods often don’t work for

games.

• Gidel et al. [1] show a negative momentum coefficient can

help opt. in adversarial games.

• But, can harm performance if the game is non-adversarial,

and requires alternating updates costing 2 grad. evaluations

per iteration.

2

Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.

2. Is tractable to analyze with Euler’s formula.

3. Is trivial to implement.

4. Only introduces a single optimization hyperparameter.

5. Robustly converges in non-adversarial games.

3

Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.

2. Is tractable to analyze with Euler’s formula.

3. Is trivial to implement.

4. Only introduces a single optimization hyperparameter.

5. Robustly converges in non-adversarial games.

3

Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.

2. Is tractable to analyze with Euler’s formula.

3. Is trivial to implement.

4. Only introduces a single optimization hyperparameter.

5. Robustly converges in non-adversarial games.

3

Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.

2. Is tractable to analyze with Euler’s formula.

3. Is trivial to implement.

4. Only introduces a single optimization hyperparameter.

5. Robustly converges in non-adversarial games.

3

Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.

2. Is tractable to analyze with Euler’s formula.

3. Is trivial to implement.

4. Only introduces a single optimization hyperparameter.

5. Robustly converges in non-adversarial games.

3

Benefits of our method

We propose Complex Momentum which:

1. Converges with 1 grad. eval. per iteration in adversarial

games.

2. Is tractable to analyze with Euler’s formula.

3. Is trivial to implement.

4. Only introduces a single optimization hyperparameter.

5. Robustly converges in non-adversarial games.

3

Actual JAX [2] Complex Momentum implementation

changes in green

mass = .8 + .3j

def momentum(step_size, mass):

...

def update(i, g, state):

x, velocity = state

velocity = mass * velocity + g

x=x-jnp.real(step_size(i)* velocity)

return x, velocity

...

4

Background: Minimization with momentum

• The standard minimization problem for loss L with

parameters θ:

θ∗ := argminθL(θ) (1)

• The loss gradient at parameters θj denoted by:

g j:=g(θj):=∇θL(θ)|θj (2)

• We can locally optimize loss using SGD with momentum:

µj+1 = βµj − g j , θj+1 = θj + αµj+1 (SGDm)

5

Background: Minimization with momentum

• The standard minimization problem for loss L with

parameters θ:

θ∗ := argminθL(θ) (1)

• The loss gradient at parameters θj denoted by:

g j:=g(θj):=∇θL(θ)|θj (2)

• We can locally optimize loss using SGD with momentum:

µj+1 = βµj − g j , θj+1 = θj + αµj+1 (SGDm)

5

Background: Minimization with momentum

• The standard minimization problem for loss L with

parameters θ:

θ∗ := argminθL(θ) (1)

• The loss gradient at parameters θj denoted by:

g j:=g(θj):=∇θL(θ)|θj (2)

• We can locally optimize loss using SGD with momentum:

µj+1 = βµj − g j , θj+1 = θj + αµj+1 (SGDm)

5

Setting up the notation for our method

• Optimization in games generalizes single-objective

minimization:

θ∗
A := argminθALA(θA,θ

∗
B(θA)),θ

∗
B(θA) := argminθBLB(θA,θB)

(3)

• Notation: Concatenate the players’ params and grads together

ω := [θA,θB], ĝ j :== [g j
A, g

j
B] (4)

• Simultaneous SGD is a common gradient-based opt. strategy:

θj+1
A =θj

A− αg j
A,θ

j+1
B =θj

B− αg j
B ⇐⇒ ωj+1=ωj− αĝ j

(SimSGD)

6

Setting up the notation for our method

• Optimization in games generalizes single-objective

minimization:

θ∗
A := argminθALA(θA,θ

∗
B(θA)),θ

∗
B(θA) := argminθBLB(θA,θB)

(3)

• Notation: Concatenate the players’ params and grads together

ω := [θA,θB], ĝ j :== [g j
A, g

j
B] (4)

• Simultaneous SGD is a common gradient-based opt. strategy:

θj+1
A =θj

A− αg j
A,θ

j+1
B =θj

B− αg j
B ⇐⇒ ωj+1=ωj− αĝ j

(SimSGD)

6

Setting up the notation for our method

• Optimization in games generalizes single-objective

minimization:

θ∗
A := argminθALA(θA,θ

∗
B(θA)),θ

∗
B(θA) := argminθBLB(θA,θB)

(3)

• Notation: Concatenate the players’ params and grads together

ω := [θA,θB], ĝ j :== [g j
A, g

j
B] (4)

• Simultaneous SGD is a common gradient-based opt. strategy:

θj+1
A =θj

A− αg j
A,θ

j+1
B =θj

B− αg j
B ⇐⇒ ωj+1=ωj− αĝ j

(SimSGD) 6

Setting up the notation for our method

• Simultaneous SGD is a common gradient-based opt. strategy:

θj+1
A =θj

A− αg j
A,θ

j+1
B =θj

B− αg j
B ⇐⇒ ωj+1=ωj− αĝ j

(SimSGD)

• Or, (simultaneous) SGD with (negative [1]) momentum:

µj+1 = βµj − ĝ j , ωj+1 = ωj + αµj+1 (SimSGDm)

7

Our Method - Complex Momentum (CM)

• Or, (simultaneous) SGD with (negative [1]) momentum:

µj+1 = βµj − ĝ j , ωj+1 = ωj + αµj+1 (SimSGDm)

• We make β ∈ C instead of R. Then µj+1 ∈ C, but need
R-valued parameter update. We simply take the real part:

µj+1 = βµj − ĝ j , ωj+1 = ωj + ℜ(αµj+1) (SimCM)

8

Using CM on a Dirac-GAN
D
is
cr
im

in
at
or

Generator

N
orm

o
f
jo
in
t-g

rad
.∥ĝ∥

H
ig
h

L
ow

100 101 102 103 104

Iteration
10 8

10 6

10 4

10 2

100

Di
st

an
ce

 to
 O

pt
im

um

arg() = 0 (classical)
arg() = 8 (ours)
theoryD

is
ta
n
ce

to
o
p
t.

Iterations

9

CM connects Classic & Negative Momentum

• By combining Euler’s Formula and µj+1=−
∑k=j

k=0 β
k ĝ j−k :

ℜ(µj+1)=−
k=j∑
k=0

cos(k arg(β)) |β|k ĝ j−k (5)

0 10 20 30 40 50
Iteration j

1

0

1

(
) d

ep
en

da
nc

e
on

 g
j a

t i
te

ra
tio

n
50

arg()=0 (classical)
arg()=8 (ours)
arg()= (negative)

C
o
effi

ci
en
t
fo
r
ĝ
m

=
co
s(
(5
0
−

m
)
ar
g
(β

))
|β
|50

−
m

Iteration m

CM’s j=50th update’s dependence on past grads

10

Comparing optimization algorithms

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

arg() = 0 (classical)
arg() = 8 (ours)
arg() = (negative)
EG

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g
ra
d
.
ev
al
.
to

so
lv
e

Max adversarialness γmax
P
ro
b
.
o
f
g
am

e’s
γ
m
a
x

-π
-π
2

0
π 2

π
P
h
as
e
o
f
E
V
al

ar
g
(λ
)

Sp(∇ω ĝ j) for GAN

Log-magnitude of EVal log(|λ|)

d
isc.

u
n
su
re

g
en
.

D
o
es

E
V
ec

p
o
in
t
at

a
p
layer?

11

Training BigGAN with a Complex Adam

Algorithm 1 Complex Adam variant without mo-
mentum bias-correction

1: β1∈C, β2∈ [0,1)

2: α∈R+, ϵ∈R+

3: for j = 1 . . .N do

4: µj+1=β1µ
j − g j

5: v j+1=β2v j+(1−β2)(g j)2

6: v̂ j+1= v j+1

1−(β2)j

7: ωj+1=ωj + α ℜ(µj)√
v̂ j+1+ϵ

return ωN

12

Training BigGAN with a Complex Adam

CIFAR-10 IS

Discriminator β1 Max Mean

0, BigGAN’s [3] 9.10 8.93

.8 exp(iπ/8), ours 9.25(+.15) 8.97(+.04)

.8, ablation 9.05(−.05) 7.19(−1.7)

13

Experimental takeaways

• Using an almost-positive complex momentum – i.e., arg(β) is

near, but not 0 – allows convergence in any setup with 1 grad.

eval.

• Almost-positive momentum approaches classical momentum,

gaining similar acceleration properties in cooperative games.

• A default of arg(β) = π/8 did well across our experiments.

• We were able to extend our method to more sophisticated

optimizers, training BigGAN to better inception scores.

14

Experimental takeaways

• Using an almost-positive complex momentum – i.e., arg(β) is

near, but not 0 – allows convergence in any setup with 1 grad.

eval.

• Almost-positive momentum approaches classical momentum,

gaining similar acceleration properties in cooperative games.

• A default of arg(β) = π/8 did well across our experiments.

• We were able to extend our method to more sophisticated

optimizers, training BigGAN to better inception scores.

14

Experimental takeaways

• Using an almost-positive complex momentum – i.e., arg(β) is

near, but not 0 – allows convergence in any setup with 1 grad.

eval.

• Almost-positive momentum approaches classical momentum,

gaining similar acceleration properties in cooperative games.

• A default of arg(β) = π/8 did well across our experiments.

• We were able to extend our method to more sophisticated

optimizers, training BigGAN to better inception scores.

14

Experimental takeaways

• Using an almost-positive complex momentum – i.e., arg(β) is

near, but not 0 – allows convergence in any setup with 1 grad.

eval.

• Almost-positive momentum approaches classical momentum,

gaining similar acceleration properties in cooperative games.

• A default of arg(β) = π/8 did well across our experiments.

• We were able to extend our method to more sophisticated

optimizers, training BigGAN to better inception scores.

14

Thanks!

Jonathan Lorraine
David Acuna Paul Vicol David Duvenaud

15

References

[1] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad

Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-Julien,

and Ioannis Mitliagkas. Negative momentum for improved

game dynamics. In AISTATS, 2019.

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James

Johnson, Chris Leary, Dougal Maclaurin, and Skye

Wanderman-Milne. JAX: composable transformations of

Python+NumPy programs, 2018. URL

http://github.com/google/jax.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis. In

International Conference on Learning Representations, 2018.

http://github.com/google/jax

Extra Slides

15

Summary

• Script for associated talk is here.

• Animation of our method is here.

16

https://docs.google.com/document/d/1cZDzyOI4la6zAEoyO1mP18iQx23n9k-paiphw4eAh4k/edit?usp=sharing
https://drive.google.com/file/d/1aYCIZgnA4oaY3hYcQBG4eb6OPCWVogS3/view?usp=sharing

Comparing optimization algorithms

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

arg() = 0 (classical)
arg() = 8 (ours)
arg() = 2 (ours)
arg() = (negative)
EG
OG
GDA

g
ra
d
.
ev
al
.
to

so
lv
e

Max adversarialness γmax

17

Future Directions

gradient

µ

update

α

β

(a) Classical

gradient

ℜ(µ) ℑ(µ)

update

ℑ(β)

α

ℜ(β)

−ℑ(β)

ℜ(β)

(b) Complex (ours)

gradient

µ(1) µ(2)

update

β(1,2)

α(1)

β(1,1)

β(2,1)

α(2)

β(2,2)

(c) Recurrently linked (future)

• How to best extend to Adam?

• What assumptions about game eigenstructure are useful for

realistic problems like GANs?

18

	References
	Extra Slides

