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Motivation

● Regularization hyperparameters such as weight decay, dropout, and data augmentation 
are crucial for neural net generalization but are difficult to tune

● Automatic approaches for hyperparameter optimization have the potential to:
○ Speed up hyperparameter search and save researcher time
○ Discover solutions that outperform manually-designed ones
○ Make ML more accessible to non-experts (e.g., chemists, biologists, physicists)

● We introduce an efficient, gradient-based approach to adapt regularization 
hyperparameters during training
○ Easy-to-implement, memory-efficient, and outperforms competing methods



while True:
hparam = get_hyperparameter_value()
W = init_weights()

while not converged:
W = gradient_step(W, hparam)

Bilevel Optimization

● Hyperparameter optimization is a bilevel optimization problem:

subject to

Outer loop over
hyperparameters

Inner loop to optimize 
model parameters



● Many approaches treat the outer optimization over     as a black-box problem
○ Ignores structure that could be used for faster convergence

Grid Search, Random Search, & BayesOpt

Grid Search

● Pros: easy, parallelizable, interpretable
● Cons: suffers from the curse of dimensionality -- 

poor performance if only a few hyperparameters 
affect the validation loss (i.e., low effective 
dimensionality)

Random Search

● Pros: easy, parallelizable, no need to specify a 
grid, strong anytime performance

● Cons: samples from poor hyperparameter 
regions, runs trials to completion

● These approaches re-train models from scratch to evaluate each new hyperparameter
○ Wastes computation!

Bayesian Optimization

● Work well for low-dimensional hyperparameter spaces
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Approximating the Best-Response Function

● We approximate the best-response function $\eparam^{*}(\hparam)$ with a 
hypernetwork $\eparam_\phi(\hparam)$, called a Self-Tuning Network (STN).

● Idea: Learn a parametric approximation         to the best-response function

● This approach collapses the bilevel problem into a single-level problem
● Since        is differentiable, we can use gradient-based optimization to update the 

hyperparameters
● By training         we do not need to re-train models from scratch; the 

computational effort needed to fit         around each hyperparameter is not wasted

● How can we save computation by avoiding training from scratch each time?
● The “best-response” function maps hyperparameters to optimal weights on the training set:

● Advantages:



Approximating the Best-Response Function

● We approximate the best-response function $\eparam^{*}(\hparam)$ with a 
hypernetwork $\eparam_\phi(\hparam)$, called a Self-Tuning Network (STN).

● Update the approximation parameters      using the chain rule:

● Update the hyperparameters using the validation loss gradient:



Globally Approximating the Best-Response

Train the hypernetwork to produce good weights 
for any hyperparameter 

Find the optimal hyperparameters via gradient 
descent on 

Global Best-Response Approximation

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018



Scalability Challenges

● We approximate the best-response function $\eparam^{*}(\hparam)$ with a 
hypernetwork $\eparam_\phi(\hparam)$, called a Self-Tuning Network (STN).

● Two core challenges to scale this approach to large networks:

1. Intractable to model              over the entire hyperparameter space, e.g., the 
support of          

2. Difficult to learn a mapping                  when      are the weights of a large network

Approximate the best-response locally in a neighborhood around 
the current hyperparameter value 

Solution:

STNs introduce a compact approximation to the best-response 
by modulating activations based on the hyperparameters

Solution:



Locally Approximating the Best-Response

● Jointly optimize the hypernetwork parameters and the hyperparameters by alternating 
gradient steps on the training and validation sets

Local Best-Response Approximation

Train the hypernet to produce good weights 
around the current hyperparameter 

Update the hyperparameters using the local 
best-response approximation

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018



Effect of the Sampling Distribution

Just right → the gradient of the approximation will match that of the best-response.
Too wide → the hypernetwork may be insufficiently flexible to model the best-response, and 
the gradients will not match.
Too small → the hypernetwork will match the best-response at the current hyperparameter, 
but may not be locally correct Just rightToo wide

The hypernetwork will match 
the best-response at the 
current hyperparameter, but 
may not be locally correct

The hypernetwork may be 
insufficiently flexible to model 
the best-response, and the 
gradients will not match

The gradient of the 
approximation will match 
that of the best-response

Too small

MacKay et al. Self-Tuning Networks. 2019.



Adjusting the Hyperparameter Distribution

● As the smoothness of the loss landscape changes during training, it may be beneficial 
to vary the scale of the hyperparameter distribution, 

● We adjust      based on the sensitivity of the validation loss on the sampled 
hyperparameters, via an entropy term:

Penalizes the entropy of 
the sampling distribution

MacKay et al. Self-Tuning Networks. 2019.



Compact Best-Response Approximation

● We propose an architecture that computes the usual elementary weight/bias, plus an 
additional weight/bias that is scaled by a linear transformation of the hyperparameters:

Matmul
Construct    -dependent scaling factors

Gate the hidden state

Matmul

Matmul

+

*omitting biases

● Memory-efficient: roughly 2x number of parameters and scales well to high dimensions

● Naively representing the mapping                 is intractable when        is high-dimensional

MacKay et al. Self-Tuning Networks. 2019.



Compact Best-Response Approximation

Matmul
Construct    -dependent scaling factors

Gate the hidden state

Matmul

Matmul

+

*omitting biases

● This architecture can be interpreted as directly operating on the pre-activations of the 
layer, and adding a correction to account for the hyperparameters:

Usual computation 
of Linear layer

Correction term to account for 
the hyperparameters

● Sample-efficient: since the predictions can be computed by transforming 
pre-activations, the hyperparameters for different examples in a mini-batch can be 
perturbed independently
○ E.g., a different dropout rate for each example

MacKay et al. Self-Tuning Networks. 2019.



class HyperLinear(nn.Module):
    def __init__(self, in_dim, out_dim, n_hparams):
        super(HyperLinear, self).__init__()
        self.elem_w = nn.Parameter(torch.Tensor(out_dim, in_dim))
        self.elem_b = nn.Parameter(torch.Tensor(out_dim))
        self.hnet_w = nn.Parameter(torch.Tensor(out_dim, in_dim))
        self.hnet_b = nn.Parameter(torch.Tensor(out_dim))
        self.h_to_scalars = nn.Linear(n_hparams, out_dim*2, bias=False)

    def forward(self, input, hparam_tensor):
        output = F.linear(input, self.elem_w, self.elem_b)
        hnet_scalars = self.h_to_scalars(hparam_tensor)
        hnet_wscalars = hnet_scalars[:, :self.n_scalars]
        hnet_bscalars = hnet_scalars[:, self.n_scalars:]
        hnet_out = hnet_wscalars * F.linear(input, self.hnet_w)
        hnet_out += hnet_bscalars * self.hnet_b
        output += hnet_out
        return output

STN Implementation

Use HyperLinear layer as a 
drop-in replacement for Linear 
layers → build a HyperLSTM

MacKay et al. Self-Tuning Networks. 2019.



STN Algorithm

MacKay et al. Self-Tuning Networks. 2019.



STN Algorithm

batch_htensor = perturb(htensor, hscale)
hparam_tensor = hparam_transform(batch_htensor)
images, labels = next_batch(train_dataset)
pred = hyper_model(images, batch_htensor, hparam_tensor)
loss = F.cross_entropy(pred, labels)
loss.backward()
optimizer.step()

batch_htensor = perturb(htensor, hscale)
hparam_tensor = hparam_transform(batch_htensor)
images, labels = next_batch(val_dataset)
pred = hyper_model(images, batch_htensor, hparam_tensor)
xentropy_loss = F.cross_entropy(pred, labels) 
entropy = compute_entropy(hscale)
loss = xentropy_loss - args.entropy_weight * entropy
loss.backward() 
hyper_optimizer.step()
scale_optimizer.step()

Optimization step on the 
training set

Optimization step on the 
validation set

MacKay et al. Self-Tuning Networks. 2019.



STN Hyperparameter Schedules

● Due to joint optimization of the hypernetwork and hyperparameters, STNs do not use fixed 
hyperparameter values throughout training
○ STNs discover hyperparameter schedules which can outperform fixed 

hyperparameters
● The same trajectory is followed regardless of the initial hyperparameter value

MacKay et al. Self-Tuning Networks. 2019.



STN - LSTM Experiment Setup

Rotation

● Modifying the strength of each augmentation can be seen as a curriculum
● Regularizers such as dropout increase the difficulty of the learning problem in 

other ways (e.g, by adding stochasticity)

● Experiment: LSTM on Penn TreeBank (a common benchmark for RNN regularization)
● 7 hyperparameters:

Embedding dropout

Input dropout

Output dropout

Hidden dropout & 
weight DropConnect

Activation Regularization

Temporal Activation Regularization

MacKay et al. Self-Tuning Networks. 2019.



STN - LSTM Experiment Results

MacKay et al. Self-Tuning Networks. 2019.



STN - CNN Experiment Setup

● Data augmentation hyperparameters

Rotation

Saturation Brightness Hue Cutout

● Modifying the strength of each augmentation can be seen as a curriculum
● Regularizers such as dropout increase the difficulty of the learning problem in 

other ways (e.g, by adding stochasticity)

Continuous Discrete

● Experiment: AlexNet (~60 million parameters) on CIFAR-10
● 15 hyperparameters:

● Separate dropout rates on each convolutional and fully-connected layer

MacKay et al. Self-Tuning Networks. 2019.



STN - CNN Experiment Results

● Again, STNs substantially outperform grid/random search and BayesOpt
○ Achieve lower validation loss than BayesOpt in < ¼ the time

MacKay et al. Self-Tuning Networks. 2019.



STN - CNN Hyperparameter Schedules

● STNs discover nontrivial schedules for dropout and data augmentation

MacKay et al. Self-Tuning Networks. 2019.



STN - Sensitivity Analysis

● How often should we alternate 
between train and val steps?

● What is the effect of the variance of the 
hyperparameter distribution?

MacKay et al. Self-Tuning Networks. 2019.



What can we and what can’t we tune?

● STNs can tune most regularization hyperparameters including
○ Dropout
○ Continuous data augmentation hyperparameters (hue, saturation, contrast, etc.)
○ Discrete data augmentation hyperparameters (# and length of cutout holes)

Matmul
Construct    -dependent scaling factors

Gate the hidden state

Matmul

Matmul

+

*omitting biases

● Because we collapsed the bilevel problem into a single-level one, there is no inner 
training loop

What can we tune?

What can’t we tune?

We cannot tune inner optimization hyperparameters like learning rates

MacKay et al. Self-Tuning Networks. 2019.



Gradient-Based Approaches to HO

● This paper proposes to collapse the bilevel problem by replacing the inner optimization 
with a hypernetwork that outputs approximately optimal weights as a function of 

● That is, the hypernetwork is used to circumvent the training process of any individual 
model, by outputting weights that perform well given a specified amount of regularization

Implicit Differentiation Iterative Differentiation Hypernet-Based

● Expensive: Solving the linear 
system with CG requires 
Hessian-vector products

● Expensive when the number 
of gradient steps increases

● Does not require differentiating 
through optimization

● Efficient, can also optimize 
discrete & stochastic 
hyperparameters

● Assuming training has 
converged, we can use the 
implicit function theorem

● Use autodiff to backprop 
through training

● Full optimization procedure or 
a truncated version of it

● Learn a hypernetwork 

parameterized by             
to map hyperparameters 
to network weights

Backprop through optimization steps



Summary

● We propose a compact architecture for approximating neural net best-responses, that 
can be used as a drop-in replacement for existing deep learning modules.

● Our training algorithm alternates between approximating the best-response around the 
current hyperparameters and optimizing the hyperparameters with the approximate 
best-response.
1. Computationally inexpensive
2. Can optimize all regularization hyperparameters, including discrete 

hyperparameters
3. Scales to large NNs

● Our approach discovers hyperparameter schedules that can outperform fixed 
hyperparameter values.
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