Self-Tuning Networks

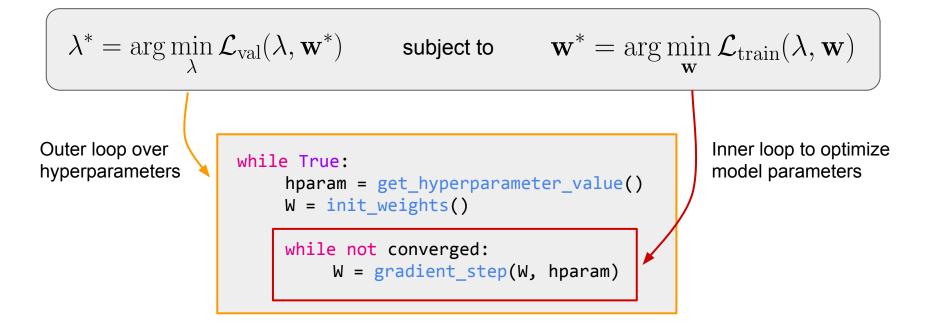
Matthew MacKay*, Paul Vicol*, Jon Lorraine, David Duvenaud, Roger Grosse

Motivation

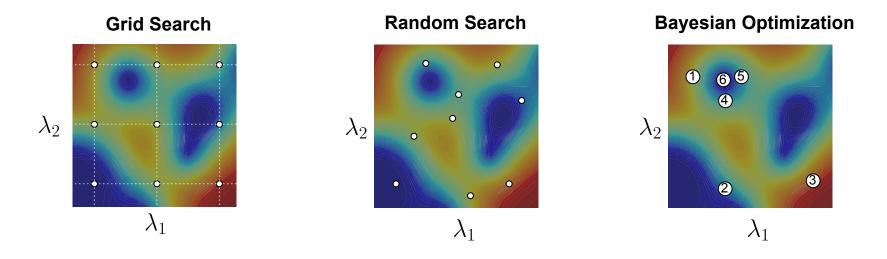
- *Regularization hyperparameters* such as weight decay, dropout, and data augmentation are crucial for neural net generalization but are *difficult to tune*
- Automatic approaches for hyperparameter optimization have the potential to:
 - Speed up hyperparameter search and save researcher time
 - Discover *solutions* that outperform manually-designed ones
 - Make ML more *accessible to non-experts* (e.g., chemists, biologists, physicists)
- We introduce an efficient, gradient-based approach to adapt regularization hyperparameters during training
 - Easy-to-implement, memory-efficient, and outperforms competing methods

Bilevel Optimization

• Hyperparameter optimization is a *bilevel optimization problem*:



Grid Search, Random Search, & BayesOpt



- Many approaches treat the outer optimization over λ as a *black-box problem*
 - Ignores structure that could be used for faster convergence
- These approaches *re-train models from scratch* to evaluate each new hyperparameter
 - Wastes computation!

Approximating the Best-Response Function

• The *"best-response" function* maps hyperparameters to optimal weights on the training set:

$$\mathbf{w}^*(\lambda) = \arg\min_{\mathbf{w}} \mathcal{L}_{train}(\lambda, \mathbf{w})$$

- Idea: Learn a parametric approximation $\hat{f w}_\phi$ to the best-response function $~\hat{f w}_\phipprox{f w}^*$
- Advantages:
 - Since $\hat{\mathbf{W}}_{\phi}$ is differentiable, we can use *gradient-based optimization* to update the hyperparameters
 - By training \hat{w}_{ϕ} we *do not need to re-train models from scratch*; the computational effort needed to fit \hat{w}_{ϕ} around each hyperparameter is not wasted

Approximating the Best-Response Function

• Update the approximation parameters ϕ using the *chain rule*:

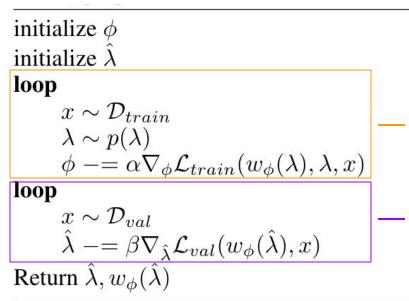
$$rac{\partial \mathcal{L}_{ ext{train}}(\hat{\mathbf{w}}_{\phi})}{\partial \hat{\mathbf{w}}_{\phi}} rac{\partial \hat{\mathbf{w}}_{\phi}}{\partial \phi}$$

• Update the hyperparameters using the *validation loss gradient*:

$$\frac{\partial \mathcal{L}_{\mathrm{val}}(\hat{\mathbf{w}}_{\phi}(\lambda))}{\partial \hat{\mathbf{w}}_{\phi}(\lambda)} \frac{\partial \hat{\mathbf{w}}_{\phi}(\lambda)}{\partial \lambda}$$

Globally Approximating the Best-Response

Global Best-Response Approximation



Train the hypernetwork to produce good weights for any hyperparameter $\lambda \sim p(\lambda)$

Find the optimal hyperparameters via gradient descent on \mathcal{L}_{val}

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018

Scalability Challenges

- Two core challenges to scale this approach to large networks:
 - 1. Intractable to model $\hat{\mathbf{w}}_{\phi}(\lambda)$ over the entire hyperparameter space, e.g., the support of $p(\lambda)$

Solution: Approximate the best-response *locally* in a neighborhood around the current hyperparameter value

2. Difficult to learn a mapping $\lambda \to \mathbf{w}$ when \mathbf{w} are the weights of a large network

Solution: STNs introduce a *compact* approximation to the best-response by *modulating activations based on the hyperparameters*

Locally Approximating the Best-Response

• Jointly optimize the hypernetwork parameters and the hyperparameters by alternating gradient steps on the training and validation sets

Local Best-Response Approximation

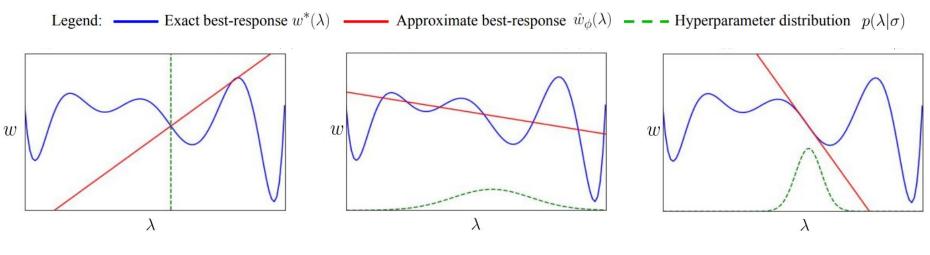
initialize ϕ initialize $\hat{\lambda}$ **loop** $\begin{array}{c} x \sim \mathcal{D}_{train} \\ \lambda \sim p(\lambda \mid \hat{\lambda}) \\ \phi = - \alpha \nabla_{\phi} \mathcal{L}_{train}(w_{\phi}(\lambda), \lambda, x) \end{array}$

 $\begin{aligned} x \sim \mathcal{D}_{val} \\ \hat{\lambda} &= \beta \nabla_{\hat{\lambda}} \mathcal{L}_{val}(w_{\phi}(\hat{\lambda}), x) \end{aligned}$ Return $\hat{\lambda}, w_{\phi}(\hat{\lambda})$ Train the hypernet to produce good weights around the current hyperparameter $\lambda \sim p(\lambda \mid \hat{\lambda})$

Update the hyperparameters using the local best-response approximation

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018

Effect of the Sampling Distribution



Too small

The hypernetwork will match the best-response at the current hyperparameter, but may not be locally correct

Too wide

The hypernetwork may be insufficiently flexible to model the best-response, and the gradients will not match

Just right

The gradient of the approximation will match that of the best-response

MacKay et al. Self-Tuning Networks. 2019.

Adjusting the Hyperparameter Distribution

- As the smoothness of the loss landscape changes during training, it may be beneficial to *vary the scale* of the hyperparameter distribution, σ
- We adjust σ based on the sensitivity of the validation loss on the sampled hyperparameters, via an *entropy term*:

$$\mathbb{E}_{\epsilon \sim p(\epsilon \mid \sigma)} [\mathcal{L}_{\text{val}}(\lambda + \epsilon, \hat{\mathbf{w}}_{\phi}(\lambda + \epsilon))] - \tau \mathbb{H}[p(\epsilon \mid \sigma)]$$

MacKay et al. Self-Tuning Networks. 2019.

Compact Best-Response Approximation

- Naively representing the mapping $\lambda \to {f w}$ is intractable when ${f w}$ is high-dimensional
- We propose an architecture that computes the usual elementary weight/bias, plus an additional weight/bias that is scaled by a linear transformation of the hyperparameters:

$$egin{aligned} \hat{\mathbf{W}}_{\phi}(\lambda) &= \mathbf{W}_{ ext{elem}} + (\mathbf{V}\lambda) \odot_{ ext{row}} \mathbf{W}_{ ext{hyper}} \ \hat{m{b}}_{\phi}(\lambda) &= m{b}_{ ext{elem}} + (\mathbf{C}\lambda) \odot m{b}_{ ext{hyper}} \end{aligned}$$

• *Memory-efficient*: roughly 2x number of parameters and scales well to high dimensions

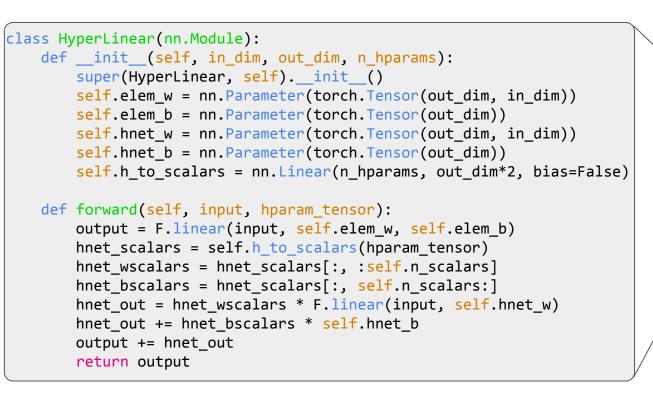
Compact Best-Response Approximation

• This architecture can be interpreted as *directly operating on the pre-activations of the layer*, and *adding a correction to account for the hyperparameters*:

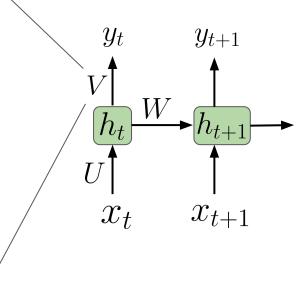
$$\hat{\mathbf{W}}_{\phi}(\lambda)\boldsymbol{x} + \hat{\boldsymbol{b}}_{\phi}(\lambda) = \underbrace{[\mathbf{W}_{\text{elem}}\boldsymbol{x} + \boldsymbol{b}_{\text{elem}}]}_{\text{Usual computation}} + \underbrace{[(\mathbf{V}\lambda) \odot_{\text{row}} (\mathbf{W}_{\text{hyper}}\boldsymbol{x}) + (\mathbf{C}\lambda \odot \boldsymbol{b}_{\text{hyper}})]}_{\text{Correction term to account for the hyperparameters}}$$

- **Sample-efficient:** since the predictions can be computed by transforming pre-activations, the *hyperparameters for different examples in a mini-batch can be perturbed independently*
 - E.g., a different dropout rate for each example

STN Implementation



Use HyperLinear layer as a *drop-in replacement* for Linear layers → *build a HyperLSTM*



STN Algorithm

Algorithm 1 STN Training Algorithm

Initialize: Best-response approximation parameters ϕ , hyperparameters λ , learning rates $\{\alpha_i\}_{i=1}^3$ while not converged do for $t = 1, \ldots, T_{train}$ do $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon}|\boldsymbol{\sigma})$ $\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \alpha_1 \frac{\partial}{\partial \boldsymbol{\phi}} f(\boldsymbol{\lambda} + \boldsymbol{\epsilon}, \hat{\mathbf{w}}_{\boldsymbol{\phi}}(\boldsymbol{\lambda} + \boldsymbol{\epsilon}))$ for $t = 1, \ldots, T_{valid}$ do $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon}|\boldsymbol{\sigma})$ $\boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} - \alpha_2 \frac{\partial}{\partial \boldsymbol{\lambda}} \left(F(\boldsymbol{\lambda} + \boldsymbol{\epsilon}, \hat{\mathbf{w}}_{\boldsymbol{\phi}}(\boldsymbol{\lambda} + \boldsymbol{\epsilon})) - \tau \mathbb{H}[p(\boldsymbol{\epsilon} | \boldsymbol{\sigma})] \right)$ $\boldsymbol{\sigma} \leftarrow \boldsymbol{\sigma} - \alpha_3 \frac{\partial}{\partial \boldsymbol{\sigma}} \left(F(\boldsymbol{\lambda} + \boldsymbol{\epsilon}, \hat{\mathbf{w}}_{\boldsymbol{\phi}}(\boldsymbol{\lambda} + \boldsymbol{\epsilon})) - \tau \mathbb{H}[p(\boldsymbol{\epsilon}|\boldsymbol{\sigma})] \right)$

STN Algorithm

Optimization step on the *training set*

Optimization step on the *validation set*

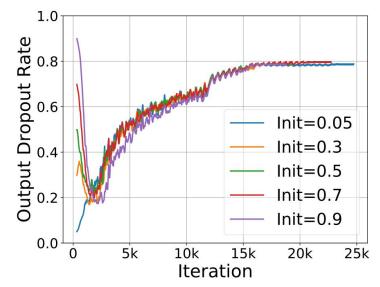
```
batch_htensor = perturb(htensor, hscale)
hparam_tensor = hparam_transform(batch_htensor)
images, labels = next_batch(train_dataset)
pred = hyper_model(images, batch_htensor, hparam_tensor)
loss = F.cross_entropy(pred, labels)
loss.backward()
optimizer.step()
```

```
batch_htensor = perturb(htensor, hscale)
hparam_tensor = hparam_transform(batch_htensor)
images, labels = next_batch(val_dataset)
pred = hyper_model(images, batch_htensor, hparam_tensor)
xentropy_loss = F.cross_entropy(pred, labels)
entropy = compute_entropy(hscale)
loss = xentropy_loss - args.entropy_weight * entropy
loss.backward()
hyper_optimizer.step()
```

STN Hyperparameter Schedules

- Due to joint optimization of the hypernetwork and hyperparameters, STNs do not use fixed hyperparameter values throughout training
 - STNs discover hyperparameter schedules which can outperform fixed hyperparameters
- The same trajectory is followed *regardless of the initial hyperparameter value*

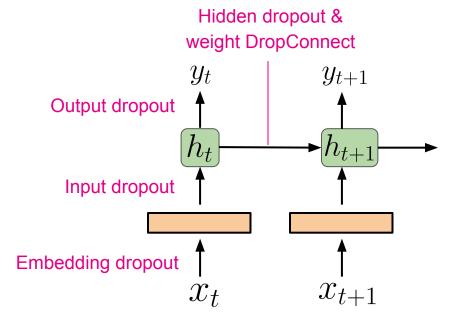
Method	Val	Test
p = 0.68, Fixed	85.83	83.19
p = 0.68 w/ Gaussian Noise	85.87	82.29
p = 0.68 w/ Sinusoid Noise	85.29	82.15
p = 0.78 (Final STN Value)	89.65	86.90
STN	82.58	79.02
LSTM w/ STN Schedule	82.87	79.93



MacKay et al. Self-Tuning Networks. 2019.

STN - LSTM Experiment Setup

- **Experiment:** LSTM on Penn TreeBank (a common benchmark for RNN regularization)
- 7 hyperparameters:



Activation Regularization

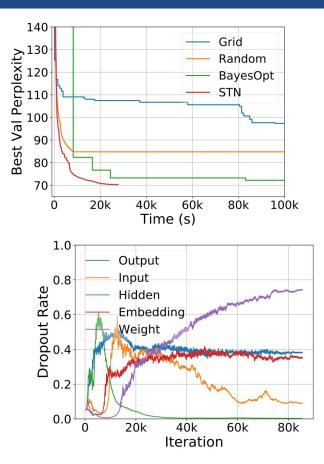
$$\alpha || m \odot h_t ||_2$$

Temporal Activation Regularization

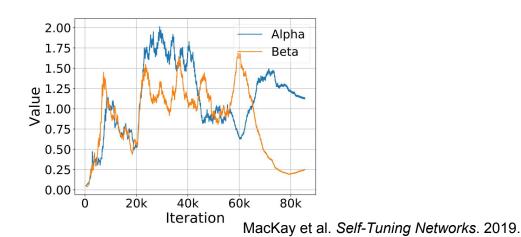
$$\beta ||h_t - h_{t+1}||_2$$

MacKay et al. Self-Tuning Networks. 2019.

STN - LSTM Experiment Results

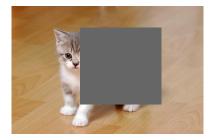


	РТВ		
Method	Val Perplexity Test Perplexit		
Grid Search	97.32	94.58	
Random Search	84.81	81.46	
Bayesian Optimization	72.13	69.29	
STN	70.30	67.68	



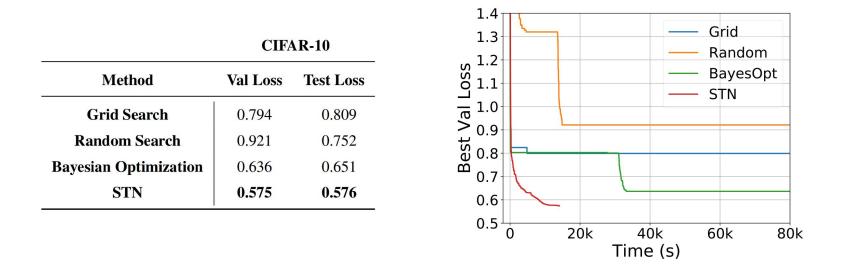
STN - CNN Experiment Setup

- **Experiment:** AlexNet (~60 million parameters) on CIFAR-10
- 15 hyperparameters:
 - Separate dropout rates on each convolutional and fully-connected layer
 - Data augmentation hyperparameters





STN - CNN Experiment Results

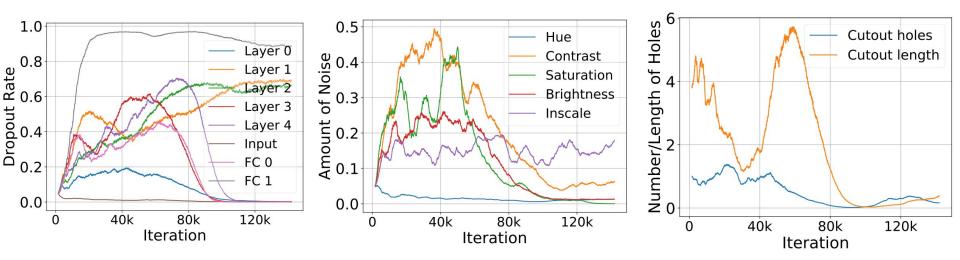


- Again, STNs substantially outperform grid/random search and BayesOpt
 - Achieve lower validation loss than BayesOpt in < 1/4 the time

MacKay et al. Self-Tuning Networks. 2019.

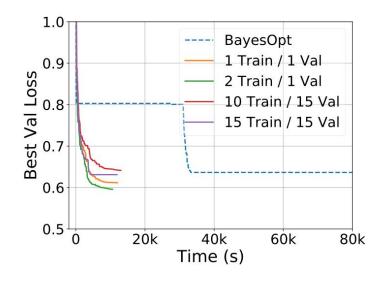
STN - CNN Hyperparameter Schedules

• STNs discover nontrivial schedules for dropout and data augmentation

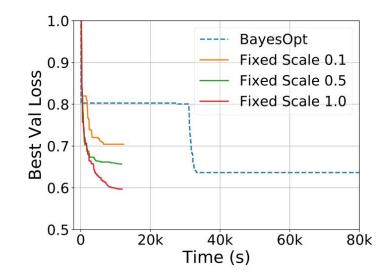


STN - Sensitivity Analysis

• How often should we alternate between train and val steps?



• What is the effect of the variance of the hyperparameter distribution?



What *can* we and what *can't* we tune?

What can we tune?

- STNs can tune *most regularization hyperparameters* including
 - Dropout Ο
 - Continuous data augmentation hyperparameters (hue, saturation, contrast, etc.) Ο
 - Discrete data augmentation hyperparameters (# and length of cutout holes) Ο

What can't we tune?

Because we collapsed the bilevel problem into a single-level one, *there is no inner* training loop

We cannot tune inner optimization hyperparameters like *learning rates*

Gradient-Based Approaches to HO

Implicit Differentiation

$$\lambda^* = \arg\min_{\lambda} \mathcal{L}_{val}(\lambda, \underbrace{\arg\min_{\mathbf{w}} \mathcal{L}_{train}(\lambda, \mathbf{w})}_{\frac{\partial \mathcal{L}_{train}(\lambda, \mathbf{w})}{\partial \mathbf{w}} = 0}$$

• Assuming *training has converged*, we can use the *implicit function theorem*

$$\frac{d\mathbf{w}(\lambda)}{d\lambda} = -\left(\frac{\partial^2 \mathcal{L}_{train}}{\partial \mathbf{w}^2}\right)^{-1} \frac{\partial^2 \mathcal{L}_{train}}{\partial \lambda \partial \mathbf{w}}$$

• *Expensive:* Solving the linear system with CG requires Hessian-vector products

Iterative Differentiation

$$\lambda^* = \arg\min_{\lambda} \mathcal{L}_{val}(\lambda, \arg\min_{\mathbf{w}} \mathcal{L}_{train}(\lambda, \mathbf{w}))$$

Backprop through optimization steps

- Use autodiff to *backprop through training*
- Full optimization procedure or a truncated version of it

• *Expensive* when the number of gradient steps increases

Hypernet-Based

$$\lambda^* = \arg\min_{\lambda} \mathcal{L}_{val}(\lambda, \underbrace{\arg\min_{\mathbf{w}} \mathcal{L}_{train}(\lambda, \mathbf{w})}_{\hat{\mathbf{w}}_{\phi}(\lambda) \approx \mathbf{w}^*(\lambda)})$$

• Learn a hypernetwork $\hat{\mathbf{w}}_{\phi}(\lambda) \approx \mathbf{w}^{*}(\lambda)$ parameterized by ϕ to map hyperparameters

to network weights

- Does not require differentiating through optimization
- Efficient, can also optimize discrete & stochastic hyperparameters

Summary

- We propose a compact architecture for approximating neural net best-responses, that can be used as a *drop-in replacement* for existing deep learning modules.
- Our training algorithm alternates between approximating the best-response around the current hyperparameters and optimizing the hyperparameters with the approximate best-response.
 - 1. Computationally inexpensive
 - 2. Can optimize all *regularization hyperparameters*, including discrete hyperparameters
 - 3. Scales to large NNs
- Our approach discovers *hyperparameter schedules* that can outperform fixed hyperparameter values.

