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Overview

• When minimizing objectives, randomly initializing then

optimizing can fail to find different solutions.

• Ex., in the Iterated Prisoner’s Dilemma agents will often learn

to ”battle” instead of ”cooperating” [1].

• We generalize Ridge Rider [2] to differentiable games,

providing a method which finds bifurcations and branches the

optimization process across them: animation

• How do we find bifurcations? With Lyapunov exponent based

objectives: animation
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Motivation

• When minimizing objectives, randomly initializing and

optimizing can fail to find different solutions.

• Why do we want to find different solutions? For example...

• In image classification, some generalize better than others -

ex., shape vs. texture solutions.

• In differentiable games, some solutions have much higher

social welfare – ex., cooperating vs. battling.

• But, what is a differentiable game?
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Background: Differentiable Games

• Differentiable games generalize single-objective minimization:

θ∗
A ∈ argminθALA(θA,θ

∗
B),

θ∗
B ∈ argminθBLB(θ

∗
A,θB)

• Games are increasingly important in ML – ex., GANs [3–5],

hyperparameter optimization [6–8], meta-learning, self-play,

models for RL, adversarial examples, numerous others.

• Today’s example: The Iterated Prisoner’s Dilemma. A

infinitely repeated version of the Prisoner’s dilemma, where

agents choose to cooperate or defect each round.

• Notable solutions: Defect-defect (DD) where agents always

defect, and tit-for-tat (TT) which repeats what the opponent

did last round allowing for higher welfare via cooperation.
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Hyperparameter Optimization as a Differentiable Game

• Hyperparameter optimization and many meta-learning

problems can be formulated as a differentiable game.

λ∗ ∈ argminλLV(λ,w∗(λ)),

w∗ ∈ argminwLT(λ,w)

• I have various papers on this - some slides with connections at

the end.
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Background: Ridge Rider

• Ridge rider (RR) [2] finds diverse solutions in single-objective

optimization by branching optimization at saddle points.

• Optimization is branched by following/”riding” the most

negative eigenvectors of the Hessian.

• Notable uses: Zero-shot learning, out-of-distribution

generalization
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RR for Differentiable Games?

• But, what if we wanted to use Ridge Rider to find multiple

solutions in multi-agent setups like the Iterated Prisoner’s

Dilemma (IPD)?

• In differentiable games, there’s no single Hessian with

eigenvectors to follow. Ridge Rider is not defined!

• Generalizations of the Hessian’s for games – i.e., the Game

Hessian – may have complex EVals from lack of symmetry.

Game Hessian︷︸︸︷
Ĥ =

[
Player A Hessian∇2

θA
LA ∇θA∇θBLA

∇θB∇θALB⊤ Player B Hessian∇2
θB
LB

]

7



Another viewpoint

• Following the gradient for single-objective optimization forms

a conservative vector field. Vector field is just gradient of loss.

• Bifurcations are where small initial parameter changes cause

final solution differences.

• Saddles are a key bifurcation in conservative systems from

following gradients.

• Following the simultaneous gradient for differentiable games

can form a non-conservative vector field. No single loss for

vector-field to be gradient of!

• In non-conservative fields, many more bifurcation types.

• Now, let’s look at toys to illustrate the difference:
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Illustrative Toy Problems

P
la
ye
r
1
S
tr
at
eg
y

Small IPD (new)

Following the gradient in red, LOLA [1] in blue

Player 2 Strategy

Player 2 Strategy

Matching Pennies

Join
t-p

layer
grad

.
log-n

orm

Mixed Objective (new)

• Small IPD is a 2 param. Iterated Prisoner’s Dilemma with TT

and DD solutions, but only real EVals.

• Matching Pennies is a 2 param. rock-paper-scissors with

imaginary EVals, but only 1 solution.

• Mixing these gives a 2 param. problem like the full IPD with

multiple solutions, complex EVals, and a Hopf bifurcation.
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Showing the Bifurcations

P
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Player 2 Strategy

A Saddle Bifurcation

Join
t-p

layer
grad

.
log-n

orm

Player 2 Strategy

A Hopf Bifurcation

• Now, lets show a framework for finding multiple solutions:
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Branching Optimization Tree Search

Repeat 
branching when 
progress stops

Branch in different 
directions d0 

d1 

𝜽*,{1}
d0 

d2 

𝜽*,{1,1}

Starting point 
allowing diverse 

solutions
Optimize 

each branch

𝜽start

d0 

d1

𝜽*,{i,j}
Leaves and 
nodes are 
solutions ...𝜽*,{i,j,k}

d2

• Key parts are (1) Selecting the starting point, (2) creating

different branches, (3) optimizing each branch, (4) choosing

when to re-branch 11



Notation for Finding Bifurcations

Remember our goal:

θ∗
A∈argminθALA(θA,θ

∗
B),θ

∗
B ∈argminθBLB(θ

∗
A,θB) (1)

For simplicity, concatenate all players’ parameters:

ω :=[θA,θB ] (2)

We are trying to find solutions with some optimizer or fixed-point

operator:

ωj+1=F (ωj) (3)

For example, SGD or LOLA:

FSGD(ω
j)=ωj − αĝ j (4)

12
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Notation for Finding Bifurcations

• Fixed point operator for SGD:

FSGD(ω
j)=ωj − αĝ j (5)

• Jacobian of the fixed-point op. is useful for analysis of

parameter trajectories from op. - ex., convergence rate, ...

JSGD := ∇ωFSGD(ω) = I − αĤ (6)

• We are interested in finding bifurcations, where trajectories

rapidly separate.

• Idea: Measure the spread at some point ω in direction d via:

d⊤(J⊤J)|ωd (7)

13
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Notation for Finding Bifurcations

• Interested in finding bifurcations, where trajectories rapidly

separate.

• Idea: Measure the spread at some point ω in direction d via:

d⊤(J⊤J)|ωd (8)

• Interested in the spread at iterate ωj from the fixed-point op.

from ω0. So, define Jacobian there J j(ω0)

• If we take log, then + when diverge and − when converge:

γj(ω0,d ) = log(d⊤(J j(ω0))
⊤J j(ω0)d ) (9)

• Aggregate these values over opt. trajectory via average:

λ̂k(ω0,d ) =
1

k

k∑
j=0

γj(ω0,d ) (10)
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What are Lyapunov Exponents?

γj(ω0,d ) = log(d⊤(J j(ω0))
⊤J j(ω0)d ) (11)

• Aggregate these values over opt. trajectory via average:

λ̂k(ω0,d ) =
1

k

k∑
j=0

γj(ω0,d ) (12)

• Take limit at opt. horizon k → ∞. We get the (global)

Lyapunov exponent in direction d at point ω0.

• Often interested in the max Lyapunov exponent:

λ̂max
k (ω0) = max

d ,∥d∥=1
λ̂k(ω0,d ) (13)
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What are Lyapunov Exponents?

• Often interested in the max Lyapunov exponent:

λ̂max
k (ω0) = max

d ,∥d∥=1
λ̂k(ω0,d ) (14)

• Ex., the (max, global) Lyapunov exponent is negative inside a

basin of attraction to a fixed point (because traj. converge).

λ̂max(ω0) = max
d ,∥d∥=1

lim
k→∞

λ̂k(ω0,d ) < 0 (15)

• Consequently, between basins of attraction exponent is max

(at 0) and the max direction points along separatrix.

• Can find bifurcations between basins by maxing exponent!
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What are Lyapunov Exponents?

• Intuition: just a (log) EVal integrated over a trajectory.

γj(ω0,d ) = log(d⊤(J j(ω0))
⊤J j(ω0)d ) (16)

17



Truncated Lyapunov Exponents

• We look at the truncated Lyapunov exponent – i.e., a finite

optimization horizon k – which has desirable properties:

1. Computationally tractability

2. Non-zero gradient signals for finding bifurcations

3. A better separation rate description for the finite trajectories

used in practice

• But, we lose many of the theoretical results.

• The next slides help to build an intuition for the exponent of

visualizable toy problems.
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visualizable toy problems.
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Showing Bifurcations with Lyapunov Exponents - animation
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Optimizing Lyapunov Exponents to Find Bifurcations
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Impact of Optimization Horizon on Exponent - animation
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Impact of Direction Choice on Showing Bifurcations
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• Re-estimating the top EVecs at each iteration performs best,

but is most expensive, and diverges from theory.

• In the optimization limit k → ∞ the choice of direction

almost certainly doesn’t matter.
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What if the Optimizer doesn’t Converge?
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• Make sure step size small, so optimizer converges.

• If not, exponent maybe max where trajectories don’t find soln.

• Can get fractal bifurcation for critical step size: video

• We could use more complicated toy problems...
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Random Subspace Problem

• But, we only looked at 2 bifurcations so far. Can we construct

toy problems with more types?

• Idea: take high-dimensional game LA(θA,θB),LB(θA,θB) and
optimize in a subspace. Ex., GAN, IPD, HO, meta-learning,...

• Specifically, use

LA(vAx + bA, vBy + bB),LB(vAx + bA, vBy + bB), where v

sampled (ex., uniform) randomly, and offset b at appropriate

value (ex., init., optimal).
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Random Subspace Problem
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• Exponent peaks near where trajectories separate, showing we

find bifurcations.

• Are some bifurcations more prevalent in some games?
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Random Subspace Problem
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Figure 1: This reproduces Figure ?? with more random subspaces. The
optimization trajectories used for the exponent calculation are shown in
red, allowing us to see the trajectories the associated exponent measures
separation over. Takeaway: The exponent is peaked near where
trajectories separate for each subspace, showing that these strategies can
find various bifurcations. We display the Lyapunov exponent calculation
– as in Fig. ?? – on more complicated toy problems, to see how robustly
we can find different bifurcations. Section ?? describes how we construct
these examples by taking higher-dimensional problems and optimizing in
a random subspace. Top: Different IPD subspace: we effectively highlight
bifurcations – i.e., regions where trajectory behavior qualitatively changes.
Bottom: Different GAN subspaces: we are able to find bifurcations, but
the highlighted structure is less crisp in this more complex toy example.

26



Random Subspace Problem
P
la
ye
r
1
S
tr
at
eg
y Subspace seed 0

Player 2 Strategy

Random subspace IPD
Subspace seed 1 Subspace seed 2 Subspace seed 3

M
ax

10-step
L
yap

u
n
ov

E
xp

on
en
t

D
is
cr
im

in
at
or

Subspace seed 0

Generator

Random subspace GAN

Subspace seed 1 Subspace seed 2 Subspace seed 3

Figure 1: This reproduces Figure ?? with more random subspaces. The
optimization trajectories used for the exponent calculation are shown in
red, allowing us to see the trajectories the associated exponent measures
separation over. Takeaway: The exponent is peaked near where
trajectories separate for each subspace, showing that these strategies can
find various bifurcations. We display the Lyapunov exponent calculation
– as in Fig. ?? – on more complicated toy problems, to see how robustly
we can find different bifurcations. Section ?? describes how we construct
these examples by taking higher-dimensional problems and optimizing in
a random subspace. Top: Different IPD subspace: we effectively highlight
bifurcations – i.e., regions where trajectory behavior qualitatively changes.
Bottom: Different GAN subspaces: we are able to find bifurcations, but
the highlighted structure is less crisp in this more complex toy example.

26



Finding Diverse Solutions in the Iterated Prisoners Dilemma

• Now, try the full branching opt. method – Generalized Ridge

Rider (GRR) – on the Iterated Prisoners Dilemma (IPD).

• To summarize the parts to our method:

1. Find a suitable starting point for our branching process - by

maxing a Lyapunov exponent.

2. Select branching directions (or perturbations) from a given

branching point - by using directions from exponent.

3. Continue the optimization process along a branch after the

initial perturbation.

• We look at these in the following table.
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Finding Diverse Solutions in the Iterated Prisoners Dilemma

Solution Mode

Search Strategy Cooperate Defect

×20 Random init + LOLA [1] ×
×20 Random init + GD ×

• Randomly init. then applying a training method only finds 1

solution mode. Baselines don’t find both.

• Our method finds both solution modes (with any opt.).

• If we don’t tune the Lyapunov exponent, then branching

doesn’t affect the soln. Evidence we are near a bifurcation.
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Analyzing the IPD Optimization
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• Takeaway: We effectively reduce our loss and correspondingly

raise the max EVal of J .

• What if we need separation in more than 1 direction?
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Connections to Kolmogorov-Sinai Entropy

• Max exponent λ̂max
k (ω0) = maxd ,∥d∥=1 λ̂k(ω0,d ) only

guarantees separation in 1 direction.

• What if we want spread in multiple directions?

Lsum
n (ω0) = − max

d1,...,dn

n∑
l=1

λ̂k(ω0,dl),

such that ∥dl∥ = 1,d⊤
l dm = 0 for all l ,m ∈ 1, . . . , n, l ̸= m

• Cool connection: Kolmogorov-Sinai entropy is ≈ # symbols

for optimal coding of the particle trajectory. This is ≤ sum of

positive exponents.
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Connections to Kolmogorov-Sinai Entropy
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• Local maxima – not saddles – allow trajectory separation in all

directions here.
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Trajectory Separation in Multiple Directions
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Scaling up to GANs

Init scale, step size Max Lyap Coeff Ensemble log-prob

0.001, 1.0 0.952± 0.834 −16 342± 817

0.1, 1.0 6.485± 1.155 −13 691± 1317

10.0, 1.0 0.053± 0.128 −46 659± 26 793

0.001, 0.1 0.849± 0.765 −12 321± 126

0.1, 0.1 6.571± 0.953 −10 846± 256

10.0, 0.1 −0.012± 0.014 −23 459± 12 693

• Goal: Exponent calculation is scalable to larger problems.

• Mean and std. dev. (over 10 runs) of the max 10-step

exponent and the log-prob. of an ensemble of 5 GANs

branching in the top 5 directions at the init.

• Higher exponent then better ensemble performance?

• Each branch’s GAN may be learning a different part of the

data distribution.
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Estimating EVecs in Single Objective

MNIST Accuracy

# HVP Evaluations Our method Method from RR

10 000 19%(+8%) 11%

100 000 89%(+6%) 83%

1 000 000 93%(+2%) 91%

• How many HVP evaluations to reach different MNIST

classifier accuracies by following EVecs, repeating the exp. in

RR’s Fig. 4.

• Not designed to train a single strong classifier! But, to test

our ability to efficiently follow negative EVecs.

• Takeaway: Estimate largest EVecs of Jacobian of fixed-point

op. is an efficient way to estimate most negative EVecs of

Hessian, and generalizes idra to other setups.
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Thanks!

Jonathan Lorraine Paul Vicol Jack Parker-Holder

Tal Kachman Luke Metz Jakob Foerster
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Connecting to my other work



Hyperparameter Optimization is Nested Optimization

• LT is training loss.

• LV is validation loss.

• w are (elementary or NN) parameters.

• λ are hyperparameters.

• w∗(λ) are the best parameters on the train loss given the

hyperparameters:

w∗(λ) := argmin
w

LT(λ,w)

• Want to optimize validation loss using optimal parameters:

L∗
V(λ) := LV(w∗(λ))
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Hypergradient Decomposition

• The gradient is difficult to compute because we may need the

Jacobian of the best-response, which could require

differentiating through optimization:

∂L∗
V(λ)
∂λ︸ ︷︷ ︸

hypergradient

= ∂LV(w∗(λ))
∂w∗(λ)

∂w∗(λ)
∂λ

∂L∗
V

∂λ = ∂LV
∂w

∂w∗

∂λ
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IFT Hypergradient [8]

Theorem (Implicit Function Theorem)

If ∂LT
∂w |λ′,w′ = 0 for some (λ′,w′) and regularity conditions are

satisfied, then surrounding (λ′,w′) there exists a function w∗(λ)

s.t. ∂LT
∂w |λ,w∗(λ) = 0 and

∂w∗

∂λ

∣∣∣
λ′

= −
[

∂2LT
∂w∂w

]−1 ∂2LT
∂w∂λ

∣∣∣
λ′,w∗(λ′)

So,

∂L∗
V

∂λ

∣∣∣
λ′

= ∂LV
∂w

∂w∗

∂λ

= −∂LV
∂w

[
∂2LT
∂w∂w

]−1
∂2LT
∂w∂λ

∣∣∣
λ′,w∗(λ′)
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Learned Data Augmentation

Original Sample 1 Sample 2 Pixel Std.

Figure 2: The original image is on the left, followed by two augmented
samples and the standard deviation of the pixel intensities from the
augmentation distribution.

The hyperparameters are weights in a U-Net [9], which learns a

stochastic data augmentation: x′ = Uλ(x, ϵ), ϵ ∼ N (0, I ), x ∼ D.
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IFT for meta-learning/pre-training [10]

• What if we want to tune pre-training parameters? Or have a

meta-learning setup with more than 2 levels?

• Well, we can use the IFT for each level.
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Hyperparameter Optimization through Hypernetworks [6, 7]

• Remember that:

w∗(λ) = argmin
w

LT(λ,w)

• Idea: approximate the response with a neural network. In this

case, a hypernetwork with parameters ϕ:

w∗(λ) ≈ ŵϕ(λ)
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1st Order Optimization in Differentiable Games

• The direct gradient is easy to compute.

• The gradient is difficult to compute because we may need the

Jacobian of the best-response, which could require

differentiating through optimization:

∂L∗
V(λ)
∂λ︸ ︷︷ ︸

hypergradient

= ∂LV(λ,w∗(λ))
∂λ︸ ︷︷ ︸

hyperparameter direct grad.

+

hyperparameter indirect grad.︷ ︸︸ ︷
∂LV(w∗(λ))
∂w∗(λ)︸ ︷︷ ︸

parameter direct grad.

∂w∗(λ)
∂λ︸︷︷︸

best-response Jacobian

∂L∗
V

∂λ =
(
∂LV
∂λ + ∂LV

∂w
∂w∗

∂λ

)∣∣∣∣
λ,w∗(λ)
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1st Order Optimization in Differentiable Games

• The direct gradient is easy to compute.

• The gradient is difficult to compute because we may need the
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1st Order Optimization in Differentiable Games

• The direct gradient is often identically 0 for hyperparameter

optimization.

• If the direct gradient available, we can simple use first-order

methods.

• These can be much simpler to implement, compute, and

analyze.

• Minimax games, LA = −LB , always have a direct gradient –

ex., GANs.
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Complex Momentum [11] - animation

• Gradient descent in differentiable games (like GANs) rotates

around solutions.

• We solve this with a simple trick: complex momentum damps

the oscillations.
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https://drive.google.com/file/d/1aYCIZgnA4oaY3hYcQBG4eb6OPCWVogS3/view?usp=sharing
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The Logistic Map Example

x 0

r

• A canonical 1-dimensional example for bifurcations:

x(t + 1) = x(t) + r + x(t)2
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Single-objective Optimization Example
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Branching Optimization Tree Search– RR/GRR changes in red

1: Select optimization parameters α

2: Find starting parameters ωstart = FindStartingPoint(α)

3: Initialize a branch ψinit = InitBranch(ωstart , α)

4: Initialize the set of branches B = SplitBranch(ψinit)

5: Initialize the set of solutions S = ∅
6: while Branches B non-empty do

7: ψ,B = ChooseBranch(B)
8: ω∗ = Optimize(ψ.ω, ψ.α) # Optimize our parameters

9: if VerifySolution(ω∗) then

10: S = S ∪ {ω∗}
11: Make new branch to split ψ′ = copy(ψ)

12: Store the optimized parameters ψ′.parameters = ω∗

13: if ContinueBranching(ψ′) then

14: B = B ∪ SplitBranch(ψ′)

15: return S 47



GAN Samples

• Ground truth samples for our GAN Mixture of Gaussian

experiment.

• Designed to test mode dropping.
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