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Motivation

• From Brenier’s theorem [2], we know that for two measures

µ, ν ∈ P2(Rn), such that µ does not give mass to small sets,

there exists a convex potential φ such that

∇φ = argmin
T :T#µ=ν

∫
Rn

|x − T (x)|2dµ

• This result motivates use of convex gradients for estimating

OT maps [5], more recently for applications such as

Wasserstein gradient flows,[4] density estimation, generative

modelling [3]...

2



Motivation

• From Brenier’s theorem [2], we know that for two measures

µ, ν ∈ P2(Rn), such that µ does not give mass to small sets,

there exists a convex potential φ such that

∇φ = argmin
T :T#µ=ν

∫
Rn

|x − T (x)|2dµ

• This result motivates use of convex gradients for estimating

OT maps [5], more recently for applications such as

Wasserstein gradient flows,[4] density estimation, generative

modelling [3]...

2



Setup

• Popular Existing Approach: Model φ : Rn → R using an

Input-Convex Neural Network[1], then use automatic

differentiation to compute ∇φ.

• But if we want ∇φ, why not model it directly? i.e using

Nθ : Rn → Rn. In general, Nθ is not a conservative vector

field...

• To constraint Nθ to parameterize a convex gradient, apply the

following theorem

Theorem (3 in paper)

For any smooth G : Rn → Rn such that DGx is symmetric PSD for

all x, there exists a convex function g : Rn → R such that

G = ∇g . i.e G is the gradient of convex function.
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Our proposed model

• Since the condition we want to enforce is on the Jacobian, we

work with the Jacobian (or Hessian of the potential) then

integrate.

• So given a suitable network Mθ : Rn → Rm, we compute

Nθ(x) =

∫ 1

0
[D(Mθ)sx ]

TD(Mθ)sxxds

We call Nθ an Input Convex Gradient Network
• [D(Mθ)]

TD(Mθ) is symmetric PSD by construction, and for

suitable1 Mθ, DNθ = [D(Mθ)]
TD(Mθ)

• Use Automatic Differentiation to compute vector products for

integrand efficiently (O(n)).

• Use any quadrature method to approximate integral.

• Current limitation: can only use one layer hidden networks.

1Terms and conditions apply
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Takeaway: ICGN vs ICNN for modelling gradients

As a comparison from our approach to the ICNN gradient:
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Thanks to the OTML organizers for a great workshop!
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