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Introduction

• Finding different types of solutions has been useful in

minimization - ex., shape vs. texture solutions for CNNs.

• Differentiable games generalize single-objective minimization:

θ∗A ∈ arg minθA
LA(θA,θ

∗
B),

θ∗B ∈ arg minθB
LB(θ∗A,θB)

• Games are increasingly important in ML – ex., GANs,

hyperparam opt., self-play, meta-learning, adversarial

examples, numerous others.

• Goal: Want to find diverse solutions in differentiable games –

ex., where players work together or battle each-other.

2



Introduction

• Finding different types of solutions has been useful in

minimization - ex., shape vs. texture solutions for CNNs.

• Differentiable games generalize single-objective minimization:

θ∗A ∈ arg minθA
LA(θA,θ

∗
B),

θ∗B ∈ arg minθB
LB(θ∗A,θB)

• Games are increasingly important in ML – ex., GANs,

hyperparam opt., self-play, meta-learning, adversarial

examples, numerous others.

• Goal: Want to find diverse solutions in differentiable games –

ex., where players work together or battle each-other.

2



Introduction

• Finding different types of solutions has been useful in

minimization - ex., shape vs. texture solutions for CNNs.

• Differentiable games generalize single-objective minimization:

θ∗A ∈ arg minθA
LA(θA,θ

∗
B),

θ∗B ∈ arg minθB
LB(θ∗A,θB)

• Games are increasingly important in ML – ex., GANs,

hyperparam opt., self-play, meta-learning, adversarial

examples, numerous others.

• Goal: Want to find diverse solutions in differentiable games –

ex., where players work together or battle each-other.

2



Introduction

• Finding different types of solutions has been useful in

minimization - ex., shape vs. texture solutions for CNNs.

• Differentiable games generalize single-objective minimization:

θ∗A ∈ arg minθA
LA(θA,θ

∗
B),

θ∗B ∈ arg minθB
LB(θ∗A,θB)

• Games are increasingly important in ML – ex., GANs,

hyperparam opt., self-play, meta-learning, adversarial

examples, numerous others.

• Goal: Want to find diverse solutions in differentiable games –

ex., where players work together or battle each-other.

2



Background

• Ridge rider [1] finds diverse solutions in single-objective

minimization by following Hessian’s negative EVals at saddles.

• Bifurcations are areas where small changes cause solution

differences. Saddles are a key bifurcation in conservative

systems from following gradients.

• Following gradients in games is a non-conservative system, so

more solution and bifurcation types.

• Because, Hessian’s generalization for games – i.e., the Game

Hessian – may have complex EVals from lack of symmetry.

Game Hessian︷︸︸︷
Ĥ =

[
Player A Hessian∇2

θA
LA ∇θA∇θBLA

∇θB∇θALB> Player B Hessian∇2
θB
LB

]
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Our Method – Game Ridge Rider (GRR)

We generalize Ridge Rider to games with the following:

• Complex EVals may have EVecs with complex entries. We use

an EVec selection for conjugate pairs that has all real entries,

so we can follow it.

• We detect and allow for branching at new types of

bifurcations – ex., Hopf where ≈ < EVal crosses 0.

• We apply an arbitrary optimization algorithm after branching.
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New Toy Problems

P
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Small IPD (new)

Following the gradient in red, LOLA [2] in blue

Player 2 Strategy

Player 2 Strategy

Matching Pennies

Join
t-p

layer
grad

.
log-n

orm

Mixed Objective (new)

• Small IPD is a 2 param. Iterated Prisoner’s Dilemma with TT

and DD solutions, but only real EVals.

• Matching Pennies is a 2 param. rock-paper-scissors with

imaginary EVals, but only 1 solution.

• Mixing these gives a 2 param. problem like the full IPD with

multiple solutions, complex EVals, and a Hopf bifurcation.
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Applying our Method on Toy Problems
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GRR at a Saddle Bifurcation
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Player 2 Strategy

GRR at a Hopf Bifurcation

• For both the small IPD (left) and mixed objective (right) our

method – Game Ridge Rider (GRR) – finds all solutions.
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Finding Diverse Solutions in the Iterated Prisoners Dilemma

Solution Mode

Search Strategy Cooperate Defect

×20 Random init and LOLA [2] ×
×20 Random init and follow grad. ×

• Randomly initializing then applying a training method only

finds 1 solution mode.

• Our method finds both solution modes.

• If we don’t start at a saddle, then branching doesn’t affect the

solution.
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Takeaways

• Differentiable games generalize single-objective minimization,

but with non-conservative dynamics from complex EVals.

• We can view methods for diverse solutions in single-objective

minimization – i.e., Ridge Rider (RR) – as finding bifurcations

in conservative systems and branching.

• This viewpoint allows usage of tools from dynamical systems

to generalize RR to non-conservative systems.
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Thanks!

Jonathan Lorraine
Jack Parker-Holder Paul Vicol

Aldo Pacchiano Luke Metz Tal Kachman

Jakob Foerster
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Proposed Algorithm

• Check out the paper for more details.

Algorithm 1 Game Ridge Rider (GRR)–red modifications

1: Input: ωSaddle, α, ChooseFromArchive, GetRidges,

2: EndRide, Optimize, UpdateRidge

3: A = GetRidges(ωSaddle) # Init. Archive

4: while Archive A non-empty do

5: j ,A = ChooseFromArchive(A)

6: (ωj , ej , λj) = Aj

7: while EndRide(ωj , ej , λj) not True do

8: ωi ← ωj − αej # Step along the ridge ej

9: ej , λj = UpdateRidge(ωj , ej , λj)

10: ωj = Optimize(ωj)

11: A = A ∪GetRidges(ωj) # Add new ridges
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