
Learning Functions with Structured Jacobians
Jonathan Lorraine, Safwan Hossain

lorraine@cs.toronto.edu, hossain@cs.toronto.edu

Motivation

• We want to enforce global properties on neural networks
(NN)

• It is easy to enforce some NN properties by choice of output
activation. Ex., softmax for classification.

• But, it is difficult to enforce properties of the NNs Jacobian.
• Some NN properties are easiest to phrase as constraints on
the Jacobian. Ex., being invertible or Lipschitz.

• Let’s directly parameterize the Jacobian to easily constrain
with an appropriate output activation.

Contributions

• A way to learn functions by parameterizing their Jacobian
and integrating along paths.

Function Evaluation as Line Integration

• We can evaluate a function y by combining initial conditions
with an integral of the Jacobian J

y
x on a differentiable path c

between the initial and final values, xo and x.

y(x) = y(xo)︸ ︷︷ ︸
Initial condition

+

∫ t=1

t=0

Jacobian︷︸︸︷
J

y
x
(Path︷ ︸︸ ︷
c(t, xo, x)

) Rectification︷ ︸︸ ︷
c (t)(t, xo, x) dt︸ ︷︷ ︸

Path integral

• Use a linear path c(t, xo, x) = (1− t)xo + tx for simplicity.

Initial x0

Input x

Initial y(xo) Predicted ŷ(x)

Label y(x)

Initial condition: (x0, y(xo))

Input domain 𝒳 Output domain 𝒴

Loss:
ℒ(ŷ, y)

Path c(x, t) Data tuple (x, y(x))
Vector field, Jx

y

Integrated path

A visualization of our training procedure.

Structuring the Jacobian

• We propose to parameterize a vector/matrix field Jθ(x) to
approximate the Jacobian J

y
x via a network with weights θ.

• We can evaluate the loss by doing a forward pass through
the integrator to get a predicted label.

• We leverage differentiable integrators from Chen et al. [1] to
backpropagate through integration to train θ.

• We use a k-scaled tanh output activation to ensure our
Jacobian norm lies in [−k, k] for k-Lipschitz.

• We constrain the Jacobian determinant to be non-zero
everywhere for invertibility, by using an output activation
which is guaranteed to be positive definite:

J ′θ(x) = Jθ(x)JT
θ (x) + εI

Note that Jθ(x)JT
θ (x) is a flexible PSD matrix, while adding

εI makes it positive definite.
• By the Implicit Function Theorem, we can compute y−1 by
integrating the inverse Jacobian along a path c(t, yo, y):

x(y,θ) = x(yo) +

∫ t=1

t=0
(Jθ (c(t, yo, y)))

−1 c (t)(t, yo, y)dt

Learning Lipschitz Functions

Ta
rg

et
y

/P
re

di
ct

io
n

ŷ θ

Input x
A graph of the 1-Lipschitz target function |x|, the NN after training, and
the NN at initialization. The initial NN is inaccurate, while the final NN
closely matches the target function. Additionally, the NN is 1-Lipschitz at
initialization and after training. We include graphs of an unconstrained
NN which - in contrast - does not generalize to unseen data, in-part
because the derivative is not bounded by [−1, 1].

Learning Invertible Functions

Ta
rg

et
y

/P
re

di
ct

io
n

ŷ θ

Input x
A graph of the invertible target function exp(x), the NN after training, and
the NN at initialization. The initial NN is inaccurate, while the final NN
closely matches the target function. We include graphs of an
unconstrained NN whose Jacobian can be zero. Note how the
unconstrained function is not invertible everywhere, because the Jacobian
determinant is 0 for some arguments.

Challenges

• In higher dimensions when parameterizing the Jacobian of
y : Rn → Rm if n > 1,m = 1 we are parameterizing a vector
field Jθ, which may not be conservative. Thus, our NN may
not be the Jacobian of a function.

• The invertible output activation a(b) = bT b + εI is
restrictive, because we can only parameterize PSD
Jacobians while general invertible functions have a non-zero
determinant.

• Inverting Jθ may be a computational bottleneck in high
dimensions. Can we learn an easily invertible matrix?

References

[1] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing
Systems, pages 6571–6583, 2018.

