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Main Idea

• Machine learning models often nest optimization of model weights in the optimization
of hyperparameters.

• We collapse the nested optimization into joint optimization by training a neural net-
work to output optimal weights for each hyperparameter.

• The method converges to locally optimal weights and hyperparameters for large hy-
pernets and effectively tunes thousands of hyperparameters.
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Figure 2: Training and validation loss of a neural net for linear regression on MNIST, estimated by
cross-validation (crosses) or by a hypernet (lines), which outputs 7, 850-dimensional network weights.
The training and validation loss can be cheaply evaluated at any hyperparameter value using a hypernet.
Standard cross-validation requires training from scratch each time. Left: A global approximation the
best-response. Right: A local approximation to the best-response.

Hyperparameter Tuning is Nested Optimization

• Selecting a hyperparameter is finding a solution to the following bi-level optimization
problem:
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• The optimized model weights depend on the choice of hyperparameter. This is a
best-response function of the weights to the hyperparameters:
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w
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Learning a Mapping from Hyper-
parameters to Optimal Weights

• A hypernet is a neural network which outputs network weights.

• The best-response takes hyperparameters and outputs weights, so approximate it with
a hypernet.

Theorem. Sufficiently powerful hypernets can learn continuous best-response func-
tions, which minimizes the expected loss for any hyperparameter distribution.

There exists φ∗, such that for all λ ∈ support(p (λ)) ,
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Globally Optimizing the Hypernet

• We can learn the best-response without viewing pairs of hyperparameters and op-
timized weights, by substituting the hypernet output into the training loss. The
algorithm is denoted Hyper Training.

1: initialize φ
2: initialize λ̂
3: for Thypernet steps do
4: x ∼ Training data, λ ∼ p (λ)
5: φ = φ− α∇φLTrain(x,wφ(λ), λ)

6: for Thyperparameter steps do
7: x ∼ Validation data
8: λ̂ = λ̂− β∇λ̂LValid.(x,wφ(λ̂))

9: return λ̂,wφ(λ̂)

Locally Optimizing the Hypernet

• It is difficult to learn the best-response globally due to finite network size and training
time.

• It is easier to learn the best-response locally, update the hyperparameters and repeat.

1: initialize φ, λ̂
2: for Tjoint steps do
3: x ∼ Training data, λ ∼ p(λ|λ̂)
4: φ = φ− α∇φLTrain(x,wφ(λ), λ)
5: x ∼ Validation data
6: λ̂ = λ̂− β∇λ̂LValid.(x,wφ(λ̂))

7: return λ̂,wφ(λ̂)

Optimizing 7,850 Hyperparameters

• We investigate our methods performance on tuning hyperparameters of dimensionality
10 and 7, 850.

Optimizing 7, 850 hyperparameters Optimizing 10 hyperparameters
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Benefits of Hyper Training

• Our method provides two potential benefits. These are a better inductive bias by
learning the weights instead of loss, and viewing many hyperparameter settings dur-
ing training.

• We analyze this by comparing our algorithm to Bayesian optimization with 25 samples
and a hypernet trained on the same 25 samples.
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Figure 3: Comparing three approaches to predicting validation loss. First row: A Gaussian process, fit
on a small set of hyperparameters and the corresponding validation losses. Second row: A hypernet, fit
on the same small set of hyperparameters and the corresponding optimized weights. Third row: Our
proposed method, a hypernet trained with stochastically sampled hyperparameters. Left: The distribution
of predicted and true losses. The diagonal black line is where predicted loss equals true loss. Right: The
distribution of differences between predicted and true losses. The Gaussian process often under-predicts
the true loss, while the hypernet trained on the same data tends to over-predict the true loss.

Conclusions

• We presented an algorithm that efficiently learns a differentiable approximation to a
best-response for hyperparameter optimization.

• Hypernets can provide a better inductive bias for hyperparameter optimization than
Bayesian optimization.
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Figure 4: A visualization of exact (blue) and approximate (red) optimal weights as a function of given
hyperparameters. Left: The training loss surface. Right: The validation loss surface. The approximately
optimal weights wφ∗ are output by a linear model fit at λ̂. The true optimal hyperparameter is λ∗, while
the hyperparameter estimated using approximately optimal weights is nearby at λφ∗.


