Stochastic Hyperparameter Optimization with Hypernets

Jonathan Lorraine, David Duvenaud

University of Toronto

Main ldea Globally Optimizing the Hypernet Benefits of Hyper Training

e Machine learning models often nest optimization of model weights in the optimization e \We can learn the best-response without viewing pairs of hyperparameters and op- e Our method provides two potential benefits. These are a better inductive bias by
of hyperparameters. timized weights, by substituting the hypernet output into the training loss. The learning the weights instead of loss, and viewing many hyperparameter settings dur-
e \We collapse the nested optimization into joint optimization by training a neural net- algorithm is denoted Hyper Training. ing training.

work to output optimal weights for each hyperparameter. e \We analyze this by comparing our algorithm to Bayesian optimization with 25 samples
initialize ¢ and a hypernet trained on the same 25 samples.

2. Initialize A

3 for Tiypemet Steps do

2 x ~ Training data, A ~ p ()

5. ¢ = ¢ — AV Lorain(X, We(A), A)

0: for Thyperparameter Steps do

—— Train loss of hypernet weights I }5 ™~ yalldatlon data R

< Valid. loss of optimized weights 8: A= A— 5 VS\ »CValid.(Xa W¢()\))
— Valid. loss of hypernet weights Q

—t

e The method converges to locally optimal weights and hyperparameters for large hy-
pernets and effectively tunes thousands of hyperparameters.

Frequency

GP Mean
Predicted Loss

SO~ OO0 OO0 ——

< < Train loss of optimized weights

Loss L
Loss L

. return \, wy(\)

e ---- Optimal hyperparameter \
— p(AY)

S XX

Hyperparameter A Hyperparameter A

Frequency

Fixed Hypernet
Predicted Loss

Locally Optimizing the Hypernet

Figure 2: Training and validation loss of a neural net for linear regression on MNIST, estimated by

PUNOANNOO—~ RN NIROOD— RN I0O0D—

cross-validation (crosses) or by a hypernet (lines), which outputs 7,850-dimensional network weights. % Z _
Ini Idatli ' : . Co : C o e =
T'he training and validation loss can be cheaply evaluated at any hyperparameter value using a hypernet. e It is difficult to learn the best-response globally due to finite network size and training ol 5
Standard cross-validation requires training from scratch each time. Left: A global approximation the _ = 2 =3
best-response. Right: A local approximation to the best-response. time. ég E
e |t is easier to learn the best-response locally, update the hyperparameters and repeat. 3 &
0.6 0.7 0.8 0.9 1.0 1.1 —0.2 0.0 0.2 0.4 0.6
Hyperparameter Tuning is Nested Optimization S . True loss Predicted loss - true loss
1. 1nitialize @, A
». for Tiomt steps do Figure 3: Comparing three approaches to predicting validation loss. First row: A Gaussian process, fit

e Selecting a hyperparameter is finding a solution to the following bi-level optimization on a small set of hyperparameters and the corresponding validation losses. Second row:

. X ~ Training data, A\ ~ p(A|\)

problem: B and the corresponding optimized weights. Third row: Our
v ¢=¢ - @v¢ ‘CTfam(X’ Wqﬁ()‘)v)\) proposed method, a hypernet trained with stochastically sampled hyperparameters. Left: The distribution

. . 5: x ~ Validation data of predicted and true losses. The diagonal black line is where predicted loss equals true loss. Right: The

arginm \/a%d arg\f,nm T}gin(W’ A) (1) 6. N = \ — BV Lvaid. (X, W¢(5\)) distribution of differences between predicted and true losses. The Gaussian process often under-predicts

the true loss, while the hypernet trained on the same data tends to over-predict the true loss.

7 return A, wy()\)

e The optimized model weights depend on the choice of hyperparameter. This is a ... Conclusions
Optimizing 7,850 Hyperparameters

best-response function of the weights to the hyperparameters:
e \We presented an algorithm that efficiently learns a differentiable approximation to a

W (A) = argvl;nm Tém(W’) (2) ¢ \We investigate our methods performance on tuning hyperparameters of dimensionality best-response for hyperparameter optimization.
10 and 7, 850. e Hypernets can provide a better inductive bias for hyperparameter optimization than
. . Obtimizing 7 850 h Obtimizing 10 h . Bayesian optimization.
Learnlng 3 Map mg from Hyper_ ngtlmlzmg , yperparameters . ptimizing yperparameters
paramete rs to ptlmal WElghtS | ---- Random search Lv.jq IS Bayesian opt. Lvajid.
_ _ _ — Hypernet Ly ;9. (W4)\ L Bayesian opt. L e = SN e i
e A hypernet is a neural network which outputs network weights. 0.8 ’ valid. (Wg (1)) ~ osh E A
| | o ' Random search £ gt 1 WA
e | he best-response takes hyperparameters and outputs weights, so approximate it with ~ Hypemet Lre(wo- (V) | ?Z ------- Ay
a hypernet. S Wy (Agr)
.. : <07 QOT7 e
Theorem. Sufficiently powerful hypernets can learn continuous best-response func- 2 N T N I S
tions, which minimizes the expected loss for any hyperparameter distribution. = _ - R N |
PSWPLIAR N N WGl AN G R L N R gl
006 I . il S LI ILIIIoITTToT
There exists ¢*, such that for all A € support(p (A)),
Tém(wqb* (A)sA) = m“}n Tém@v’ A) 0.5 05l Figure 4: A visualization of exact (blue) and approximate (red) optimal weights as a function of given
hyperparameters. Left: The training loss surface. Right: The validation loss surface. The approximately
and ¢* — al‘gmlﬂ E |: £ (W¢()\/),)\/):| 0 100 200 300 400 500 600 700 800 0 200 400 600 200 Optlmal Welghts W¢>|< are OUtpUt by a linear model fit at M. The true Optlma| hyperparameter IS)*, while
¢ p(XN)[lran Runtime in seconds Runtime in seconds the hyperparameter estimated using approximately optimal weights is nearby at A .

