Motivation

- Kantorovich duality relates Optimal Transport primal to dual over convex functions for squared-Euclidean cost [7].
- From Brenier's theorem[2], we know Optimal Transport map T^* exists and is realized as the gradient of the optimal dual potential $T^* = (\nabla \varphi^*)$.
- This tells us parameterizing convex gradients allows us to approximate OT map between two densities. Has been explored in [4], [5] and for density estimation in [3].

Existing Method

- Existing method for modeling optimal transport maps involves using an Input Convex Neural Network [1].
- The network models a scalar potential $N_{\theta} : \mathbb{R}^n \to \mathbb{R}$ which is then differentiated to produce ∇N_{θ} .

ICGN - High Level Details

- Our approach avoids differentiation of a potential which can causes numerical issues.
- Instead, we numerically compute a line integral of a symmeteric PSD 2-tensor $[Df]^T Df$ where $f : \mathbb{R}^n \to \mathbb{R}^m$.
- We use autograd to compute JVPs and VJPs without explicitly constructing matrices in the matrix-vector products.
- We can use any quadrature method for the integral.

Motivating Theorem

Theorem 2:

The Jacobian of N_{θ} , DN_{θ} takes the form $DN_{\theta} = [DM_{\theta}]^T DM_{\theta}$

since this matrix is symmetric PSD, this implies there exists a convex $\varphi : \mathbb{R}^n \to \mathbb{R}$ such that $N_{\theta} = \nabla \varphi$ (see [6]). So our model paramterizes a convex gradient.

Input Convex Gradient Networks Jack Richter-Powell¹, Jonathan Lorraine^{3,4}, Brandon Amos² McGill University¹, FAIR², University of Toronto³, Vector Institute⁴

Definition of the model

 $T: \mathbb{R}^2 \to \mathbb{R}^2.$

Experiment 1 - Fitting a Toy Potential Field

ICGN 0.0 0.2 0.8 04 0.6 1.0

We show the squared Euclidean error when fitting the target T with either the gradient of the ICNN potential or ICGN approach.

Theoretical comparison: ICGN vs ICNN gradients

Visualization of modeling the target gradient as either the ICNN potential's gradient or ICGN model, which involves the integration of the Hessian.

We compared the gradient of a 1-layer ICNN to a 1-layer ICGN for fitting a target map

Potential (ICNN)

Experiment 1 Details

(1)

This is the gradient of a convex polynomial on $[0, 1]^2$.

Mo ICN

Takeaway: The ICGN is able to fit the target T better with far fewer parameters.

Limitations / Next Steps

References

rget map is:

$$T(x,y) = \begin{pmatrix} 4x^3 + \frac{1}{2}y + x \\ 3y - y^2 + \frac{1}{2}x \end{pmatrix}$$

Size of models used

del	Layers	Hidden	Params (Total)
JN	1	25	78
GΝ	1	5	15

 Current framework can only handle one layer networks M_{θ} , due to PDE (1) constraint. Interesting future work is generalizing to deeper networks.

• We deal with potential fields on \mathbb{R}^n , but similar methods could be applied to model exact 1-forms on Riemannian Manifolds. Brenier's theorem has already seen extensions here[7].

[1] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine Learning, pages 146–155. PMLR, 2017.

[2] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on pure and applied mathematics, 44(4):375–417, 1991.

[3] Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, and Aaron C. Courville. Convex potential flows: Universal probability distributions with optimal transport and convex optimization. CoRR, abs/2012.05942, 2020. URL https://arxiv.org/abs/2012.05942.

[4] Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping via input convex neural networks. In International Conference on Machine Learning, pages 6672-6681. PMLR, 2020.

[5] Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, and Evgeny Burnaev. Large-scale wasserstein gradient flows, 2021.

[6] Jack Richter-Powell, Jonathan Lorraine, and Brandon Amos. Input convex gradient networks,

[7] C. Villani. *Topics in Optimal Transportation*. Graduate studies in mathematics. American Mathematical Society, 2003. ISBN 9780821833124.