
Input Convex Gradient Networks
Jack Richter-Powell1, Jonathan Lorraine3,4, Brandon Amos2

McGill University1, FAIR2, University of Toronto3, Vector Institute4

Motivation

•Kantorovich duality relates Optimal Transport primal to
dual over convex functions for squared-Euclidean cost [7].

•From Brenier’s theorem[2], we know Optimal Transport
map T ∗ exists and is realized as the gradient of the
optimal dual potential T ∗ = (∇φ∗).

•This tells us parameterizing convex gradients allows us to
approximate OT map between two densities. Has been
explored in [4], [5] and for density estimation in [3].

Existing Method

•Existing method for modeling optimal transport maps
involves using an Input Convex Neural Network [1].

•The network models a scalar potential Nθ : Rn → R
which is then differentiated to produce ∇Nθ.

ICGN - High Level Details

•Our approach avoids differentiation of a potential –
which can causes numerical issues.

• Instead, we numerically compute a line integral of a
symmeteric PSD 2-tensor [Df ]TDf where f : Rn → Rm.

•We use autograd to compute JVPs and VJPs without
explicitly constructing matrices in the matrix-vector
products.

•We can use any quadrature method for the integral.

Motivating Theorem

Theorem 2:
The Jacobian of Nθ, DNθ takes the form

DNθ = [DMθ]
TDMθ

since this matrix is symmetric PSD, this implies there
exists a convex φ : Rn → R such that Nθ = ∇φ (see
[6]). So our model paramterizes a convex gradient.

Definition of the model

For a Neural Network Mθ : Rn → Rm that satisfies the PDE
∂2Mθ

∂xk∂x i
· ∂Mθ

∂x j
=

∂2Mθ

∂xk∂x j
· ∂Mθ

∂x i
∀1 ≤ i , j , k ≤ n (1)

we define Nθ : Rn → Rn, an Input Convex Gradient Network as

Nθ(x) =

∫ 1

0

[D(Mθ)sx]
TD(Mθ)sxxds

Experiment 1 - Fitting a Toy Potential Field

We compared the gradient of a 1-layer ICNN to a 1-layer ICGN for fitting a target map
T : R2 → R2.

We show the squared Euclidean error when fitting the target T with either the gradient of the ICNN
potential or ICGN approach.

Theoretical comparison: ICGN vs ICNN gradients

Visualization of modeling the target gradient as either the ICNN potential’s gradient or ICGN model, which
involves the integration of the Hessian.

Experiment 1 Details

The target map is:

T (x , y) =

(
4x3 + 1

2y + x
3y − y 2 + 1

2x

)
This is the gradient of a convex polynomial
on [0, 1]2.

Size of models used
Model Layers Hidden Params (Total)

ICNN 1 25 78
ICGN 1 5 15

Takeaway:
The ICGN is able to fit the target T better
with far fewer parameters.

Limitations / Next Steps

•Current framework can only handle one layer
networks Mθ, due to PDE (1) constraint.

• Interesting future work is generalizing to
deeper networks.

•We deal with potential fields on Rn, but
similar methods could be applied to model
exact 1-forms on Riemannian Manifolds.
Brenier’s theorem has already seen
extensions here[7].
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