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Abstract
Bilevel problems involve inner and outer parame-
ters, each optimized for its own objective. Most
prior work makes the simplifying assumption that
the inner and outer objectives have unique solu-
tions, but often in practice, at least one of them is
overparameterized. In this case, there are many
ways to choose among equivalent optima, which
lead to different results. Building on recent stud-
ies of implicit regularization in single-level opti-
mization, we investigate the inductive biases of
different gradient-based algorithms for jointly op-
timizing the inner and outer parameters. We dis-
tinguish between two different solution concepts—
cold-start and warm-start equilibria—and show
that the converged solution or long-run behav-
ior depends to a surprising degree on algorithmic
choices such as the hypergradient approximation,
which depends on higher order Hessian-vector
products. We also show that with warm-start
equilibria, the inner parameters can encode a sur-
prising amount of information about the outer
objective, even when the outer parameters are
low-dimensional.

1. Introduction
A bilevel optimization problem consists of two nested sub-
problems, called the outer and inner problems, where the
outer problem must be solved subject to optimality of the
inner problem. Let F, f : Rn × Rm → R denote the outer
and inner objectives, respectively, and let x ∈ Rn, y ∈ Rm
denote the outer and inner parameters. The bilevel problem
is defined as follows:

x∗ ∈ arg min
x

F (x,y∗) (1)

y∗ ∈ S(x) = arg min
y

f(x,y) (2)

Important examples of bilevel optimization in machine
learning include hyperparameter optimization [1–5], dataset
distillation [6, 7], influence function estimation [8], meta-
learning [9–11], example reweighting schemes [12, 13], neu-
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ral architecture search [14, 15], multi-agent RL [16], adver-
sarial learning [17, 18], and implicit layers [19]. Gradient-
based approaches to bilevel optimization require computing
the gradient of the outer objective with respect to the outer
parameters, called the hypergradient. This is defined as
follows for a given solution y∗ ∈ S(x), which is called a
best-response to x: dF (x,y∗)

dx = ∂F
∂x + ∂F

∂y∗
∂y∗

∂x . For many
problems of interest, such as hyperparameter optimization,
the direct gradient ∂F∂x is 0 (e.g., regularizers are not typically
applied at validation-time); x affects F indirectly through its
influence on the inner parameters y∗, and thus the response
Jacobian ∂y∗

∂x is crucial. Bilevel problems are challeng-
ing to optimize because exactly computing this Jacobian is
typically intractable; approximating the Jacobian crucially
depends on efficient higher-order Hessian-vector products.
We investigate the effect of different approximations on the
solutions obtained in overparameterized problems.

There are many optimization algorithms that can be used for
bilevel problems. One approach is to run the inner optimiza-
tion to convergence and compute the gradient for the outer
parameters by differentiating through the unrolled optimiza-
tion [1, 2, 5] or using implicit differentiation [20, 21, 4]; we
refer to this as cold-starting. This is impractical due to the
expense of full inner optimization. Instead, a common ap-
proach is to jointly optimize the inner and outer parameters
in an online fashion [22, 3, 23, 24], e.g., alternating gradient
steps with their respective objectives. In this case, the inner
parameters are warm-started from the approximate solution
to the inner optimization, given the outer parameters in the
previous iteration. The optimization dynamics lead to an
implicit regularization effect, which we investigate.

Contributions.

• We formalize warm-started bilevel optimization and
consider warm-start equilibrium as the solution con-
cept for the resulting game. We also consider cold-start
equilibrium as the solution concept for cold-started
bilevel optimization.

• We investigate how different approximations to the
hypergradient dF

dx —including iterative and implicit
differentiation—lead to different outer solutions x∗ ∈
arg minx F (x,y∗).

• We present synthetic tasks illustrating the effects of hy-
pergradient approximations and overparameterization
in the inner and outer problems.
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Cold-Start Warm-Start

Update
xt+1 = xt − α ∂F

∂y∗
∂y∗

∂x

y∗t+1 ∈ arg miny∈S(xt+1) ||y − y0||2
xt+1 = xt − α ∂F

∂y∗t

∂y∗t
∂x

y∗t+1 ∈ arg miny{f(xt+1,y) + ε
2 ||y − yt||2}

Response Jacobian
(

∂2f
∂y∂y>

)−1
∂2f
∂y∂x

(
∂2f

∂y∂y>
+ εI

)−1
∂2f
∂y∂x

Neumann Approx. H−1 ≈
∑K
k=0(I −H)k (H + εI)−1 ≈

∑K
k=0((1− ε)I −H)k

Table 1: Comparison of warm-start and cold-start bilevel optimization.

2. Background
We provide an overview of related work in App. A, and a
summary of our notation in App. B.

Approximating the Best-Response and its Jacobian. In
practice, exactly computing the best-response or its Jaco-
bian is expensive, and one typically approximates y∗ or
∂y∗

∂x or both; this leads to two sources of approximation
error for the hypergradient. A common approach to approx-
imate the best-response is to use truncated unrolls of the
inner problem rather than full unrolls [1, 2, 26, 5], so that
y∗(x) ≈ Φk(y0,x), representing k steps of unrolling from
initialization y0 with outer parameters x. The two main
ways to compute the best-response Jacobian are: 1) differ-
entiation through unrolling dy∗

dx ≈
dΦk(y0,x)

dx ; or 2) implicit
differentiation [21, 27, 20, 28, 29, 4, 30, 31], which is ap-
plicable when we are at the converged solution to the inner

problem, dy
∗

dx = −
(

∂2f
∂y∂y>

)−1
∂2f
∂y∂x . The exact inverse

Hessian is intractable to compute for large networks; two
common approximations involve: 1) using truncated con-
jugate gradient (CG) [29], and 2) using the truncated Neu-

mann series [32, 4]:
(

∂2f
∂y∂y>

)−1

≈
∑K
j=0

(
I − ∂2f

∂y∂y>

)j
.

Lorraine et al. [4] showed that unrolling differentiation for
i steps starting from optimal inner parameters w∗ is equiv-
alent to approximating the inverse Hessian with the first
i terms in the Neumann series. Both CG and Neumann
can be implemented with efficient Hessian-vector products
using modern autodiff libraries [33–36]. Mathematically,
the IFT is only applicable when the inner optimization has
converged; however, in practice it is often applied in an
online fashion, when the inner parameters are far from con-
vergence [29, 4, 30, 31].

3. Equilibrium Concepts
When the inner problem is overparameterized, there are
many equally good solutions to the inner optimization, so
the best response S(λ) is a set and not unique [37, 38]. Dif-
ferent choices of y∗ ∈ S(x) yield different best-response
Jacobians ∂y∗

∂x , which lead to different hypergradients, and
the solution we converge to depends on the initialization of
the inner parameters and the optimization algorithm used.

In the bilevel optimization literature, two specific choices
of solutions have been studied, termed the optimistic and
pessimistic solutions [25]. Fig. 1 illustrates these solutions
for a simple 2D classification problem. Importantly, nei-
ther of these solutions is tractable to compute for large
problems. We focus on two alternatives that correspond
to practical applications of bilevel optimization: cold-start
and warm-start optimization and their solutions (also il-
lustrated in Fig. 1, and described in Table 1). Cold- and
warm-start algorithms can be seen as different bilevel opti-
mizers, which are necessarily higher-order and depend on
efficient Jacobian-vector products to handle the response
Jacobian. Overparameterization can also occur in the outer
problem, such that arg minx F (x,y∗) is not unique; in this
case, we may converge to different solutions x depending
on algorithmic choices such as the number of gradient steps
we unroll, or the number of Neumann series iterations we
perform to approximate the inverse Hessian.

Warm-Starting as Proximal Optimization. Given outer
parameters x and current inner parameters yk, we formalize
warm-started joint optimization by considering the follow-
ing proximally-regularized inner objective:

y∗ ∈ arg min
y
{f(x,y) +

ε

2
||y − yk||2} (3)

Here, ε controls the amount of inner optimization we per-
form. In the following, we denote by f̂ the proximally-
regularized objective. One iteration of gradient descent
(GD) with a small step size is approximately equivalent to
minimizing the proximal objective with large ε [39]. As-
sume that after one step of GD, we are at the minimum of f̂ .
Because the inner parameters y are at a stationary point of
the gradient field∇yf̂ , the conditions needed to apply IFT
are satisfied, allowing us to compute the local best-response
Jacobian as: 1

∂ŷ∗

∂x
= −

(
∂2f

∂y∂y>
+ εI

)−1
∂2f

∂x∂y
(4)

Farnia et al. [40] introduced a similar proximal objective in
the context of GAN zero-sum sequential games, and intro-
duced a corresponding solution concept called the proximal

1We derive the local response Jacobian in App. E.
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Figure 1: Handcrafted figures for a 2D data distillation task, to illustrate the differences between types of bilevel optimization (BLO). In
optimistic BLO [25], we choose the inner parameters that achieve the best outer-objective value, argminy∈S(x) F (x,y). In pessimistic
BLO [25], we choose y ∈ S(x) that achieves the worst outer-objective value, argmaxy∈S(x) F (x,y). In practice, due to the implicit
bias of gradient descent, the y ∈ S(x) we end up at depends on the inner initialization y0: in cold-start BLO, we obtain y that minimize
the distance from y0: argminy∈S(x) ||y − y0||22. With warm-start BLO, the trajectory of outer parameters x during joint optimization
(shown by the arrows) influences the inner parameters y; we investigate this behavior in Section 4.1.

equilibrium. We make use of a similar solution concept for
bilevel optimization, which we call the warm-start equilib-
rium. Next, we define solution concepts of cold-start and
warm-start equilibria.2

Definition 3.1 (Cold-Start Equilibrium). (x∗,y∗) is a cold-
start equilibrium for an initialization y0 if:

x∗ ∈ arg min
x

F (x,y) , y∗ ∈ arg min
y∈S(x∗)

||y − y0||2

where S(x∗) = arg miny f(x∗,y).

Definition 3.2 (Warm-Start Equilibrium). (x∗,y∗) is a
warm-start equilibrium if:

x∗ ∈ arg min
x

F (x,y∗)

y∗ ∈ arg min
y
{f(x∗,y) +

ε

2
||y − y∗||2}

Similarly to classic results on implicit regularization of gra-
dient descent in single-level optimization, cold-starting will
lead to inner parameters with minimum distance from their
initialization. In contrast, we conjecture that warm-starting
yields inner parameters that aim to fit well for all the outer
parameters encountered during joint optimization simulta-
neously (see App. D.1).

4. Implicit Regularization in Bilevel Opt.
In this section, we introduce two toy problems based on
online dataset distillation, which involve jointly optimizing
a model and the data it is trained on. First, we show that
when the inner problem is overparameterized, the inner pa-
rameters can retain information associated with different
settings of the outer parameters seen over the course of joint
optimization. Then, we show that when the outer problem is
overparameterized, the choice of hypergradient approxima-
tion can affect which outer solution is found. Experimental
details and extended results are provided in App. D.

2We discuss warm-start further in App. C.

4.1. Inner Overparameterization: Dataset Distillation

Because the outer objective is only used directly to update
the outer variables, it would seem intuitive that all of the
information about the outer objective is compressed into the
outer variables. This is the intuition behind dataset distilla-
tion [6], which aims to learn a synthetic dataset, such that a
model trained from scratch on the learned data generalizes
well to the original data (which is the “validation set” in the
bilevel problem). Since the original dataset is only used in
the outer objective, one would expect it to be summarized
by the outer variables, e.g., the lower-dimensional distilled
dataset. While this intuition is correct for the cold-start
equilibrium, it does not hold for the warm-start equilib-
rium: a surprisingly large amount of information can leak
from the original dataset to the inner variables (network
weights). Consider a binary classification task with inputs
x ∈ R2, where the classes form concentric rings in 2D space
(Fig. 2a). We aim to learn two distilled datapoints, one per
class, to train an MLP. With alternating updates to the MLP
parameters and the learned datapoints, the datapoints follow
a nontrivial trajectory, tracing out the decision boundary
between classes over time (Fig. 2b). Result: Warm-started
bilevel optimization gives a model that achieves nearly the
same validation loss as one trained directly on the valida-
tion data, despite only using a single datapoint from each
class. In contrast, a cold-started model trained from scratch
on the final distilled datapoints fails on the original dataset
(Fig. 2c).

4.2. Outer Overparameterization: Anti-Distillation

Next, we consider a scenario where the outer problem is
overparameterized. We propose a new task related to dataset
distillation, but where we have more learned datapoints than
original dataset examples, which we term anti-distillation.
Here, there are many valid ways to set the learned data-
points such that a model trained on those points achieves
good performance on the original data. Concretely, con-
sider a 1D linear regression problem, where Φ is a de-
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(b) Warm-start: joint optimization.
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(c) Re-train on final points

Figure 2: Dataset distillation for binary classification, with two learned datapoints (outer parameters) adapted jointly with the model
weights (inner parameters). (a) Reference performance when training a model on the original data (e.g., the “validation data”); (b) Joint
optimization (e.g., warm-starting) yields a trajectory of the learned datapoints that traces out the boundary between the classes, and the
final model obtains low validation loss; (c) Training from scratch on the final learned datapoints yields a decision boundary that is correct
for the distilled points but has high validation loss.
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Figure 3: Fourier-basis 1D linear regression, where the outer objective is overparameterized. We learn the y-component of 13 synthetic
datapoints such that a regressor trained on those points will fit a single “validation” datapoint, shown by the green X at (0, 2). Figs.
(a,b) show the learned datapoints (outer parameters) obtained via different hypergradient approximations: truncated Neumann and
differentiation through truncated unrolls have the same fixed points because this problem is convex; we also perform proximal optimization
analytically, using the closed-form proximal pseudoinverse. Fig (c) shows the norms of the inner and outer parameters, ||w|| and ||λ||
respectively, as a function of K (for Neumann/unrolling) or ε (for proximal). Result: The amount of inner optimization we perform
affects the trade-off between the norms of the inner and outer parameters (fewer unrolling steps or a larger ε yield smaller-norm inner
parameters and larger-norm outer parameters).

sign matrix, w is a vector of weights, and y is a vector
of targets (or labels): L(w,y) = 1

2 ||Φw − y||22. Here,
w are the inner parameters and y are the outer parame-
ters. To keep the exposition simple, we only learn the tar-
gets y, not the inputs. The gradient of L is ∂L(w,y)

∂w =
Φ>Φw −Φ>y, and the Hessian and second-order mixed
partials are ∂2L(w,y)

∂y∂w = Φ> and ∂2L(w,y)
∂w∂w>

= H = Φ>Φ,
respectively. The minimum-norm best-response Jacobian,
is ∂w∗(y)

∂y = arg minHM=Φ ||M||2F = Φ+, which is the
Moore-Penrose pseudoinverse. Now, we design a specific
instance of this problem, and illustrate empirically the effect
of different hypergradient approximations on the converged
solution (Fig. 3). Here, we have one validation data point,
so any solution that places a learned datapoint on top of the
validation point perfectly fits the outer objective. To demon-
strate how different hypergradient approximations can lead
to different anti-distillations, we use Fourier-basis regres-
sion, where the low frequency terms have larger amplitude
than high frequency terms (details in App. D.2). In Fig. 3,
we show the solutions obtained via different numbers of
Neumann series terms, proximal optimization with various

ε values, and unrolling for different number of iterations.

We found that the quality of hypergradient approximations
directly induces a trade-off between the inner and outer pa-
rameter norms—e.g., we can achieve the good performance
for the outer objective by either making larger updates to
the inner or the outer parameters.

5. Conclusion
We investigated overparameterized bilevel optimization,
where either the inner or outer problems may admit non-
unique solutions. We discussed different equilibrium no-
tions, including cold-start and warm-start, corresponding to
different common optimization methods. We showed that
these choices can dramatically affect results when combined
with overparameterization. We presented tasks illustrating
that these choices can significantly affect our solutions in
practice. More generally, we hope that we have highlighted
the importance of and laid the groundwork for analyzing
the effects of overparameterization in nested optimization
problems.
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Appendix
This appendix is structured as follows:

• In Section A we provide an overview of related work.

• In Section B we provide an overview of the notation we use throughout the paper.

• In Section C we discuss different warm-start algorithms.

• In Section D we provide experimental details and extended results.

• In Section E we provide derivations of formulas used in the main body.

• In Section F we describe the algorithms for unrolling and proximal hyperparameter optimization.

A. Related Work
Overparameterization. Overparameterization has long been studied in single-level optimization, generating key insights
such as neural network behavior in the infinite-width limit [41–43], double descent phenomena [44, 45], the ability to fit
random labels [46], and studying inductive biases of optimizers. However, little attention has been paid to the study of
overparameterization in the bilevel setting; the only work we are aware of in this area is on overparameterized GANs [47]
and on using the NTK to understand GANs [48].

Implicit Regularization. The effect of training dynamics leading to certain minima rather than others is known as implicit
regularization. Implicit regularization has a long history in machine learning: many works have observed and studied the
connection between early stopping and L2 regularization [49–52]. Interest in implicit regularization has increased over the
past few years [53–57]. In the case of L2-regularized linear regression, Ali et al. [58, 59] have shown close connections
between the solutions (and solution paths) obtained via gradient flow (continuous-time optimization) starting from the origin,
and via the closed-form solution to the L2 regularized problem.

Hyperparameter Optimization (HO). There are three main approaches for gradient-based HO: 1) differentiating through
unrolls of the inner problem, sometimes called iterative differentiation [1, 2, 5]; 2) using implicit differentiation to
compute the best-response Jacobian assuming that the inner optimization has converged [21, 20, 28, 29]; and 3) using
a hypernetwork [60] to approximate the best-response function locally, ŵ∗φ ≈ w∗, such that the outer gradient can be

computed using the chain rule through the hypernetwork, ∂LV∂λ = ∂LV
∂ŵφ(λ)

∂ŵφ(λ)
∂λ . Hypernetworks have been applied to

HO in [61, 3, 23]. [3, 23] have observed that STNs learn online hyperparameter schedules (e.g., for dropout rates and
augmentations) that can outperform any fixed hyperparameter value. We believe warm-start effects at least partially explain
the observed improvements from hyperparameter schedules.

Data Augmentation. A special case of hyperparameter optimization that has received widespread attention is automatic
data augmentation [30, 62–65], where the aim is either to learn the strengths with which to apply different augmentations, or
an augmentation network that takes an input image and potentially a source of random noise, and outputs an augmented
example [4, 24]. The former approach typically involves tens to hundreds of outer parameters (the coefficients of pre-specified
augmentations), while the latter approach involves millions of outer parameters (the weights of the augmentation network).
The Population-Based Augmentation (PBA) algorithm [66] searches for augmentation schedules using Population-Based
Training [67]; the authors found that training with the PBA schedule outperformed using the fixed final hyperparameters
or training with a shuffled schedule (e.g., using the magnitudes of augmentations from the schedule, but in a random
order). Because augmentations directly modify the data input to the model, tuning augmentations is conceptually related to
curriculum learning [68, 12]. Another form of curriculum learning is in techniques that automatically reweight examples
during training [13].

Neural Architecture Search (NAS). NAS can also be considered a special case of HO, where the search space is generally
discrete [14, 69–73]. Most approaches to NAS are based on reinforcement learning [14] or evolutionary algorithms [74, 75],
while DARTS [15], ProxylessNAS [76], and Stochastic NAS [77] are gradient-based approaches.
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Data Distillation. Maclaurin et al. [2] were among the first to consider learning a training dataset in a bilevel formulation.
More recent work includes [6, 7, 78].

Games. Many problems in machine learning are instances of games, including GANs, adversarial training, actor-critic RL,
and hyperparameter optimization. Games come in different varieties: the order of play can be simultaneous or sequential,
and the game can be zero-sum (which captures purely competitive or adversarial games) or general-sum (which can capture
aspects of both competition and cooperation) [79]. The original formulation of GAN training [17] is a simultaneous zero-sum
game (also referred to as a minimax game); HO is a sequential general-sum game. Bilevel problems are hierarchical,
involving a specific sequential order of play; such problems are called Stackelberg games. Different solution concepts exist
for different types of games: for zero-sum simultaneous games, we seek Nash equilibria; for general-sum Stackelberg games,
we seek Stackelberg equilibria. Farnia and Ozdaglar introduced a solution concept for zero-sum sequential games called
proximal equilibrium [40], which interpolates between Nash and Stackelberg equilibria.

B. Notation

F Outer objective
f Inner objective
x Outer variables
y Inner variables
y∗ Best-response
∂y∗

∂x Best-response Jacobian
S(x) = arg miny f(y,x) Best-response set for x

w Model weights
Φ Design matrix, where each row corresponds to an example
|| · ||2F (Squared) Frobenius norm
ε Weighting of the proximal regularizer
k Number of unrolling iterations / Neumann steps

HO Hyperparameter optimization

Table 2: Summary of the notation used in this paper

C. Warm-Start Concepts
Warm-starting refers to initializing the inner optimization from the inner parameters obtained in the previous hypergradient
computation (e.g., the previous iteration of joint bilevel optimization). One can consider different warm-start algorithms:
(1) using full inner optimization, that is, running the inner optimization to convergence starting from yt to obtain the next
iterate yt+1; or (2) partial inner optimization, where we approximate the solution to the inner problem via a small number
of gradient steps (e.g., a truncated unroll). Similarly to cold-starting, Approach (1) is computationally expensive, so we
focus on Approach (2). We formalized Approach (2) using proximal optimization in Sec. 3 of the main paper. Approach
(1) can be formalized as finding the projection of the current iterate yt onto the solution set corresponding to an outer
parameter x, which we denote Π(yt,S(x)) = arg miny∈Sx ||y − yt||2. Figure 4 illustrates both types of warm-starts (full
and approximate inner optimization), and contrasts them to cold-starting, on a toy linear regression problem where we can
visualize the iterates of each algorithm.

D. Experimental Details and Extended Results
Compute Environment. All experiments were implemented using JAX [36], and were run on NVIDIA P100 GPUs. Each
instance of the dataset distillation and antidistillation task took approximately 5 minutes of compute on a single GPU.

D.1. Details and Extended Results for Dataset Distillation.
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Figure 4: Parameter-space view of warm-start
with full inner optimization, warm-start with par-
tial inner optimization (denoted the “online” set-
ting, which most closely resembles what is done
in practice), and cold-start optimization.

Intuition for the Observed Warm-Start Behavior. Figure 4 illustrates
the difference between warm-start and cold-start optimization, on a toy linear
regression example where we can visualize the steps of each algorithm in
the inner parameter space. We consider a single learned datapoint that is
constrained to move along a line in data-space. Because we have a single
datapoint parameterized by one coordinate (e.g., the outer parameters have
dimension 1) and two weights (e.g., the inner parameters have dimension
2), the inner problem is overparameterized: for each setting of the datapoint,
we have a set of feasible solutions. The solution sets for four fixed values of
the datapoint are shown by the solid black lines in Figure 4. The validation
loss contours are shown in the background.

Here, we can exactly characterize each step of the cold-start and warm-start
algorithms (we assume the inner parameters are initialized at the origin):
cold-start always projects from the origin onto the solution set for the current
datapoint, while warm-start projects from the current weights onto the
solution set.

By projecting successively from one solution set to the next, warm-start in
this toy setting closely resembles Kaczmarz’s algorithm [80]. If we cycle
through the solution sets repeatedly, the inner parameters will converge to
the intersection point of the solution sets, in effect yielding inner parameters that perform well for multiple outer parameters
simultaneously. Note that this procedure does not necessarily converge to the optimal validation loss, but rather to the
intersection of the solution sets (or, if the solution sets do not have a single intersection point, we conjecture that in each
iteration the inner parameters will decrease their distance to the convex hull containing the intersections of the solution sets).

Details. We generated datasets with N = 100 datapoints per class, and we trained a 4-layer MLP with 200 hidden units
per layer and ReLU activations. For warm-start joint optimization, we computed hypergradients by differentiating through
K = 1 steps of unrolling, and updated the hyperparameters (learned datapoints) and MLP parameters using alternating
gradient descent, with one step on each. We used SGD with learning rate 0.001 for the inner optimization and Adam with
learning rate 0.01 for the outer optimization.

Relation to Continual Learning. An overparameterized model is able to learn the correct function behavior for part
of the true function illustrated by the learned datapoints, and the proximal regularizer prevents catastrophic forgetting of
the function fit to previous values of the learned datapoints. This bears conceptual similarities to methods for continual
learning [81–83].

Extended Results. Here, we show additional dataset distillation results, using a similar setup to Section 4.1. Figure 5
shows the results where we fit a three-class problem (e.g., three concentric rings) using three learned datapoints. Figure 6
shows the results for fitting three classes using only two datapoints, where both the coordinates and soft labels are learned.
For each training datapoint, in addition to learning its x- an y-coordinates, we learn a C-dimensional vector (where C
is the number of classes, in this example C = 3) representing the unnormalized class label: this vector is normalized
with a softmax when we perform cross-entropy training of the inner model (e.g., we do not train on one-hot labels). Joint
adaptation of the model parameters and learned data is able to fit three classes by changing the learned class label for one of
the datapoints during training.

D.2. Details and Extended Results for Anti-Distillation.

Details. For the anti-distillation results in Section 4.2, the synthetic datapoints are initialized at linearly-spaced
x-coordinates, with y-coordinate 0, and we only learn the targets y. In the Fourier basis we use, lower fre-
quency components have larger amplitudes. In Section 4.2, we used the following feature function: φ(x) = a0 +∑N
n=1

(
an2N−n cos(nx) + bn2N−n sin(nx)

)
. Our Fourier basis functions consisted of 10 sin terms, 10 cos terms, and a

bias, yielding 21 total inner parameters. For the exponential-amplitude Fourier basis used in 4.2, we used SGD with learning
rates 1e-8 and 1e-2 for the inner and outer parameters, respectively; for the 1/n amplitude Fourier basis (discussed below,
and used for Figure 7), we used SGD with learning rates 1e-3 and 1e-2 for the inner and outer parameters, respectively.
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Figure 5: Dataset distillation results fitting three classes with three learned datapoints. Similarly to the results in Sec. 4.1, when using
warm-start joint optimization, the three learned datapoints are adapted during training to trace out the data in their respective classes,
guiding the network to learn a decision boundary that performs well on the original data. Cold-start re-training yields a model that
correctly classifies the three learned datapoints, but has poor validation performance.
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(c) Re-training on final points.

Figure 6: Dataset distillation results fitting three classes with only two learned datapoints. In the warm-start plot, the color of the
trajectory of each learned datapoint indicates its soft class membership, with magenta, green, and blue corresponding to the inner, middle,
and outer rings, respectively. Darker/gray colors indicate soft labels that place approximately equal probability on each class. We see that
although we only have two learned datapoints, the class labels change over the course of training such that all three classes are covered.
Cold-start re-training yields a model that correctly classifies the three learned datapoints, but has poor validation performance.

An Alternate Set of Fourier Basis Functions. In Section 4.2, we used a Fourier basis in which the lower-frequency
terms had exponentially larger amplitudes than the high-frequency terms. Figure 7 presents results using an alternative
feature function: φ(x) = a0 +

∑N
n=1

(
an
(

1
n

)
cos(nx) + bn

(
1
n

)
sin(nx)

)
.

Using an MLP. Finally, we show that similar conclusions hold when training a multi-layer perceptron (MLP) on the
anti-distillation task. We used a 2-layer MLP with 10 hidden units per layer and ReLU activations. We used SGD with
learning rate 0.01 for both the inner and outer parameters. Figure 8 shows the learned datapoints and model fits resulting from
running several different steps of Neumann iterations or unrolling, as well as the norms of the inner and outer parameters as
a function of K. For the Neumann experiments, we first optimize the MLP for 5000 steps to reach approximate convergence
of the inner problem, before running K Neumann iterations—the MLP is re-trained from scratch for 5000 steps for each
outer parameter update (e.g., cold-started).

E. Derivations
In this section, we provide a derivation for the local best-response Jacobian used in Section 3, and we review the formula
(used in the Kaczmarz algorithm) for closed-form projections onto solution sets given by hyperparameters, used for Figure 4.
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(a) Neumann/unroll (b) Proximal (c) Parameter norms.

Figure 7: Fourier-basis 1D linear regression, where the outer objective is overparameterized. We learn 13 synthetic datapoints such
that a regressor trained on those points will fit a single “validation” datapoint, shown by the green X at (0, 2). The synthetic datapoints
are initialized at linearly-spaced x-coordinates, with y-coordinate 0, and we only learn the targets y. In the Fourier basis we use, lower
frequency components have larger amplitudes. Here, we use the 1/n amplitude scheme.

(a) Neumann (b) Unroll (c) Unroll parameter norms

Figure 8: 1D linear regression with an overparameterized outer objective, where we train an MLP rather than performing Fourier-basis
function regression. Note that here we cannot analytically compute the proximal solution as in the linear regression case, so we only
include results for full-unrolls with truncated Neumann approximations of the inverse Hessian, and alternating gradient descent with
various numbers of unroll steps.

E.1. Proximal Best-Response

Consider the proximal objective f̂(x,y) = f(x,y) + ε
2 ||y − yk||2. Here we will treat yk as a constant (so we won’t

consider its dependence on x). Let y∗(x) ∈ arg miny f̂(x,y) be a fixed point of f̂ . We want to compute the response
Jacobian ∂y∗(x)

∂x . Since y∗ is a fixed point, we have:

∂f̂(x,y∗(x))

∂y
= 0 (5)

∂f(x,y∗(x))

∂y
+ ε(y∗(x)− yk) = 0 (6)

∂

∂x

∂f(x,y∗(x))

∂y
+ ε

∂y∗(x)

∂x
= 0 (7)

∂2f(x,y∗(x))

∂x∂y
+

∂2f

∂y∂y>
∂y∗(x)

∂x
+ ε

∂y∗(x)

∂x
= 0 (8)(

∂2f

∂y2
+ εI

)
∂y∗(x)

∂x
= −∂

2f(x,y∗(x))

∂x∂y
(9)

∂y∗

∂x
= −

(
∂2f

∂y∂y>
+ εI

)−1
∂2f

∂x∂y
(10)
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This is the similar to the hypergradient given a solution to the full (non-regularized) inner optimization, except with the
addition of the εI term. With large enough ε, this should ensure that the matrix we need to invert,

(
∂2f

∂y∂y>
+ εI

)
is PSD,

and thus would allow us to use conjugate gradient in a principled manner.

E.2. Pseudoinverse as Min-Norm Solution

We need a solution to the linear system HM = Φ. Assuming this system is satisfiable, the matrix Q = H+Φ is a solution
that satisfies ||Q||2F ≤ ||M||2F for any matrix M:

Q = H+Φ = (Φ>Φ)+Φ = (Φ>Φ)−1Φ = Φ+ (11)

Thus the min-norm best-response Jacobian is the Moore-Penrose pseudoinverse of the feature matrix, Φ+.

F. Algorithms

Algorithm 1 Differentiating through K-step unrolling

0: Input: K, number of unroll steps
0: α, outer learning rate
0: η, inner learning rate
0: Initialize y,x
0: repeat
0: x← x− α∇xF (x,Unroll(y,x,K))
0: y← y − η∇yf(y,x)

Algorithm 2 Unroll

0: Input: y, initial model parameters
0: x, hyperparameters
0: η, learning rate
0: K, number of unroll steps
0: for i = 1, . . . ,K do
0: y← y − η∇yf(y,x)
0: end for
0: return y =0

Algorithm 3 Proximal hyperparameter optimization — See Eq. 3

0: Initialize y,x
0: α, outer learning rate
0: repeat
0: xt+1 ← xt − α∇xF (xt,y

∗
t )

0: y∗t+1 ∈ arg miny{f(xt+1,y) + ε
2 ||y − yt||2}
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