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Abstract
Ridge Rider (RR) is an algorithm for finding di-
verse solutions to optimization problems by fol-
lowing eigenvectors of the Hessian (“ridges”).
RR is designed for conservative gradient systems
(i.e., settings involving a single loss function),
where it branches at saddles – the only relevant
bifurcation points. We generalize this idea to
non-conservative, multi-agent gradient systems
by identifying new types of bifurcation points and
proposing a method to follow eigenvectors with
complex eigenvalues. We give theoretical motiva-
tion for our method – denoted Game Ridge Rider
(GRR) – by leveraging machinery from the field
of dynamical systems. Finally, we empirically
motivate our method by constructing novel toy
problems where we can visualize new phenom-
ena and by finding diverse solutions in the iterated
prisoners’ dilemma, where existing methods often
converge to a single solution mode.

1. Introduction
In machine learning, optimizing non-convex losses to local
minima is critical in a variety of applications. Often, being
able to select a specific type of minimum is important such
as for policy optimization [1] or to avoid non-transferable
features in supervised learning [2, 3].

However, an increasing number of applications require learn-
ing in games, generalizing single objective optimization to
settings where each agent controls a different subset of pa-
rameters to optimize their own objective. Some examples
are GANs [4, 5], actor-critic models [5], curriculum learn-
ing [6–9], hyperparameter optimization [10–15], adversarial
examples [16, 17], learning models [18–20], domain adver-
sarial adaptation [21], neural architecture search [22–26],
multi-agent settings [27] and meta-learning [28–30].

There are two major challenges with learning in games:
first, the learning dynamics can be unstable due to the non-
stationarity induced by simultaneously learning agents, e.g.
resulting in cycling dynamics rather than convergence. Sec-
ond, different equilibria can result in vastly different rewards
for the different agents. For example, in the iterated prison-
ers’ dilemma (Sec. 4.1), finding solutions that favor coop-
eration vs selfishness result in higher return for all agents;
or in Hanabi, finding solutions that do not arbitrarily break
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symmetries results in better coordination with humans [31].

Recently, Ridge Rider (RR [32]) provided a general method
for finding diverse solutions in single objective optimiza-
tion, by following eigenvectors of the Hessian with negative
eigenvalues. We generalize RR to multi-agent settings, each
optimizing their own objective. The relevant generaliza-
tion of the Hessian – the game Hessian – is not symmetric
and thus, in general, has complex eigenvalues (EVals) and
eigenvectors (EVecs). This leads to new types of bifurcation
points, where small changes in initial parameters lead to
very different optimization outcomes.

Our method, Game Ridge Rider (GRR) branches from these
novel bifurcation points along the (complex) EVecs to dis-
cover diverse solutions in these settings.
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GRR – Our Method – at a Saddle Bifurcation
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GRR at a Hopf Bifurcation

Figure 1. We visualize the Game Ridge Rider (GRR) algorithm
when branching at different types of bifurcations. We have two
eigenvectors and can branch in opposite directions, so we have
four paths displayed in different colors. Steps with the eigenvector
have magenta boundaries. Top: For the small Iterated Prisoner’s
Dilemma (IPD) finding then branching at the max entropy saddle
allows us to find defect-defect and tit-for-tat solutions. Bottom: For
the mixed problem of small IPD and matching pennies, branching
at the Hopf bifurcation allows us to find both solutions.
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2. Background
Appendix Table 2 summarizes our notation. Consider the
minimization problem:

θ∗ := arg minθL(θ) (1)

We denote the gradient of the loss at parameters θj by
gj := g(θj) := ∇θL(θ)|θj . We can locally minimize the
loss L using (stochastic) gradient descent with step size α.

θj+1 = θj − αgj (SGD)

Due to the potentially non-convex nature of L, multiple
solutions can exist and simply following the gradient will
not explore the parameter space.

2.1. Ridge Rider
Ridge Rider (RR) [32] finds diverse solutions in gradient
systems for single-objective minimization. RR first finds
a saddle point, and then branches the optimization proce-
dure following different directions (or “ridges”) given by
the EVecs of the Hessian H = ∇θg = ∇θ(∇θL). Full
computation ofH—and its EVecs and EVals—is often pro-
hibitively expensive; however, we can efficiently access a
subset of the eigenspaces in libraries with efficient Hessian-
vector productsHv = ∇θ((∇θL)v) [33–36]. Algorithm 1
summarizes the RR method.

2.2. Optimization in Games
Instead of simply optimizing a single loss, optimization
in games involves multiple agents each with a loss func-
tions that potentially depend on other agents. Examples
include multiplayer games (e.g. Go [37, 38] and Hanabi
[39]), iterated prisoners’ dilemma (IPD) [40, 41] and gener-
ative adversarial networks (GANs) [4]. For simplicity, we
look at 2-player games with players denoted by A and B.
Each player wants to minimize their loss LA,LB with their
parameters θA ∈ RdA , θB ∈ RdB.

θ∗A∈arg minθALA(θA,θ
∗
B),θ∗B∈arg minθBLB(θ∗A,θB) (2)

⇐⇒ θ∗A∈arg minθAL
∗
A(θA),θ∗B∈arg minθBL

∗
B(θB) (3)

If LB and LA are differentiable in θB and θA we say the
game is differentiable. Unfortunately, for a player to do
gradient based optimization of their objective we must com-
pute dL∗

B/dθB which often requires dθ∗
A/dθB, but θ∗A(θB) and

its Jacobian are typically intractable. There are various
algorithms to try to find solutions like Eq. 2, often effi-
ciently approximating dθ∗

A/dθB with a method rely on effi-
cient Jacobian-vector products. We overview these in our
related work (Appendix A).

One of the most straightforward optimization methods is
to find local solutions with simultaneous SGD (SimSGD).
This does not take into account dθ∗

A/dθB and often fails to
converge. Here, gjA := gA(θjA,θ

j
B) and gjB := gB(θjA,θ

j
B)

are estimators for ∇θALA|θj
A,θ

j
B

and ∇θBLB |θj
A,θ

j
B

:

θj+1A = θjA − αg
j
A, θj+1B = θjB − αg

j
B (SimSGD)

We simplify notation by using the concatenation of all play-
ers parameters (or joint-parameters) ω :=[θA,θB ]∈Rd and
the joint-gradient vector field ĝ : Rd → Rd, which at the
jth iteration is denoted:

ĝj := ĝ(ωj) := [gA(ωj), gB(ωj)] = [gjA, g
j
B ] (4)

We can write the next iterate in (SimSGD) with a fixed-point
operator F α:

ωj+1 =F α(ωj)=ωj − αĝj (5)

The Jacobian of the fixed point operator F α is useful for
analysis, including bounding convergence rates near fixed
points and finding points where local changes to parameters
may cause convergence to qualitatively different solutions.
The fixed point operator’s Jacobian crucially depends on the
Jacobian of our update ĝ. When our update is the gradient,
we call this the game Hessian because it generalizes the
Hessian:

Ĥ := ∇ωĝ =

[
∇2
θA
LA ∇θA∇θBLA

∇θB∇θAL>B ∇2
θB
LB

]
(6)

∇ωF α(ω)=I − αĤ (7)

For single-objective optimization Ĥ is the Hessian of the
loss, which is symmetric and has real EVals yielding pa-
rameter updates which form a conservative gradient vector
field. However, in games with multiple objectives, Ĥ is not
symmetric and can have complex Evals, resulting in updates
which form a non-conservative vector field.

2.3. Local Bifurcations and Separatrices
The goal of RR was to obtain a method for finding diverse
solutions in minimization. There are multiple ways to try to
find solutions with RR, but we focus on finding separatrices
—i.e., boundaries between phase space regions with differ-
ent dynamical behavior. Crossing such boundaries leads to
different solutions under our updates flow—and branching
over these boundaries. Such a behavior of crossing regions
and changing behavior is in fact a local bifurcations and a
qualitative change in the behavior of the solutions.

When applying RR in conservative gradient systems, saddle
points and their EVecs play a key role in the shape of the
phase portraits, which are a geometrical representation of
the underlying dynamics. The negative EVecs often align
with unstable manifolds that are orthogonal to our separa-
trices [42], thus giving directions in which we can perturb
to find different solutions (Lemma 14.3 [43]). However, in
non-conservative systems there are a variety of other local
bifurcations [44] besides saddle points [45]. For example,
by Thm. 11.2 of [43] if all EVals of have negative real
part, except a conjugate non-zero pair of purely imaginary
EVals, then a Hopf bifurcation occurs when changing the
parameters causing the pair to cross the imaginary axis. A
Hopf bifurcation is a critical point where the stability of a
system switches resulting in a periodic solution.
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3. Our Method: Game Ridge Rider (GRR)
In this section we introduce Game Ridge Rider (GRR), a
generalization of Game Ridge Rider for learning in games.
RR is not immediately applicable to complex EVals of the
Hessian, because we would need to follow the complex
EVecs, resulting in complex weights, and we may need to
branch at points besides saddles. When the Hessian has real
EVals, GRR is equivalent to RR.

Consider the framework for the RR method in Alg 1. We
modify the components of GetRidges and EndRide, along
with a proposed starting saddle. We also add a method for
running different optimizers after branching with Evecs.

GetRidges finds which EVals and EVecs we should explore
from a given branching point. The EVecs of a matrix are
not unique in-general, and may have complex entries for
complex EVals. We only want real-valued updates when
following our EVecs, so we select the choices with largest
real part and norm one—this is the default in PyTorch [35].
For a conjugate pair of complex EVals, this selection of
EVecs corresponds to spanning the (real-valued) plane that
we would rotate in under repeated matrix multiplication of
the EVec. This also specifies the order in which we explore
the EVals, which we set to be the most negative EVals first.
Note that we can explore in opposite directions along each
negative EVec.

EndRide is a heuristic that determines how long we follow
an EVec. We experiment with stopping after a single step
and stopping when the real part of the EVal goes from
negative to zero. If we have noisy EVecs estimates, or we
are not exactly at a separatrix, we may need to take multiple
steps to find different solutions. We can attempt to find
Hopf bifurcations by ending and branching when a complex
EVals crosses the imaginary axis.

Optimize is a method which runs an optimization procedure.
In this work we explore following gradients SimSGD or
LOLA [27] with user specified optimization parameters.

Starting location (ωSaddle) We start our method at some
some ωSaddle = arg minω |ĝ|. There are often multiple
saddles we can begin at, so for multi-agent Tabular RL – like
the IPD – we heuristically begin at the maximum entropy
saddle arg minω |ĝ| − βH(πω(a)), β > 0 as in [32].

The other components of ChooseFromArchive and Upda-
teRidge we did not change, but summarize below. See
RR [32] for more details on their implementations.

ChooseFromArchive gives a search order on optimization
branches – ex., BFS or DFS – by outputting an index to
search and the updated archive of optimization branches.

UpdateRidge updates the currently followed EVec which
potentially changed due to the optimization step.

Algorithm 1 Game Ridge Rider (GRR)–red modifications
1: Input: ωSaddle, α, ChooseFromArchive, GetRidges,
2: EndRide, Optimize, UpdateRidge
3: A = GetRidges(ωSaddle) # Init. Archive
4: while Archive A non-empty do
5: j,A = ChooseFromArchive(A)
6: (ωj , ej , λj) = Aj
7: while EndRide(ωj , ej , λj) not True do
8: ωi ← ωj −αej # Step along the ridge ej
9: ej , λj = UpdateRidge(ωj , ej , λj)

10: ωj = Optimize(ωj)
11: A = A ∪GetRidges(ωj) # Add new ridges

4. Experiments
We investigate using Game Ridge Rider on multi-agent
learning problems. First, we make a range of two-
dimensional games, allowing us to qualitatively study new
phenomena that occur in multi-agent settings. Next, we
look at a higher dimensional experiment of learning strate-
gies in the iterated prisoners’ dilemma (IPD). Our method is
able to find a diverse set of solutions improving on baselines.

4.1. Test Problems
Our test problems described in full detail in Appendix Sec-
tion B.1 and summarized here. We visualize the strategy
space for 2-parameter problems in Appendix Fig. 3.

Iterated Prisoners’ Dilemma (IPD): This game is an infi-
nite sequence of the Prisoner’s Dilemma, where the future
payoff is discounted by a factor γ ∈ [0, 1). Each agent is
conditioned on the actions in the prior state, so there are 5
parameters for each agent – i.e., the probability of cooper-
ating at start state or given both agents preceding actions.
We interested in two Nash equilibria: Defect-Defect (DD)
where agents are selfish (giving a poor reward), and tit-for-
tat (TT) where agents initially cooperate, then copy the
opponents action (giving a higher reward).

Small IPD: A is a 2-parameter simplification of IPD, which
allows DD and TT Nash equilibria. This game allows us
to visualize some of the optimization difficulties for the
full-scale IPD, however, the game Hessian has strictly real
EVals unlike the full-scale IPD.

Matching Pennies: This is a simplified 2-parameter version
of rock-paper scissors. The first player wins if they select the
same, while the second player wins if they select different.
This game has a Nash equilibrium where each player selects
their action with uniform probability. This problem’s game
Hessian has purely imaginary EVals unlike the small IPD,
but only has a single solution and thus is a poor fit for
evaluating RR which finds diversity of solutions.

Mixing Small IPD and Matching Pennies: This game in-
terpolates between the Small IPD and matching pennies
games with an interpolation factor τ ∈ [0, 1]. If τ = .25
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Player 1 Loss Player 1 Strategy Distribution, [min, max]

Search Strategy L [min, max] C0 C|CC C|CD C|DC C|DD

Max Entropy Saddle [1.000, 2.000] [.001, .999] [.041, .999] [.004, 0.874] [.000, 0.912] [.000, .013]
20 Random init + grad. [1.997, 1.998] [.043, .194] [.142, .480] [.041, .143] [.055, .134] [.001, .001]
20 Random init + LOLA [1.000, 1.396] [.000, 1.00] [.093, 1.00] [.000, .966] [.057, 1.00] [.000, .947]
1 Random init + branch [2.000, 2.000] [.001, .001] [.027, .027] [.003, .003] [.008, .008] [.000, .000]

Table 1. We compare strategies for finding diverse solutions in the iterated prisoner’s dilemma (IPD). The IPD has two solution modes
– i.e., solutions where both agents end up defecting with a loss of 2 and where both agents end up cooperating with a loss of 1 (like
tit-for-tat). We compare just following gradients with SimSGD and LOLA [27] with random (init)ializations. We look at the impact of
starting at a saddle, by branching on the EVecs at a random init. Takeaway: Our method finds solutions at both loss modes. Random inits
then following the gradient or using LOLA does not find diverse solutions – the gradient often defects, while LOLA often cooperates. If
we are not at a stationary point like a saddle, then branching likely does not affect where we converge to.

problem has two solutions – one where both players coop-
erate and one where both players select actions uniformly,
with a Hopf bifurcation separating these.

4.2. Baseline Methods on Toy Problems
Fig. 2 we shows the phase portrait for baseline methods
on our mixed problem – i.e, the mixture of small IPD and
matching pennies with τ = .25.
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Figure 2. This shows the phase portrait for two standard optimiza-
tion algorithms on the mixed small IPD and Matching pennies
problem. Following the gradient is shown in red, while LOLA
– a method for learning in games – is shown in blue. Following
the gradient only finds the solution in the top right, because the
center solution has imaginary EVals. LOLA [27] can find either
solution. Takeaway: The mixture game has a range of phenomena,
including a imaginary EVal solution, a real EVal solution and a
Hopf bifurcation. We may want to use a method for learning in
games, so we can robustly converge to different solutions.

4.3. Visualizing the Spectrum on Toy Problems
In Appendix Fig. 5, we visualize the spectrum with the
mixed objective to see where stationary points are, which
stationary points are solutions, how desirable solutions are
for the players, and where the bifurcation occurs.

4.4. Visualizing the Spectrum on the full IPD
Appendix Fig. 4 shows the spectrum on optimization trajec-
tories for the IPD. During training, complex EVals cross the

imaginary axis and the final stationary point has positive a&
negative real EVals and complex EVals. Takeaway: While
optimizing the IPD, we have multiple bifurcation candidates
and thus multiple potential branching points for GRR.

4.5. Game Ridge Rider (GRR) on Toy Problems
In Figure 1 we use our method to find diverse solutions on
toy problems with different types of bifurcations. The small
IPD has a saddle bifurcation, while the mixed problem has a
Hopf bifurcation. The mixture has a solution with imaginary
EVals, which is unstable when following the gradient – see
Figure 2 – so we use LOLA after branching. Takeaway:
By branching our optimization at a bifurcation and using a
method for learning in games, we can find all solutions in
both toy problems from a single starting point.

4.6. Game Ridge Rider on the IPD
Here, we use our method on the IPD which is a larger scale
problem where existing methods have difficulty finding di-
verse solutions. IPD has two solution modes: ones where
both agents end up defecting and cooperating respectively.
Table 4 compares our method to following gradients and
LOLA each run with random initializations. We also inves-
tigate the importance of starting at the max entropy saddle.
Takeaway: Our method finds solutions at both loss modes
by branching at the top few EVecs, where baseline methods
failed to find diverse solutions. Starting at an approximate
saddle is critical for our branching to find different solutions.

5. Conclusion
In this paper we introduced Game Ridge Rider, an extension
of the Ridge Rider algorithm to settings with multiple losses.
We showed that in these settings a broader class of bifurca-
tion points needs to be considered and that GRR can indeed
discover them in a number of settings. Furthermore, our
experimental results showed that GRR obtains a diversity
of qualitatively different solutions in multi-agent settings
such as iterated prisoner’s dilemma. We also provide some
theoretical justification for our method by using tools from
the dynamical systems literature. Prior work had failed to
explore the connection between saddle points in the RR
algorithm and the bifurcation points in dynamical systems.



Using Bifurcations for Diversity in Differentiable Games

Acknowledgements

Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Insti-
tute. We would also like to thank C. Daniel Freeman, Hérve
Jégou, and Noam Brown for feedback on this work.

References
[1] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-

Baptiste Mouret. Robots that can adapt like animals. Nature,
521(7553):503–507, 2015.

[2] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231, 2018.

[3] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard Zemel, Wieland Brendel, Matthias Bethge, and Fe-
lix A Wichmann. Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2(11):665–673, 2020.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672–2680,
2014.

[5] David Pfau and Oriol Vinyals. Connecting generative ad-
versarial networks and actor-critic methods. arXiv preprint
arXiv:1610.01945, 2016.

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. Curriculum learning. In International Confer-
ence on Machine Learning (ICML), pages 41–48, 2009.

[7] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu,
Glenn Powell, Bob McGrew, and Igor Mordatch. Emergent
tool use from multi-agent autocurricula. In International
Conference on Learning Representations, 2019.

[8] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech
Czarnecki, Julien Perolat, Max Jaderberg, and Thore Graepel.
Open-ended learning in symmetric zero-sum games. In Inter-
national Conference on Machine Learning, pages 434–443.
PMLR, 2019.

[9] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel
Synnaeve, Arthur Szlam, and Rob Fergus. Intrinsic mo-
tivation and automatic curricula via asymmetric self-play.
In International Conference on Learning Representations,
2018.

[10] Justin Domke. Generic methods for optimization-based mod-
eling. In Artificial Intelligence and Statistics, pages 318–326,
2012.

[11] Dougal Maclaurin, David Duvenaud, and Ryan Adams.
Gradient-based hyperparameter optimization through re-
versible learning. In International Conference on Machine
Learning (ICML), pages 2113–2122, 2015.

[12] Jonathan Lorraine and David Duvenaud. Stochastic hyperpa-
rameter optimization through hypernetworks. arXiv preprint
arXiv:1802.09419, 2018.

[13] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duve-
naud, and Roger Grosse. Self-tuning networks: Bilevel opti-
mization of hyperparameters using structured best-response

functions. In International Conference on Learning Repre-
sentations (ICLR), 2019.

[14] Aniruddh Raghu, Maithra Raghu, Simon Kornblith, David
Duvenaud, and Geoffrey Hinton. Teaching with commen-
taries. arXiv preprint arXiv:2011.03037, 2020.

[15] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Opti-
mizing millions of hyperparameters by implicit differentia-
tion. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 1540–1552, 2020.

[16] Avishek Joey Bose, Gauthier Gidel, Hugo Berrard, An-
dre Cianflone, Pascal Vincent, Simon Lacoste-Julien, and
William L Hamilton. Adversarial example games. arXiv
preprint arXiv:2007.00720, 2020.

[17] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversar-
ial examples: Attacks and defenses for deep learning. IEEE
Transactions on Neural Networks and Learning Systems, 30
(9):2805–2824, 2019.

[18] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A
game theoretic framework for model based reinforcement
learning. arXiv preprint arXiv:2004.07804, 2020.

[19] Pierre-Luc Bacon, Florian Schäfer, Clement Gehring, Ani-
mashree Anandkumar, and Emma Brunskill. A Lagrangian
method for inverse problems in reinforcement learning.
lis.csail.mit.edu/pubs, 2019.

[20] Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and
Pierre-Luc Bacon. Control-oriented model-based reinforce-
ment learning with implicit differentiation. arXiv preprint
arXiv:2106.03273, 2021.

[21] David Acuna, Guojun Zhang, Marc T Law, and Sanja Fi-
dler. f-domain-adversarial learning: Theory and algorithms
for unsupervised domain adaptation with neural networks,
2021. URL https://openreview.net/forum?id=
WqXAKcwfZtI.

[22] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

[23] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 4780–4789, 2019.

[24] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations (ICLR), 2019.

[25] Will Grathwohl, Elliot Creager, Seyed Kamyar Seyed
Ghasemipour, and Richard Zemel. Gradient-based optimiza-
tion of neural network architecture. 2018.

[26] George Adam and Jonathan Lorraine. Understanding
neural architecture search techniques. arXiv preprint
arXiv:1904.00438, 2019.

[27] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shi-
mon Whiteson, Pieter Abbeel, and Igor Mordatch. Learning
with opponent-learning awareness. In International Confer-
ence on Autonomous Agents and MultiAgent Systems, pages
122–130, 2018.

[28] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. arXiv preprint arXiv:1803.00676, 2018.

https://openreview.net/forum?id=WqXAKcwfZtI
https://openreview.net/forum?id=WqXAKcwfZtI


Using Bifurcations for Diversity in Differentiable Games

[29] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and
Sergey Levine. Meta-learning with implicit gradients. arXiv
preprint arXiv:1909.04630, 2019.

[30] Mengye Ren, Eleni Triantafillou, Kuan-Chieh Wang, James
Lucas, Jake Snell, Xaq Pitkow, Andreas S Tolias, and Richard
Zemel. Flexible few-shot learning with contextual similarity.
arXiv preprint arXiv:2012.05895, 2020.

[31] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob
Foerster. “other-play” for zero-shot coordination. In Interna-
tional Conference on Machine Learning, pages 4399–4410.
PMLR, 2020.

[32] Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan
Hu, Adam Lerer, Alistair Letcher, Alexander Peysakhovich,
Aldo Pacchiano, and Jakob Foerster. Ridge rider: Find-
ing diverse solutions by following eigenvectors of the
hessian. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 753–
765. Curran Associates, Inc., 2020. URL https://
proceedings.neurips.cc/paper/2020/file/
08425b881bcde94a383cd258cea331be-Paper.
pdf.

[33] Barak A Pearlmutter. Fast exact multiplication by the hessian.
Neural computation, 6(1):147–160, 1994.

[34] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

[35] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[36] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.
com/google/jax.

[37] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[38] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lu-
cas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the
game of go without human knowledge. nature, 550(7676):
354–359, 2017.

[39] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch,
Marc Lanctot, H Francis Song, Emilio Parisotto, Vincent
Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The

hanabi challenge: A new frontier for ai research. Artificial
Intelligence, 280:103216, 2020.

[40] Robert J Aumann. Acceptable points in games of perfect
information. Pacific Journal of Mathematics, 10(2):381–417,
1960.

[41] Robert Axelrod and William Donald Hamilton. The evolution
of cooperation. science, 211(4489):1390–1396, 1981.

[42] M Tabor. Chaos and integrability in nonlinear dynamics: An
introduction, wileyinterscience. Chaos and Integrability in
Nonlinear Dynamics: An Introduction, 1989.

[43] Jack K Hale and Hüseyin Koçak. Dynamics and bifurcations,
volume 3. Springer Science & Business Media, 2012.

[44] Ippei Shimada and Tomomasa Nagashima. A numerical ap-
proach to ergodic problem of dissipative dynamical systems.
Progress of theoretical physics, 61(6):1605–1616, 1979.

[45] Davide Bigoni and Oleg Kirillov. Dynamic Stability and
Bifurcation in Nonconservative Mechanics. Springer, 2019.

[46] L. K. Hansen and P. Salamon. Neural network ensembles.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12(10):993–1001, 1990.

[47] Y. Liu and X. Yao. Ensemble learning via negative corre-
lation. Neural Networks, 12(10):1399 – 1404, 1999. ISSN
0893-6080. doi: https://doi.org/10.1016/S0893-6080(99)
00073-8. URL http://www.sciencedirect.com/
science/article/pii/S0893608099000738.

[48] Samarth Sinha, Homanga Bharadhwaj, Anirudh Goyal, Hugo
Larochelle, Animesh Garg, and Florian Shkurti. Diversity
inducing information bottleneck in model ensembles. AAAI,
2021.

[49] Andrew Slavin Ross, Weiwei Pan, Leo A. Celi, and Finale
Doshi-Velez. Ensembles of locally independent prediction
models. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 5527–5536. AAAI Press, 2020.
URL https://aaai.org/ojs/index.php/AAAI/
article/view/6004.

[50] Zelda Mariet and Suvrit Sra. Diversity Networks: Neural
Network Compression Using Determinantal Point Processes.
In International Conference on Learning Representations
(ICLR), May 2016.

[51] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu.
Improving adversarial robustness via promoting ensemble
diversity. In International Conference on Machine Learning,
pages 4970–4979. PMLR, 2019.

[52] Joel Lehman and Kenneth O. Stanley. Exploiting open-
endedness to solve problems through the search for novelty.
In Proceedings of the Eleventh International Conference on
Artificial Life (Alife XI. MIT Press, 2008.

[53] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and
Sergey Levine. Diversity is all you need: Learning skills with-
out a reward function. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.
net/forum?id=SJx63jRqFm.

[54] Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choroman-
ski, and Stephen Roberts. Effective diversity in population-
based reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 34. 2020.

https://proceedings.neurips.cc/paper/2020/file/08425b881bcde94a383cd258cea331be-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/08425b881bcde94a383cd258cea331be-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/08425b881bcde94a383cd258cea331be-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/08425b881bcde94a383cd258cea331be-Paper.pdf
https://www.tensorflow.org/
http://github.com/google/jax
http://github.com/google/jax
http://www.sciencedirect.com/science/article/pii/S0893608099000738
http://www.sciencedirect.com/science/article/pii/S0893608099000738
https://aaai.org/ojs/index.php/AAAI/article/view/6004
https://aaai.org/ojs/index.php/AAAI/article/view/6004
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm


Using Bifurcations for Diversity in Differentiable Games

[55] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stan-
ley. Quality diversity: A new frontier for evolution-
ary computation. Frontiers in Robotics and AI, 3:40,
2016. ISSN 2296-9144. doi: 10.3389/frobt.2016.00040.
URL https://www.frontiersin.org/article/
10.3389/frobt.2016.00040.

[56] Galina M Korpelevich. The extragradient method for finding
saddle points and other problems. Matecon, 12:747–756,
1976.

[57] Waïss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien,
and Gauthier Gidel. A tight and unified analysis of gradient-
based methods for a whole spectrum of differentiable games.
In International Conference on Artificial Intelligence and
Statistics, pages 2863–2873. PMLR, 2020.

[58] Alexander Rakhlin and Karthik Sridharan. Optimization,
learning, and games with predictable sequences. arXiv
preprint arXiv:1311.1869, 2013.

[59] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis,
and Haoyang Zeng. Training gans with optimism. arXiv
preprint arXiv:1711.00141, 2017.

[60] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad
Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-
Julien, and Ioannis Mitliagkas. Negative momentum for
improved game dynamics. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 1802–
1811. PMLR, 2019.

[61] Jonathan Lorraine, David Acuna, Paul Vicol, and David
Duvenaud. Complex momentum for learning in games. arXiv
preprint arXiv:2102.08431, 2021.

[62] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vin-
cent, and Simon Lacoste-Julien. A variational inequality
perspective on generative adversarial networks. In Interna-
tional Conference on Learning Representations, 2018.

[63] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.
The numerics of gans. arXiv preprint arXiv:1705.10461,
2017.

[64] Alistair Letcher, David Balduzzi, Sébastien Racaniere, James
Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
Differentiable game mechanics. The Journal of Machine
Learning Research, 20(1):3032–3071, 2019.

[65] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry.
On finding local nash equilibria (and only local nash equilib-
ria) in zero-sum games. arXiv preprint arXiv:1901.00838,
2019.

[66] Florian Schäfer and Anima Anandkumar. Competitive gradi-
ent descent. arXiv preprint arXiv:1905.12103, 2019.

[67] Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu,
Dhruva Tirumala, Junhyuk Oh, Gauthier Gidel, Hado van
Hasselt, and David Balduzzi. Pick your battles: Interaction
graphs as population-level objectives for strategic diversity.
In Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 1501–1503,
2021.

[68] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575(7782):350–354,
2019.

[69] Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun
Shao, David Mguni, and Weinan Zhang. Multi-agent deter-
minantal q-learning. In International Conference on Machine
Learning, pages 10757–10766. PMLR, 2020.

[70] Andrei Lupu, Hengyuan Hu, and Jakob Foerster. Trajectory
diversity for zero-shot coordination. In Proceedings of the
20th International Conference on Autonomous Agents and
MultiAgent Systems, pages 1593–1595, 2021.

https://www.frontiersin.org/article/10.3389/frobt.2016.00040
https://www.frontiersin.org/article/10.3389/frobt.2016.00040


Using Bifurcations for Diversity in Differentiable Games

A. Related Work
Diversity in machine learning: Finding diverse solutions
is often desirable in machine learning, for example improv-
ing performance for model ensembles [46], with canoni-
cal approaches directly optimizing for negative correlation
amongst model predictions [47]. In recent times these ideas
have begun to re-emerge, improving ensemble performance
[48–50], robustness [51, 1] and boosting exploration in re-
inforcement learning [52–55].

Many of these approaches seek to find diverse solutions by
following gradients of an altered, typically multi-objective
loss function. By contrast, the recent Ridge Rider (RR, [32])
algorithm searches for diverse solutions by following EVecs
of the Hessian with respect to the original loss function,
producing orthogonal (loss reducing) search directions.

Finding solutions in games: There are first-order meth-
ods for finding solutions in games including extragradi-
ent [56, 57], optimistic gradient [58, 59], negative momen-
tum [60], complex momentum [61], and iterate averag-
ing [62]. There are also higher-order methods like con-
sensus optimization [63], symplectic gradient adjustment
(SGA) [64], local symplectic surgery (LSS) [65], competi-
tive gradient descent (CGD) [66].

Diversity in multi-agent RL In recent times a series of
works have explore the benefit of diversity in both compet-
itive [8, 67, 68] and cooperative [69, 70] multi-agent RL.
However, once again these approaches all consider aug-
mented loss functions. Instead, we take inspiration from RR
and extend it to the multi-agent setting.

B. Experiment Details
B.1. Test Problems

Iterated Prisoners’ Dilemma (IPD): This game is an in-
finite sequence of the Prisoner’s Dilemma, where the fu-
ture payoff is discounted by a factor γ ∈ [0, 1). Each
agent is conditioned on the actions in the prior state (s).
Thus, there are 5 parameters for each agent i: P i(C|s) the
probability of cooperating at start state s0 = ∅ or state
st = (a1t−1, a

2
t−1)for t > 0. There are two Nash equilibria

which we interested in: Defect-Defect (DD) where agents
are selfish (resulting in poor reward), and tit-for-tat (TT)
where agents initially cooperate, then copy the opponents
action (resulting in higher reward).

Small IPD: This is a 2-parameter simplification of IPD,
which allows DD and TT Nash equilibria. We fix the strat-
egy if our opponent defects, to defect with high probability.
We also constrain the probability of cooperating to only
depend on if the opponent cooperates, and in the initial state
we assume our opponent cooperated. This game allows us
to visualize some of the optimization difficulties for the full-

scale IPD, however, the game hessian has strictly real EVals
unlike the full-scale IPD. See Fig 2, top for a visualization
of the strategy space.

Matching Pennies: This is a simplified 2-parameter version
of rock-paper scissors, where each players selects Cooperate
or Defect. This game has a Nash equilibrium where each
player selects their action with uniform probability. Notably,
this problem’s game Hessian has purely imaginary EVals so
following the gradient does not converge to solutions and
we need a method for learning in games like LOLA. Also,
this game only has a single solution thus is a poor fit for
evaluating RR which finds diversity of solutions. See Fig 2,
bottom for a visualization of the strategy space.

Mixing Small IPD and Matching Pennies: This game
interpolates between the Small IPD and matching pen-
nies games with the loss for player i, Lmix,Pi,τ =
τLsmallIPD,Pi

+ (1− τ)LmatchingPennies,Pi
. This prob-

lem has two solutions – one where both players cooperate,
and one where both players select actions uniformly. The
uniform action solution has imaginary EVals, so it is only
stable under a method for learning in games, while the both
cooperate solution has real EVals. There is a Hopf bifur-
cation separating these solutions. See Fig 2 for standard
methods on this problem and Appendix Fig. 3 to contrast
this problem with Small IPD or Matching Pennies. See Ap-
pendix Fig 5 to visualize the eigenstructure on this problem.
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Table 2. Notation
RR Ridge Rider [32]
IPD Iterated Prisoners’ Dilemma

GAN Generative Adversarial Network [4]
LOLA Learning with opponent learning awareness [27]

EVec, EVal Shorthand for Eigenvector or Eigenvalue
SGD Stochastic Gradient Descent

SimSGD Simultaneous SGD
:= Defined to be equal to

x, y, z, · · · ∈ C Scalars
x,y, z, · · · ∈ Cn Vectors

X,Y ,Z, · · · ∈ Cn×n Matrices
X> The transpose of matrixX
I The identity matrix

<(z),=(z) The real or imaginary component of z ∈ C
i The imaginary unit. z ∈ C =⇒ z = <(z) + i=(z)
z̄ The complex conjugate of z ∈ C

|z| :=
√
zz̄ The magnitude or modulus of z ∈ C

arg(z) The argument or phase of z ∈ C =⇒ z = |z| exp(i arg(z))
A,B A symbol for the outer/inner players

dA, dB ∈ N The number of weights for the outer/inner players
θ A symbol for the parameters or weights of a player

θA ∈ RdA ,θB ∈ RdB The outer/inner parameters or weights
L : Rn → R A symbol for a loss

LA(θA,θB),LB(θA,θB) The outer/inner losses – RdA+dB 7→ R
gA(θA,θB), gB(θA,θB) Gradient of outer/inner losses w.r.t. their weights in RdA/dB
θ∗B(θA) :=arg min

θB

LB(θA,θB) The best-response of the inner player to the outer player

L∗A(θA) :=LA(θA,θ
∗
B(θA)) The outer loss with a best-responding inner player

θ∗A :=arg min
θA

L∗A(θA) Outer optimal weights with a best-responding inner player

d := dA + dB The combined number of weights for both players
ω := [θA,θB ] ∈ Rd A concatenation of the outer/inner weights

ĝ(ω) :=[gA(ω), gB(ω)] ∈ Rd A concatenation of the outer/inner gradients
ω0 = [θ0A,θ

0
B ] ∈ Rd The initial parameter values

j An iteration number
ĝj := ĝ(ωj) ∈ Rd The joint-gradient vector field at weights ωj

∇ωĝj := ∇ωĝ|ωj ∈ Rd×d The Jacobian of the joint-gradient ĝ at weights ωj

Ĥ The game Hessian
ωSaddle A saddle point
α ∈ C The step size or learning rate
λ ∈ C, e Notation for an arbitrary Eval or Evec

Sp(M) ∈ Cn The spectrum – or set of eigenvalues – ofM ∈ Rn×n
ρ(M) :=maxz∈Sp(M) |z| The spectral radius in R+ ofM ∈ Rn×n

F α(ω) Fixed point operator for our optimization
A The archive from our method
γ Discount Factor
τ The mixture weighting for the objectives
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Figure 3. This shows the phase portrait for two standard optimization algorithms on a range of problems. Following the gradient is shown
in red, while LOLA – a method for learning in games – is shown in blue. Left: The small IPD, which has solutions in the top right and
bottom left. Middle: Matching pennies, which has a single solution in the middle. Following the gradient does not find this solution
because it has imaginary EVals, so we must a method like LOLA. Right: A mixture of small IPD and matching pennies. Following
the gradient only finds the solution in the top right, because the center solution has imaginary EVals. LOLA can find either solution.
Takeaway: The mixture game has a range of phenomena, including a imaginary EVal solution, a real EVal solution and a Hopf bifurcation.
We may want to use a method for learning in games, so we can robustly converge to different solutions.
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Figure 4. This shows the spectrum of the game Hessian in log-polar coordinates during training. The spectrum at the start of training is in
low alpha, while at the end it is in high alpha. We also color each EVec based on how much it points at a player, which we calculate
by finding the ratio of the first players component of EVec’s norm to the norm of the entire EVec |e1:dB |1/|e|1. Takeaway: Only some
EVals are real and lie entirely in a single players space – these align with search directions for single objective RR. During training, the
EVals cross the imaginary axis – i.e., where arg(λ) = ±π/2 shown in red– indicating potential Hopf bifurcations. At the end of training
we have positive (i.e. arg(λ) = 0) and negative (i.e. arg(λ) = ±π) real EVals, showing potential bifurcations that are similar to saddles.
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ĝ‖

)

A
vg

playerloss
1/

2(L
B

+
L
A

)

Pl
ay

er
1

St
ra

te
gy

L
og-m

agnitude
of

1
s
tE

V
al

log
(|λ

1 |)

A
rgum

entof
1
s
tE

V
al

a
rg

(λ
)

Pl
ay

er
1

St
ra

te
gy

Player 2 Strategy

R
ealPartof

1
s
tE

V
al<

(λ
)

Player 2 Strategy

Im
aginary

Partof
1
s
tE

V
al=

(λ
)

Figure 5. We display various aspects of the players learning dynamics for the small IPD and matching pennies mixture problem. Top left:
The log-norm of the joint gradient ĝ. When this is 0 – i.e., the corners of the grid and the center – we are at a stationary point, which is
required, but not sufficient for solutions. Top right: The loss averaged over both players, allowing us to assess how desirable different
solutions are. Middle left: The log magnitude of the game Hessian’s first Eval λ. Middle right: The arg of λ. Bottom left: The real part of
λ. Bottom Right: The imaginary part of λ. Takeaway: This range of visualizations allows us to see where stationary points are, which
stationary points are solutions, how desirable solutions are for the players, and where the bifurcation occurs. Note: It is difficult to see that
the gradient norm goes to 0 near the corners of the grid, but this – in fact – begins to happen if we get close enough (in both the mixed
objective and the small IPD).
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