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overview

» P1: VAE and Variational Inference Background
» P2: DDPM From Scratch

Omaterial and visualizations inspired by and adapted from slides by David Lindell and Stephan Giinnemann
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vae overview

VAE conceptually:

Gaussian

R Regularization Loss

Representation Reconstructed data

data distribution -
distribution distribution

\

v

Reconstruction Loss

train with ELBO objective:

L(0, ¢:X) = —Eq, (z1x)[log po(X[2)] + D (q4(2[X)|I(2))

reconstruction term regularization term
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how did we get here

goals:

» encoder: we want to map high-dimensional data x to a
lower-dimensional latent space z

» decoder: we want to be able to sample the latent space z
to generate new data x

use latent variable model (in our case, a VAE):

» assume that a few lower-dimensional latent factors z can
explain our complex data x

» exploit low-dim. latent structure to facilitate modeling and
sampling of distribution pg(x) over high-dim. data x
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how did we get here

main idea: true distribution p(x) is “complex” (e.g. images), but
the conditional distribution p(x|z) is “simple” (e.g. Gaussian)

generate data in two steps:

Z ~ pg(2) (sample latent space z)

z ~ N(0,1)
since pg(z) standard normal
@ (no parameters 6), use p(2)
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how did we get here

main idea: true distribution p(x) is “complex” (e.g. images), but
the conditional distribution p(x|z) is “simple” (e.g. Gaussian)

generate data in two steps:

zZ ~p(2) (sample latent space z)
X ~ po(x|2) (generate data conditional on z)

2 ~ N(0, 1) g‘@

&
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how did we get here

generate data in two steps:

z ~p(2) (sample latent variable z)
X ~ po(x|2) (generate data conditional on z)

together, we get the joint distribution
po(X,2) = p(Z)Pa(x|2)
and model the full distribution pg(x) by marginalizing over z:
po(x) = [ pox.2)dz = [ pl2)po(x|2)dz = ;- piplpo(x | 2)]
(1)
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our tasks in this framework

encoder: we want to map high-dimensional data x to a
lower-dimensional latent space z

> inference: with sample x, find posterior distribution over z

Pe(X | 2) p(2)

pe(z ‘ X) = p@(x)

» but we need to model the distribution pg(x) for our data first
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our tasks in this framework

learning: given empirical dataset X = {x,-}f\’:1 (assume i.i.d.),
find parameters 6 that best explain data

> typically, we maximize the log-likelihood over the dataset

N
1
max log Pg(X) = max ; ,2 log P (X;)
» for simplicity, look at a single data point x, using 1 we get

maxlogpo(x) = maxlog [ pa(x |2)p(@)dz (@)

» what is the problem?
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our tasks in this framework

learning: given empirical dataset X = {x;}", (assume i.i.d.),
find parameters 6 that best explain data

> typically, we maximize the log-likelihood over the dataset

N
]
max log pg(X) = max ; log po(Xi)

» for simplicity, look at a single data point x, using 1 we get

maxlogpo(x) = maxlog [ pa(x |2)p(@)dz (@)

£(6)

» £(0) is intractable to evaluate: no closed-form solution and
numerical integration is infeasible (z still high-dimensional)

10/25



log-likelihood maximization

» f(0) is intractable to evaluate: no closed-form solution and
numerical integration is infeasible (z still high-dimensional)

» instead, find a lower bound on the log-likelihood using
easy-to-evaluate functions (for us multivariate Gaussians)

-~

Thisis a
//\/v\log pﬂ(x) *“ function of 0!

- ¢ T __L(8,q,)
£(0,q,) \ —~ 12

\ i 6\
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log-likelihood maximization

» f(0) is intractable to evaluate: no closed-form solution and
numerical integration is infeasible (z still high-dimensional)

» instead, find a lower bound on the log-likelihood using
easy-to-evaluate functions (for us multivariate Gaussians)

-~

l N < Thisis a
/ 08 Peo (x) function of 8!

: N L(O,q,)
L(0,q1), \ y N
\ / 0\

- variational inference

N—— N——

optimize over functions infer latent features z from data x
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ELBO derivation

» still looking for objective to tractably optimize 6 by
substituting pe(x) maximization with lower bound in optim

> let g(z) be an arbitrary distribution over z (choose later)

log po(x) = z~q( )[lnge( )]

/ q(z) logpy(x | def. of expectation

,2) y

/C] . (2 ‘ X) dz | def. of cond. probability

/q (pe X Z) CI(Z)> dz | 1d. trick
Pe(Z | x) q(z)

q(z)
- [a@ o ( d”/“’ %8 bo(z | x)
po(x.2)

= a0 [log i ]+DKL(q(z)rpe(z|x)) ot

13/25



ELBO derivation

log Py (X) = Ez~q(z)| log Po(X)]

= /q(z) log po(x) dz | def. of expectation
Pe (x,2) N

/q 22 X) dz | def. of cond. probability
ps(x,2) q(2) .

/q < ]x) q(z)) dz | Id. trick

q(2)
q(z dz+ /q log dz
/ po(z | x)
X,
= Erqte) [Iog il é(z) ]+ Diala(@) | palz | %)) e
=: ELBO(x) 20 (g2p)

» for a fixed 6, we want g,(Z) to be close to ps(z | X)
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exercises

exercises around ELBO to deepen your understanding:
1. warm up: write out ELBO from

Pe
Equ(z) |:|0g W

to
Ezq(2)llogpo(x | 2)] — Dk1(q(2) || p(2))

2. prove log pg(x) > ELBO(x) (it lower bounds log-likelihood)
using Jensen’s inequality - Q1 (a) in assignment 2

3. prove logpg(x) — ELBO(X) = Dkr.(qe(Z | X) || pa(Z | X)) (it
is gap between log-likelihood and KL divergence between
approximate and true posterior) —» Q1 (b) in assignment 2
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optimizing with elbo

optimizing ELBO(X) = E;.q(z)[logpa(x | Z)] — Dx1(q(2) || p(2))

>

>
>
>
>
>

>

given x, we want to optimize the ELBO(x) wrt # and q(z)
but what are we optimizing over in the case of q(z)?
choose set of tractable, parametric distributions Q

every distribution q,(z) is specified by its parameters ¢
best distribution g4(z) <= best parameters ¢

instead of optimizing ¢ for every data point x(), we

optimal
learn a neural network that maps every x; to ¢
— amortized inference

as x is network input, write q,(z | x) instead of q4(2):

opt|mal

ELBO(X) = Ez~q,(zix)[log po(X | 2)] — Dx1(qs(2 | X) || p(2))
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default choices (keep simple and standard)

prior: p(z) = N(0,1) (no learnable params)

> Dkr.(g4(2 | X) || p(2)) term regularizes q4(z | x) to learn a
distribution close to the prior p(z)

p(2)

A
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default choices (keep simple and standard)

encoder (approximate posterior):

96(2 | X) = M(ps(X), diag(c3(x)))

» neural network outputs parameters p,(x), ag(x)

» given a k-dimensional latent vector z, what dimension is
the output tensor of the encoder?

Representation

data distribution T
distribution
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default choices (keep simple and standard)
encoder (approximate posterior):

q6(Z | X) = N(p(x), diag(c3(x)))

» neural network outputs parameters p,(X), ag(x)
» given a k-dimensional latent vector z, what dimension is
the output tensor of the encoder?

» for every image, the encoder outputs a latent vector with
dimension (k, 2): per-latent dimension mean and variance

Representation
distribution

data distribution
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default choices (keep simple and standard)

decoder (likelihood):
> pick by data type, for example:

Mpo(2),1), x € RP

Pox | 2) = {Bernoulli(ﬂ'g(z))7 x €{0,1}P

» neural network outputs parameters py(z) or my(2)

"
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default choices (keep simple and standard)

decoder (likelihood):
» pick by data type, for example:

Mpo(2),1), xeRP

Polx | 2) = {Bernoulli(ﬂ'g(z)), x € {0,1}P

» neural network outputs parameters py(z) or my(2)
> retrieve samples from the distribution using the parameters
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additional slides
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bayes terminology recap

likelihood  prior

(x | z) p(2)
Pol\X | Z) p(Z
2 X)=——=
p\—v—/"( %) Po(X)
posterior ~——

(evidence)
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Kullback-Leibler divergence recap

» KL divergence from q(z) to p(z) is defined as

Dkr(q(2) || p(z /q |0g

> properties:
» asymmetric, Dk1.(q(2) || p(2)) # DKL( (2) lq(2)) in general
> nonnegative, Dic.(q(2)  p(2)) >
> DkiL(g(2)||p(2)) =0 — p= qalmost everywhere
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high level understanding

High

Generative ! Quality );\ Denoising
) Aty

Adversarial - | Samples /, Diffusion

Nclworks/.- \ "/ Models
/ .

Fast
Sampling

Variational Autoencoders,
Normalizing Flows

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/
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