
CSC420: Tutorial 4
VAE and Diffusion Model

Michael Neumayr

September 28, 2025

1 / 25



overview

▶ P1: VAE and Variational Inference Background
▶ P2: DDPM From Scratch

0material and visualizations inspired by and adapted from slides by David Lindell and Stephan Günnemann
2 / 25



vae overview

VAE conceptually:

train with ELBO objective:

L(θ, ϕ;x) = −Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

+DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
regularization term

3 / 25



how did we get here

goals:
▶ encoder: we want to map high-dimensional data x to a

lower-dimensional latent space z
▶ decoder: we want to be able to sample the latent space z

to generate new data x

use latent variable model (in our case, a VAE):
▶ assume that a few lower-dimensional latent factors z can

explain our complex data x
▶ exploit low-dim. latent structure to facilitate modeling and

sampling of distribution pθ(x) over high-dim. data x

4 / 25



how did we get here
main idea: true distribution p(x) is “complex” (e.g. images), but
the conditional distribution p(x|z) is “simple” (e.g. Gaussian)

generate data in two steps:

z ∼ pθ(z) (sample latent space z)

since pθ(z) standard normal
(no parameters θ), use p(z)

5 / 25



how did we get here
main idea: true distribution p(x) is “complex” (e.g. images), but
the conditional distribution p(x|z) is “simple” (e.g. Gaussian)

generate data in two steps:

z ∼ p(z) (sample latent space z)
x ∼ pθ(x|z) (generate data conditional on z)

6 / 25



how did we get here

generate data in two steps:

z ∼ p(z) (sample latent variable z)
x ∼ pθ(x|z) (generate data conditional on z)

together, we get the joint distribution

pθ(x, z) = p(z)pθ(x|z)

and model the full distribution pθ(x) by marginalizing over z:

pθ(x) =
∫

pθ(x, z) dz =

∫
p(z)pθ(x|z) dz = Ez∼p(z)[pθ(x | z)]

(1)

7 / 25



our tasks in this framework

encoder: we want to map high-dimensional data x to a
lower-dimensional latent space z

▶ inference: with sample x, find posterior distribution over z

pθ(z | x) = pθ(x | z)p(z)
pθ(x)

▶ but we need to model the distribution pθ(x) for our data first

8 / 25



our tasks in this framework

learning: given empirical dataset X = {xi}N
i=1 (assume i.i.d.),

find parameters θ that best explain data

▶ typically, we maximize the log-likelihood over the dataset

max
θ

log pθ(X ) = max
θ

1
N

N∑
i=1

log pθ(xi)

▶ for simplicity, look at a single data point x, using 1 we get

max
θ

log pθ(x) = max
θ

log

∫
pθ(x | z)p(z) dz (2)

▶ what is the problem?

9 / 25



our tasks in this framework

learning: given empirical dataset X = {xi}N
i=1 (assume i.i.d.),

find parameters θ that best explain data

▶ typically, we maximize the log-likelihood over the dataset

max
θ

log pθ(X ) = max
θ

1
N

N∑
i=1

log pθ(xi)

▶ for simplicity, look at a single data point x, using 1 we get

max
θ

log pθ(x) = max
θ

log

∫
pθ(x | z)p(z) dz︸ ︷︷ ︸

f(θ)

(2)

▶ f(θ) is intractable to evaluate: no closed-form solution and
numerical integration is infeasible (z still high-dimensional)

10 / 25



log-likelihood maximization

▶ f(θ) is intractable to evaluate: no closed-form solution and
numerical integration is infeasible (z still high-dimensional)

▶ instead, find a lower bound on the log-likelihood using
easy-to-evaluate functions (for us multivariate Gaussians)

11 / 25



log-likelihood maximization

▶ f(θ) is intractable to evaluate: no closed-form solution and
numerical integration is infeasible (z still high-dimensional)

▶ instead, find a lower bound on the log-likelihood using
easy-to-evaluate functions (for us multivariate Gaussians)

→ variational︸ ︷︷ ︸
optimize over functions

inference︸ ︷︷ ︸
infer latent features z from data x

12 / 25



ELBO derivation
▶ still looking for objective to tractably optimize θ by

substituting pθ(x) maximization with lower bound in optim
▶ let q(z) be an arbitrary distribution over z (choose later)

log pθ(x) = Ez∼q(z)
[
log pθ(x)

]
=

∫
q(z) log pθ(x) dz | def. of expectation

=

∫
q(z) log pθ(x, z)

pθ(z | x) dz | def. of cond. probability

=

∫
q(z) log

(
pθ(x, z)
pθ(z | x) ·

q(z)
q(z)

)
dz | Id. trick

=

∫
q(z) log pθ(x, z)

q(z) dz +

∫
q(z) log q(z)

pθ(z | x) dz

= Ez∼q(z)

[
log

pθ(x, z)
q(z)

]
+ DKL(q(z) ∥pθ(z | x)) | defs

13 / 25



ELBO derivation

log pθ(x) = Ez∼q(z)
[
log pθ(x)

]
=

∫
q(z) log pθ(x) dz | def. of expectation

=

∫
q(z) log pθ(x, z)

pθ(z | x) dz | def. of cond. probability

=

∫
q(z) log

(
pθ(x, z)
pθ(z | x) ·

q(z)
q(z)

)
dz | Id. trick

=

∫
q(z) log pθ(x, z)

q(z) dz +

∫
q(z) log q(z)

pθ(z | x) dz

= Ez∼q(z)

[
log

pθ(x, z)
q(z)

]
︸ ︷︷ ︸

=: ELBO(x)

+DKL(q(z) ∥pθ(z | x))︸ ︷︷ ︸
≥0 (gap)

| defs

▶ for a fixed θ, we want qϕ(z) to be close to pθ(z | x)
14 / 25



exercises

exercises around ELBO to deepen your understanding:
1. warm up: write out ELBO from

Ez∼q(z)

[
log

pθ(x, z)
q(z)

]
to

Ez∼q(z)[log pθ(x | z)]− DKL(q(z) ∥p(z))

2. prove log pθ(x) ≥ ELBO(x) (it lower bounds log-likelihood)
using Jensen’s inequality → Q1 (a) in assignment 2

3. prove log pθ(x)− ELBO(x) = DKL(qϕ(z | x) ∥pθ(z | x)) (it
is gap between log-likelihood and KL divergence between
approximate and true posterior) → Q1 (b) in assignment 2

15 / 25



optimizing with elbo

optimizing ELBO(x) = Ez∼q(z)[log pθ(x | z)]− DKL(q(z) ∥p(z))
▶ given x, we want to optimize the ELBO(x) wrt θ and q(z)
▶ but what are we optimizing over in the case of q(z)?
▶ choose set of tractable, parametric distributions Q
▶ every distribution qϕ(z) is specified by its parameters ϕ

▶ best distribution qϕ(z) ⇐⇒ best parameters ϕ

▶ instead of optimizing ϕ
(i)
optimal for every data point x(i), we

learn a neural network that maps every xi to ϕ
(i)
optimal

→ amortized inference
▶ as x is network input, write qϕ(z | x) instead of qϕ(z):
ELBO(x) = Ez∼qϕ(z|x)[log pθ(x | z)]− DKL(qϕ(z | x) ∥p(z))

16 / 25



default choices (keep simple and standard)

prior: p(z) = N (0, I) (no learnable params)
▶ DKL(qϕ(z | x) ∥p(z)) term regularizes qϕ(z | x) to learn a

distribution close to the prior p(z)

17 / 25



default choices (keep simple and standard)

encoder (approximate posterior):

qϕ(z | x) = N
(
µϕ(x), diag(σ2

ϕ(x))
)

▶ neural network outputs parameters µϕ(x),σ2
ϕ(x)

▶ given a k-dimensional latent vector z, what dimension is
the output tensor of the encoder?

18 / 25



default choices (keep simple and standard)
encoder (approximate posterior):

qϕ(z | x) = N
(
µϕ(x), diag(σ2

ϕ(x))
)

▶ neural network outputs parameters µϕ(x),σ2
ϕ(x)

▶ given a k-dimensional latent vector z, what dimension is
the output tensor of the encoder?

▶ for every image, the encoder outputs a latent vector with
dimension (k, 2): per-latent dimension mean and variance

19 / 25



default choices (keep simple and standard)

decoder (likelihood):
▶ pick by data type, for example:

pθ(x | z) =
{
N
(
µθ(z), I

)
, x ∈ RD

Bernoulli
(
πθ(z)

)
, x ∈ {0,1}D

▶ neural network outputs parameters µθ(z) or πθ(z)

20 / 25



default choices (keep simple and standard)

decoder (likelihood):
▶ pick by data type, for example:

pθ(x | z) =
{
N
(
µθ(z), I

)
, x ∈ RD

Bernoulli
(
πθ(z)

)
, x ∈ {0,1}D

▶ neural network outputs parameters µθ(z) or πθ(z)
▶ retrieve samples from the distribution using the parameters

21 / 25



additional slides

22 / 25



bayes terminology recap

pθ(z | x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
pθ(x | z)

prior︷︸︸︷
p(z)

pθ(x)︸ ︷︷ ︸
(evidence)

23 / 25



Kullback-Leibler divergence recap

▶ KL divergence from q(z) to p(z) is defined as

DKL(q(z) ∥p(z)) :=

∫
q(z) logq(z)

p(z) dz

▶ properties:
▶ asymmetric, DKL(q(z) ∥p(z)) ̸= DKL(p(z) ∥q(z)) in general
▶ nonnegative, DKL(q(z) ∥p(z)) ≥ 0
▶ DKL(q(z) ∥p(z)) = 0 ⇐⇒ p = q almost everywhere

24 / 25



high level understanding

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

25 / 25

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

