CSC420: Tutorial 4

VAE and Diffusion Model

Michael Neumayr

September 28, 2025

overview

- ▶ P1: VAE and Variational Inference Background
- P2: DDPM From Scratch

 $^{^{0}{\}rm material\ and\ visualizations\ inspired\ by\ and\ adapted\ from\ slides\ by\ David\ Lindell\ and\ Stephan\ G\"{u}nnemann}$

vae overview

VAE conceptually:

train with ELBO objective:

$$\mathcal{L}(\theta, \phi; \mathbf{X}) = \underbrace{-\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{X})}[\log p_{\theta}(\mathbf{X}|\mathbf{z})]}_{\text{reconstruction term}} + \underbrace{D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{X})||p(\mathbf{z}))}_{\text{regularization term}}$$

goals:

- encoder: we want to map high-dimensional data x to a lower-dimensional latent space z
- decoder: we want to be able to sample the latent space z to generate new data x

use latent variable model (in our case, a VAE):

- assume that a few lower-dimensional latent factors z can explain our complex data x
- exploit low-dim. latent structure to facilitate modeling and sampling of distribution $p_{\theta}(\mathbf{x})$ over high-dim. data \mathbf{x}

main idea: true distribution p(x) is "complex" (e.g. images), but the conditional distribution p(x|z) is "simple" (e.g. Gaussian)

generate data in two steps:

$$oldsymbol{z} \sim p_{oldsymbol{ heta}}(oldsymbol{z})$$

(sample latent space z)

$$z \sim \mathcal{N}(0, \mathbf{I})$$

since $p_{\theta}(\mathbf{z})$ standard normal (no parameters θ), use $p(\mathbf{z})$

main idea: true distribution p(x) is "complex" (e.g. images), but the conditional distribution p(x|z) is "simple" (e.g. Gaussian)

generate data in two steps:

 $z \sim p(z)$ (sample latent space z)

 $m{x} \sim p_{m{ heta}}(m{x}|m{z})$ (generate data conditional on $m{z}$)

generate data in two steps:

$$m{z} \sim p(m{z})$$
 (sample latent variable $m{z}$) $m{x} \sim p_{m{\theta}}(m{x}|m{z})$ (generate data conditional on $m{z}$)

together, we get the joint distribution

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z})$$

and model the full distribution $p_{\theta}(\mathbf{x})$ by **marginalizing over z**:

$$\rho_{\theta}(\mathbf{x}) = \int \rho_{\theta}(\mathbf{x}, \mathbf{z}) \, \mathrm{d}\mathbf{z} = \int \rho(\mathbf{z}) \rho_{\theta}(\mathbf{x} | \mathbf{z}) \, \mathrm{d}\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim \rho(\mathbf{z})} [\rho_{\theta}(\mathbf{x} | \mathbf{z})]$$
(1)

our tasks in this framework

encoder: we want to map high-dimensional data x to a lower-dimensional latent space z

▶ inference: with sample x, find posterior distribution over z

$$p_{\theta}(\mathbf{z} \mid \mathbf{x}) = \frac{p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{p_{\theta}(\mathbf{x})}$$

b but we need to model the distribution $p_{\theta}(\mathbf{x})$ for our data first

our tasks in this framework

learning: given empirical dataset $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N$ (assume i.i.d.), find parameters $\boldsymbol{\theta}$ that best explain data

typically, we maximize the log-likelihood over the dataset

$$\max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{X}) = \max_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

▶ for simplicity, look at a single data point x, using 1 we get

$$\max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \max_{\boldsymbol{\theta}} \log \int p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z}$$
 (2)

what is the problem?

our tasks in this framework

learning: given empirical dataset $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N$ (assume i.i.d.), find parameters $\boldsymbol{\theta}$ that best explain data

typically, we maximize the log-likelihood over the dataset

$$\max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{X}) = \max_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

▶ for simplicity, look at a single data point x, using 1 we get

$$\max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \max_{\boldsymbol{\theta}} \underbrace{\log \int p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) p(\boldsymbol{z}) \, d\boldsymbol{z}}_{f(\boldsymbol{\theta})}$$
(2)

 $f(\theta)$ is **intractable** to evaluate: no closed-form solution and numerical integration is infeasible (z still high-dimensional)

log-likelihood maximization

- $f(\theta)$ is **intractable** to evaluate: no closed-form solution and numerical integration is infeasible (z still high-dimensional)
- instead, find a lower bound on the log-likelihood using easy-to-evaluate functions (for us multivariate Gaussians)

log-likelihood maximization

- ▶ $f(\theta)$ is **intractable** to evaluate: no closed-form solution and numerical integration is infeasible (z still high-dimensional)
- instead, find a lower bound on the log-likelihood using easy-to-evaluate functions (for us multivariate Gaussians)

ELBO derivation

- still looking for objective to tractably optimize θ by substituting $p_{\theta}(\mathbf{x})$ maximization with lower bound in optim
- let q(z) be an arbitrary distribution over z (choose later)

$$\begin{split} \log p_{\theta}(\textbf{\textit{x}}) &= \mathbb{E}_{\textbf{\textit{z}} \sim q(\textbf{\textit{z}})} \big[\log p_{\theta}(\textbf{\textit{x}}) \big] \\ &= \int q(\textbf{\textit{z}}) \, \log p_{\theta}(\textbf{\textit{x}}) \, \mathrm{d}\textbf{\textit{z}} \qquad \qquad | \, \text{def. of expectation} \\ &= \int q(\textbf{\textit{z}}) \, \log \frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})} \, \mathrm{d}\textbf{\textit{z}} \qquad | \, \text{def. of cond. probability} \\ &= \int q(\textbf{\textit{z}}) \, \log \left(\frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})} \cdot \frac{q(\textbf{\textit{z}})}{q(\textbf{\textit{z}})} \right) \, \mathrm{d}\textbf{\textit{z}} \qquad | \, \text{Id. trick} \\ &= \int q(\textbf{\textit{z}}) \, \log \frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})} \, \mathrm{d}\textbf{\textit{z}} + \int q(\textbf{\textit{z}}) \, \log \frac{q(\textbf{\textit{z}})}{p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})} \, \mathrm{d}\textbf{\textit{z}} \\ &= \mathbb{E}_{\textbf{\textit{z}} \sim q(\textbf{\textit{z}})} \left[\log \frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{q(\textbf{\textit{z}})} \right] + \mathrm{D_{KL}}(q(\textbf{\textit{z}}) \, \| \, p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})) \quad | \, \text{defs} \end{split}$$

ELBO derivation

$$\begin{split} \log p_{\theta}(\textbf{\textit{x}}) &= \mathbb{E}_{\textbf{\textit{z}} \sim q(\textbf{\textit{z}})} \big[\log p_{\theta}(\textbf{\textit{x}}) \big] \\ &= \int q(\textbf{\textit{z}}) \, \log p_{\theta}(\textbf{\textit{x}}) \, \mathrm{d}\textbf{\textit{z}} \qquad | \, \mathrm{def. \ of \ expectation} \\ &= \int q(\textbf{\textit{z}}) \, \log \frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})} \, \mathrm{d}\textbf{\textit{z}} \qquad | \, \mathrm{def. \ of \ cond. \ probability} \\ &= \int q(\textbf{\textit{z}}) \, \log \left(\frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})} \cdot \frac{q(\textbf{\textit{z}})}{q(\textbf{\textit{z}})} \right) \, \mathrm{d}\textbf{\textit{z}} \qquad | \, \mathrm{Id. \ trick} \\ &= \int q(\textbf{\textit{z}}) \, \log \frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{q(\textbf{\textit{z}})} \, \mathrm{d}\textbf{\textit{z}} + \int q(\textbf{\textit{z}}) \, \log \frac{q(\textbf{\textit{z}})}{p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}})} \, \mathrm{d}\textbf{\textit{z}} \\ &= \underbrace{\mathbb{E}_{\textbf{\textit{z}} \sim q(\textbf{\textit{z}})} \left[\log \frac{p_{\theta}(\textbf{\textit{x}}, \textbf{\textit{z}})}{q(\textbf{\textit{z}})} \right]}_{=: \ \mathrm{ELBO}(\textbf{\textit{x}})} + \underbrace{D_{\mathrm{KL}}(q(\textbf{\textit{z}}) \parallel p_{\theta}(\textbf{\textit{z}} \mid \textbf{\textit{x}}))}_{\geq 0 \ (\mathrm{gap})} \quad | \, \mathrm{defs} \end{split}$$

• for a fixed θ , we want $q_{\phi}(z)$ to be close to $p_{\theta}(z \mid x)$

exercises around ELBO to deepen your understanding:

1. warm up: write out ELBO from

$$\mathbb{E}_{oldsymbol{z} \sim q(oldsymbol{z})}igg[\log rac{
ho_{ heta}(oldsymbol{x}, oldsymbol{z})}{q(oldsymbol{z})}igg]$$

to

$$\mathbb{E}_{oldsymbol{z} \sim q(oldsymbol{z})}[\log p_{ heta}(oldsymbol{x} \mid oldsymbol{z})] - \mathrm{D}_{\mathrm{KL}}(q(oldsymbol{z}) \parallel p(oldsymbol{z}))$$

- 2. prove $\log p_{\theta}(\mathbf{x}) \geq \mathrm{ELBO}(\mathbf{x})$ (it lower bounds log-likelihood) using Jensen's inequality \rightarrow Q1 (a) in assignment 2
- 3. prove $\log p_{\theta}(\mathbf{x}) \mathrm{ELBO}(\mathbf{x}) = \mathrm{D_{KL}}(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel p_{\theta}(\mathbf{z} \mid \mathbf{x}))$ (it is gap between log-likelihood and KL divergence between approximate and true posterior) \rightarrow Q1 (b) in assignment 2

optimizing with elbo

optimizing
$$\mathrm{ELBO}(m{x}) = \mathbb{E}_{m{z} \sim q(m{z})}[\log p_{ heta}(m{x} \mid m{z})] - \mathrm{D_{KL}}(q(m{z}) \parallel p(m{z}))$$

- **b** given \boldsymbol{x} , we want to optimize the ELBO(\boldsymbol{x}) wrt θ and $q(\boldsymbol{z})$
- but what are we optimizing over in the case of q(z)?
- choose set of tractable, parametric distributions Q
- every distribution $q_{\phi}(\mathbf{z})$ is specified by its parameters ϕ
- **b** best distribution $q_{\phi}(\mathbf{z}) \iff$ best parameters ϕ
- instead of optimizing $\phi_{\text{optimal}}^{(i)}$ for every data point $\mathbf{x}^{(i)}$, we learn a neural network that maps **every** \mathbf{x}_i to $\phi_{\text{optimal}}^{(i)}$
 - → amortized inference
- ▶ as \boldsymbol{x} is network input, write $q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})$ instead of $q_{\phi}(\boldsymbol{z})$:

$$\mathrm{ELBO}(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z})] - \mathrm{D}_{\mathrm{KL}}(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) \, \| \, p(\boldsymbol{z}))$$

prior: $p(z) = \mathcal{N}(0, I)$ (no learnable params)

▶ $D_{KL}(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) \parallel p(\boldsymbol{z}))$ term regularizes $q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})$ to learn a distribution close to the prior $p(\boldsymbol{z})$

encoder (approximate posterior):

$$q_{\phi}(oldsymbol{z} \mid oldsymbol{x}) = \mathcal{N}ig(oldsymbol{\mu}_{\phi}(oldsymbol{x}), \operatorname{\mathsf{diag}}(oldsymbol{\sigma}_{\phi}^2(oldsymbol{x}))ig)$$

- neural network outputs *parameters* $\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^{2}(\mathbf{x})$
- given a k-dimensional latent vector z, what dimension is the output tensor of the encoder?

encoder (approximate posterior):

$$q_{\phi}(oldsymbol{z} \mid oldsymbol{x}) = \mathcal{N}ig(oldsymbol{\mu}_{\phi}(oldsymbol{x}), \operatorname{diag}(oldsymbol{\sigma}_{\phi}^2(oldsymbol{x}))ig)$$

- neural network outputs *parameters* $\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})$
- given a k-dimensional latent vector z, what dimension is the output tensor of the encoder?
- ► for every image, the encoder outputs a latent vector with dimension (k, 2): per-latent dimension mean and variance

decoder (likelihood):

pick by data type, for example:

$$ho_{ heta}(oldsymbol{x} \mid oldsymbol{z}) = egin{cases} \mathcal{N}ig(oldsymbol{\mu}_{ heta}(oldsymbol{z}), & oldsymbol{x} \in \mathbb{R}^D \ ext{Bernoulli}ig(oldsymbol{\pi}_{ heta}(oldsymbol{z})ig), & oldsymbol{x} \in \{0,1\}^D \end{cases}$$

• neural network outputs parameters $\mu_{\theta}(\mathbf{z})$ or $\pi_{\theta}(\mathbf{z})$

decoder (likelihood):

pick by data type, for example:

$$ho_{ heta}(oldsymbol{x} \mid oldsymbol{z}) = egin{cases} \mathcal{N}ig(oldsymbol{\mu}_{ heta}(oldsymbol{z}), & oldsymbol{x} \in \mathbb{R}^D \ ext{Bernoulli}ig(oldsymbol{\pi}_{ heta}(oldsymbol{z})ig), & oldsymbol{x} \in \{0,1\}^D \end{cases}$$

- neural network outputs parameters $\mu_{\theta}(\mathbf{z})$ or $\pi_{\theta}(\mathbf{z})$
- retrieve samples from the distribution using the parameters

additional slides

bayes terminology recap

$$\underbrace{\rho_{\theta}(\mathbf{z} \mid \mathbf{x})}_{\text{posterior}} = \underbrace{\overbrace{\rho_{\theta}(\mathbf{x} \mid \mathbf{z})}^{\text{likelihood}} \underbrace{\overbrace{\rho(\mathbf{z})}^{\text{prior}}}_{\text{(evidence)}}$$

Kullback-Leibler divergence recap

▶ KL divergence from q(z) to p(z) is defined as

$$\mathrm{D_{KL}}(q(oldsymbol{z}) \parallel p(oldsymbol{z})) \ := \ \int q(oldsymbol{z}) \, \log rac{q(oldsymbol{z})}{p(oldsymbol{z})} \, doldsymbol{z}$$

- properties:
 - ▶ asymmetric, $D_{KL}(q(z) \parallel p(z)) \neq D_{KL}(p(z) \parallel q(z))$ in general
 - ▶ nonnegative, $D_{KL}(q(z) || p(z)) \ge 0$
 - ▶ $D_{KL}(q(\mathbf{z}) \parallel p(\mathbf{z})) = 0 \iff p = q$ almost everywhere

high level understanding

