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Textbook

•If you are interested, this book has it all:

A. Zisserman and R. Hartley

Multiview Geometry
Cambridge University Press, 2003



Let’s say we have a sensor…

digital sensor 
(CCD or 
CMOS)
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… and an object we like to photograph

digital sensor 
(CCD or 
CMOS)

real-world 
object

What would an image taken like this look like?
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Bare-sensor imaging

digital sensor 
(CCD or 
CMOS)

real-world 
object
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Bare-sensor imaging

digital sensor 
(CCD or 
CMOS)

real-world 
object
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Bare-sensor imaging

digital sensor 
(CCD or 
CMOS)

real-world 
object
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Bare-sensor imaging

digital sensor 
(CCD or 
CMOS)

real-world 
object

All scene points contribute to all sensor pixels
What does the 
image on the 

sensor look like?
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Bare-sensor imaging

All scene points contribute to all sensor pixels
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What can we do to make our image look better?

digital sensor 
(CCD or 
CMOS)

real-world 
object
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Let’s add something to this scene

digital sensor 
(CCD or 
CMOS)

real-world 
object

barrier (diaphragm)

pinhole 
(aperture)

What would an image taken like this look like?
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Pinhole imaging

digital sensor 
(CCD or 
CMOS)

real-world 
object

most rays 
are blocked

one 
makes it 
through
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Pinhole imaging

digital sensor 
(CCD or 
CMOS)

real-world 
object

most rays 
are blocked

one 
makes it 
through
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Pinhole imaging

digital sensor 
(CCD or 
CMOS)

real-world 
object

Each scene point contributes to only one sensor pixel
What does the 
image on the 

sensor look like?
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Pinhole imaging

real-world 
object

copy of real-world object 
(inverted and scaled)
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Pinhole camera terms

digital sensor 
(CCD or 
CMOS)

real-world 
object

barrier (diaphragm)

pinhole 
(aperture)
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Pinhole camera terms

digital sensor 
(CCD or 
CMOS)

real-world 
object

barrier (diaphragm)

pinhole 
(aperture)

image plane

camera center 
(center of 
projection)
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Focal length

real-world 
object

focal length f
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Focal length

real-world 
object

focal length 0.5 f

What happens as we change the focal length?
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Focal length

real-world 
object

What happens as we change the focal length?
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focal length 0.5 f



Focal length

real-world 
object

What happens as we change the focal length? object projection is half the 
size
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focal length 0.5 f



Pinhole size

real-world 
object

pinhole 
diameter

Ideal pinhole has infinitesimally small size
• In practice that is impossible.

22



Pinhole size

real-world 
object

pinhole 
diameter

What happens as we change the pinhole 
diameter?

23



Pinhole size

real-world 
object

What happens as we change the pinhole 
diameter?
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Pinhole size

real-world 
object

What happens as we change the pinhole 
diameter?
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Pinhole size

real-world 
object

What happens as we change the pinhole 
diameter?

object projection becomes 
blurrier
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Pinhole size

real-world 
object

What happens as we change the pinhole 
diameter?

Will the image keep getting sharper the smaller we make the pinhole?

pinhole 
diameter
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Diffraction limit
A consequence of the wave nature of light

What do geometric optics 
predict will happen?

What do wave optics 
predict will happen?
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Diffraction limit
A consequence of the wave nature of light

What do geometric optics 
predict will happen?

What do wave optics 
predict will happen?
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Diffraction limit
A consequence of the wave nature of light

What do geometric optics 
predict will happen?

What do wave optics 
predict will happen?
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Diffraction limit
Diffraction pattern = Fourier transform of the pinhole.
• Smaller pinhole means bigger Fourier spectrum.
• Smaller pinhole means more diffraction.

small pinhole

wide 
diffraction 

pattern

narrow 
diffraction 

pattern

large pinhole
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What about light efficiency?

real-world 
object

pinhole 
diameter

focal length f• What is the effect of doubling the pinhole 
diameter? 

• What is the effect of doubling the focal length?
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What about light efficiency?

real-world 
object

pinhole 
diameter

focal length f• 2x pinhole diameter → 4x light
• 2x focal length → ¼x light
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Shrinking the Aperture

[Source: N. Snavely]



Adding a Lens

[Source: N. Snavely]

LensSmall Pinhole Big pinhole

• A lens focuses light onto the film



Adding a Lens

[Source: N. Snavely]

LensSmall Pinhole Big pinhole

• A lens focuses light onto the film
• There is a specific distance at which objects are in focus



Adding a Lens

[Source: N. Snavely]

LensSmall Pinhole Big pinhole

• A lens focuses light onto the film
• There is a specific distance at which objects are in focus
• Changing the shape of the lens changes this distance 



Pinhole Camera / Camera Obscura

Mo-Ti (Chinese Philosopher) 470-390 BC











Abelardo Morell



Pinhole Camera / Camera Obscura

J. Vermeer “The Milkmaid”, 1658 



Pinhole Camera / Camera Oscura

J. Vermeer “The Milkmaid”, 1658 Credit: ©Toppan Printing Co., Ltd.
Original photo data (Het melkmeisje [The Milkmaid] by Johannes Vermeer) :
©Rijksmuseum Amsterdam. Purchased with the support of the Vereniging Rembrandt



Imaging

[Source: L.W. Kheng]

• Images are 2D projections of real world scene

• Images capture two kinds of information:

• Geometric: positions, points, lines, curves, etc.

• Photometric: intensity, color

• Complex 3D-2D relationships

• Camera models approximate these relationships



Projection

[Source: N. Snavely]



Projection

[Source: N. Snavely]



3D to 2D Projection

• How are 3D primitives projected onto the image plane?



3D to 2D Projection

• How are 3D primitives projected onto the image plane?

• We can do this using a linear 3D to 2D projection matrix



Modeling Projection

• We will use the pinhole model as an approximation

[Pics from: A. Torralba, Forsyth & Ponce]



Modeling Projection

• We will use the pinhole model as an approximation

[Pics from: A. Torralba, Forsyth & Ponce]



Modeling Projection

• We will use the pinhole model as an approximation

[Pics from: A. Torralba, Forsyth & Ponce]



Modeling Projection

• We will use the pinhole model as an approximation

[Pics from: A. Torralba, Forsyth & Ponce]



Focal Length

• Can be thought of as zoom
• Larger focal length narrows the field of view, more pixels per angle in the scene

[Source: N. Snavely, slide credit: R. Urtasun]

24 mm 50 mm

200 mm 800 mm

Figure: Image from N. Snavely



Modeling Projection

• We will use the pinhole model as an approximation

• Since it’s easier to think in a non-upside down world, we will work with the virtual  
image plane, and just call it the image plane.

• How do points in 3D project to image plane? If I know a point in 3D, can I compute to 
which pixel it projects?

[Pics from: A. Torralba, Forsyth & Ponce]



Modeling Projection

• First some notation which will help us derive the math
• To start with, we need a coordinate system



Modeling Projection

• We place a coordinate system relative to camera: optical center or camera center  C is 
thus at origin (0, 0, 0).



• The Z axis is called the optical or principal axis. It is orthogonal to the image  plane. 
Axes X and Y are parallel to the image axes.

Modeling Projection



Modeling Projection

• We will use a right-handed coordinate system



Modeling Projection

• The optical axis intersects the image plane in a point, p. We call this point a principal 
point. It’s worth to remember the principal point since it will appear again later in the 
math.



Modeling Projection

• The distance from the camera center to the principal point is called focal length, we  
will denote it with f . It’s worth to remember the focal length since it will appear again 
later in the math.



Modeling Projection

• We’ll denote the image axes with x and y. 
• The tricky part is how to get from the camera’s coordinate system (3D) to the image  

coordinate system (2D).



• Let’s take some point Q in 3D. 
• Q “lives” relative to the camera; its coordinates are assumed to be in camera’s 

coordinate system.

Modeling Projection



Modeling Projection

• We call the line from Q to camera center a projection line.



Modeling Projection

• The projection line intersects the image plane in a point q. This is the point we see in  
our image.



Modeling Projection

• First thing to notice is that all points from Q’s projection line project to the same point q 
in the image!

• Ambiguity: It’s impossible to know how far a 3D point is from the camera along the  
projection line by looking only at the image (point q).



Modeling Projection

• Why did the detective put a dollar bill next to the footprint?
From the movie Bone Collector



Modeling Projection

• Why did the detective put a dollar bill next to the footprint?
• Ambiguity: It’s impossible to know how far a 3D point is from the camera along the 

projection line by looking only at the image (point q).
• It’s impossible to know the real 3D size of objects just from an image

From the movie Bone Collector



Modeling Projection

• Why did the detective put a dollar bill next to the footprint?
• Ambiguity: It’s impossible to know how far a 3D point is from the camera along the 

projection line by looking only at the image (point q).
• It’s impossible to know the real 3D size of objects just from an image
• How would you compute the shoe’s dimensions?

From the movie Bone Collector



Projection: Ready for Math

Projection Equations
• Using similar triangles to preserve ratios:

• 𝑄 = X,𝑌, 𝑍 !→ "⋅$
% , "⋅&% , 𝑓

!



Projection: Ready for Math

Projection Equations
• Using similar triangles to preserve ratios:

• 𝑄 = X,𝑌, 𝑍 !→ "⋅$
% , "⋅&% , 𝑓

!

• This is relative to principal point p. To move the origin to (0, 0) in image:

𝑞 = X, 𝑌, 𝑍 !→ "⋅$
% + 𝑝',

"⋅&
% + 𝑝(, 0

!

Where p=(px, py) is the principal point.
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Projection: Ready for Math

Projection Equations
• Using similar triangles to preserve ratios:

𝑄 = X,𝑌, 𝑍 !→ "⋅$
% , "⋅&% , 𝑓

!

• This is relative to principal point p. To move the origin to (0, 0) in image:

𝑞 = X, 𝑌, 𝑍 !→ "⋅$
% + 𝑝',

"⋅&
% + 𝑝(, 0

!

Where p=(px, py) is the principal point.
Get the projection by throwing the last coordinate:

𝑄 = X,𝑌, 𝑍 !→q = "⋅$
% + 𝑝',

"⋅&
% + 𝑝(,	

!

This is NOT a linear transformation as a division by Z is non-linear



Homogeneous Coordinates!

• We will use homogeneous coordinates, which simply append a 1 to the vector

[Source: N. Snavely]



Homogeneous Coordinates!

• We will use homogeneous coordinates, which simply append a 1 to the vector
• In homogeneous coordinates, scaling doesn’t affect anything:

𝑥
𝑦
1
~
𝑤. 𝑥
𝑤. 𝑦
w

• In Projective Geometry, all points are equal under scaling λ along the ray

[Source: N. Snavely]



Back to Perspective Projection

• We currently have this (the nasty division by Z):

𝑄 = X,𝑌, 𝑍 !→q =
"⋅$
% + 𝑝'
"⋅&
%
+ 𝑝(



Back to Perspective Projection

• We currently have this (the nasty division by Z):

𝑄 = X,𝑌, 𝑍 !→q =
"⋅$
% + 𝑝'
"⋅&
%
+ 𝑝(

• Write this with homogeneous coordinates:

𝑄 = X,𝑌, 𝑍 !→q =

"⋅$
% + 𝑝'
"⋅&
% + 𝑝(
1

~
𝑓 ⋅ 𝑋 + 𝑍 7 𝑝'
𝑓 ⋅ 𝑌 + 𝑍 7 𝑝(

𝑍



Back to Perspective Projection

• We currently have this (the nasty division by Z):

𝑄 = X,𝑌, 𝑍 !→q =
"⋅$
% + 𝑝'
"⋅&
%
+ 𝑝(

• Write this with homogeneous coordinates:

𝑄 = X,𝑌, 𝑍 !→q =

"⋅$
% + 𝑝'
"⋅&
% + 𝑝(
1

~
𝑓 ⋅ 𝑋 + 𝑍 7 𝑝'
𝑓 ⋅ 𝑌 + 𝑍 7 𝑝(

𝑍

• We can now write this as matrix multiplication:

𝑄 =
𝑋
𝑌
𝑍
→

𝑓 ⋅ 𝑋 + 𝑍. 𝑝'
𝑓 ⋅ 𝑌 + 𝑍. 𝑝(

𝑍
=

𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

𝑋
𝑌
𝑍



Camera Intrinsics

• From Previous Slide:

𝑄 =
𝑋
𝑌
𝑍
→

𝑓 ⋅ 𝑋 + 𝑍 7 𝑝'
𝑓 ⋅ 𝑌 + 𝑍 7 𝑝(

𝑍
=

𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

𝑋
𝑌
𝑍

Write:

𝐾 =
𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

This is called a camera calibration matrix or intrinsic parameter matrix. The parameters in 
K are called internal camera parameters.



Camera Intrinsics

• From Previous Slide:

𝑄 =
𝑋
𝑌
𝑍
→

𝑓 ⋅ 𝑋 + 𝑍. 𝑝'
𝑓 ⋅ 𝑌 + 𝑍. 𝑝(

𝑍
=

𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

𝑋
𝑌
𝑍

Write:

𝐾 =
𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

This is called a camera calibration matrix or intrinsic parameter matrix. The parameters in 
K are called intrinsic camera parameters.

     Finally 𝐾
𝑋
𝑌
𝑍
=

𝑤 7 𝑥
𝑤 7 𝑦
w

→ 𝑞 =
𝑥
𝑦

[Source: Zisserman & Hartley]



Camera Intrinsics

• Camera calibration matrix:

𝐾 =
𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1



Camera Intrinsics

• Camera calibration matrix:

𝐾 =
𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

• It can be a little more complicated. Pixels may not be square:

𝐾 =
𝑓𝑥 0 𝑝'
0 𝑓𝑦 𝑝(
0 0 1



Camera Intrinsics

• Camera calibration matrix:

𝐾 =
𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

• It can be a little more complicated. Pixels may not be square:

𝐾 =
𝑓𝑥 0 𝑝'
0 𝑓𝑦 𝑝(
0 0 1

• And there might be a skew angle θ between x and y image axis:

𝐾 =
𝑓𝑥 −𝑓𝑥𝑐𝑜𝑡𝜃 𝑝'
0 𝑓𝑦/𝑠𝑖𝑛𝜃 𝑝(
0 0 1



Camera Intrinsics

• Camera calibration matrix:

𝐾 =
𝑓 0 𝑝'
0 𝑓 𝑝(
0 0 1

• It can be a little more complicated. Pixels may not be square:

𝐾 =
𝑓𝑥 0 𝑝'
0 𝑓𝑦 𝑝(
0 0 1

• And there might be a skew angle θ between x and y image axis:

𝐾 =
𝑓𝑥 −𝑓𝑥𝑐𝑜𝑡𝜃 𝑝'
0 𝑓𝑦/𝑠𝑖𝑛𝜃 𝑝(
0 0 1

We’ll work with this one



Perspective Projection

[Source: N. Snavely]



Dimensionality Reduction Machine (3D to 2D)

Slide by A. Efros
Figures © Stephen E. Palmer, 2002

• What have we lost?
• Angles?
• Distances (lengths)

Point of Observation

3D World
2D Image



Projection properties

• Many-to-one: any points along same ray map to same point in image



Projection properties

• Many-to-one: any points along same ray map to same point in image
• Points → points



Projection properties

• Many-to-one: any points along same ray map to same point in image
• Points → points
• Lines → lines.



Projection properties

Figure: Proof by drawing



Projection properties

Figure: Proof by drawing



Projection properties

• Many-to-one: any points along same ray map to same point in image
• Points → points
• Lines → lines
• But line through center of projection maps to a point



Projection properties

• Many-to-one: any points along same ray map to same point in image
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• But line through center of projection maps to a point
• Planes → planes



Projection properties

• Many-to-one: any points along same ray map to same point in image
• Points → points
• Lines → lines
• But line through center of projection maps to a point
• Planes → planes
• But plane through the center of projection maps to line



Projection Properties: Cool Facts

Parallel lines converge at a vanishing point
• Each different direction in the world has its own vanishing point

Adopted from: N. Snavely]



Projection Properties: Cool Facts

Parallel lines converge at a vanishing point
• Each different direction in the world has its own vanishing point
• All lines in the same direction in 3D intersect at the same vanishing point

[Pic: R. Szeliski]



Projection Properties: Vanishing Point

• All lines in the same direction in 3D intersect at the same vanishing point.



Projection Properties: Vanishing Point

• All lines in the same direction in 3D intersect at the same vanishing point.



Projection Properties: Vanishing Point

• All lines in the same direction in 3D intersect at the same vanishing point.



Projection Properties: Vanishing Point

• All lines with the same 3D direction intersect at the same vanishing point.

• Line that passes through V with direction D: X = V + t D.



Projection Properties: Vanishing Point
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• Project it:



Projection Properties: Vanishing Point

• All lines with the same 3D direction intersect at the same vanishing point.

• Line that passes through V with direction D: X = V + t D.

• Project it:

Move infinitely far from the camera by taking t → ∞ and compute x and y:



Projection Properties: Vanishing Point

• All lines with the same 3D direction intersect at the same vanishing point.

• Line that passes through V with direction D: X = V + t D.

• Project it:

Move infinitely far from the camera by taking t → ∞ and compute x and y:

This doesn’t depend on V! So all lines with direction D go to this point!



Projection Properties: Vanishing Point

• All lines with the same 3D direction intersect at the same vanishing point.



Projection Properties: Vanishing Point

• All lines with the same 3D direction intersect at the same vanishing point.
• The easiest way to find this point: Translate line with direction D to the camera  

center. This line intersects the image plane in the vanishing point corresponding to  
direction D!



Projection Properties: Cool Facts

Parallel lines converge at a vanishing point
•Each different direction in the world has its own vanishing point
•Lines parallel to image plane are also parallel in the image (we say that they  intersect 
at infinity).



Projection Properties: Cool Facts

• Lines parallel to image plane are also parallel in the image. We say that they  
intersect at infinity.



Projection Properties: Cool Facts

• Lines parallel to image plane are also parallel in the image. We say that they  
intersect at infinity.



• Line that passes through V with direction D: X = V + t D.

• Project a second line passing through R and take the distance:

• Simplify with

• Can you prove the above distance remains constant in the image plane regardless  
of t i.e., the projected versions of the lines are also parallel.

Projection Properties: Vanishing Point



Projection Properties: Cool Tricks

• This picture has been recorded from a car with a camera on top. We know the 
camera intrinsic matrix K.

• Can we tell the incline of the hill we are driving on?
• How?



Projection Properties: Cool Tricks

• Can we tell the incline of the hill we are driving on?

Figure: This is the 3D world behind the picture.



Projection Properties: Cool Tricks

• Can we tell the incline of the hill we are driving on?

Figure: If we compute the 3D direction of the house’s vertical lines relative to camera, 
we  have the incline! How can we do that?



Projection Properties: Cool Tricks

• Can we tell the incline of the hill we are driving on?

Figure: Extract “vertical” lines and compute vanishing point in 2D via intersections. Ho  can we 
compute direction in 3D from vanishing point (if we have K)?



Projection Properties: Cool Tricks

• Can we tell the incline of the hill we are driving on?

Figure: This picture should help.



Projection Properties: Cool Tricks

• Can we tell the incline of the hill we are driving on?

• We have



Vanishing Points Can be Deceiving

Parallel lines converge at a vanishing point.
• But intersecting lines in 2D are not necessarily parallel in 3D.

[Source: A. Jepson]



Vanishing Points Can be Deceiving

Parallel lines converge at a vanishing point
• Each different direction in the world has its own vanishing point
• For lines on the same 3D plane, the vanishing points lie on a line. We call it a 

vanishing line. Vanishing line for the ground plane is a horizon line.



Projection Properties: Cool Facts
Parallel lines converge at a vanishing point
• For lines on the same 3D plane, the vanishing points lie on a line. We call it a 

vanishing line. Vanishing line for the ground plane is a horizon line.
• Some horizon lines are nicer than others ;)

[Punta Cana]



Projection Properties: Cool Facts
Parallel lines converge at a vanishing point
• For lines on the same 3D plane, the vanishing points lie on a line. We call it a 

vanishing line. Vanishing line for the ground plane is a horizon line.
• Parallel planes in 3D have the same horizon line in the image.



Projection Properties: Cool Facts
• Can I tell how much above ground this picture was taken?



Projection Properties: Cool Facts
• Can I tell how much above ground this picture was taken?



Projection Properties: Cool Facts
• Same distance as where the horizon line intersects the scene



Projection Properties: Cool Facts
• Same distance as where the horizon line intersects the scene



• This is only true when the camera (image plane) is orthogonal to the ground plane.  
And the ground plane is flat.

• A very nice explanation of this phenomena can be find by Derek Hoiem here:  
https://courses.engr.illinois.edu/cs543/sp2011/materials/3dscene_book_svg.pdf

Projection Properties: Cool Facts

https://courses.engr.illinois.edu/cs543/sp2011/materials/3dscene_book_svg.pdf


Camera Parameters
• We are not yet done with projection. To fully specify projection, we need to:

• Describe its internal parameters (we know this, this is our K)



Camera Parameters
• We are not yet done with projection. To fully specify projection, we need to:

• Describe its internal parameters (we know this, this is our K)

• Describe its pose in the world. Two important coordinate systems:
• World coordinate system
• Camera coordinate system

[Source: N. Snavely]

Camera
“The World”



Camera Parameters
• Why two coordinate systems?

Imagine this is your room.



Camera Parameters
• Why two coordinate systems?

When you were furnishing you measured everything in detail.



Camera Parameters
• Why two coordinate systems?

Thus you know all coordinates relative to a special point (origin) and coordinate system in the room. 
This is your room’s (world) coordinate system.



Camera Parameters
• Why two coordinate systems?

Now you take a picture and you wonder how points project to camera. In order to project, you 
need all points in camera’s coordinate system.



Camera Parameters
• Why two coordinate systems?

For e.g. self-driving cars, 3D points are typically measured with Velodyne.



Camera Parameters
• Why two coordinate systems?

We want to be able to project the 3D points in Velodyne’s coordinate system onto 
an image captured by a camera.



Camera Parameters
• Why two coordinate systems?

We want to be able to project the 3D points in Velodyne’s coordinate system onto 
an image captured by a camera.



Projection
To project a point (X, Y, Z) in world coordinates on the image plane, we need to:

[Source: N. Snavely]



Projection
To project a point (X, Y, Z) in world coordinates on the image plane, we need to:
• Transform (X, Y, Z) into camera coordinates. We thus need:

[Source: N. Snavely]



Projection
To project a point (X, Y, Z) in world coordinates on the image plane, we need to:
• Transform (X, Y, Z) into camera coordinates. We thus need:

• Camera position (in world coordinates)

[Source: N. Snavely]



Projection
To project a point (X, Y, Z) in world coordinates on the image plane, we need to:
• Transform (X, Y, Z) into camera coordinates. We thus need:

• Camera position (in world coordinates)

• Camera orientation (in world coordinates)

[Source: N. Snavely]



Projection
To project a point (X, Y, Z) in world coordinates on the image plane, we need to:
• Transform (X, Y, Z) into camera coordinates. We thus need:

• Camera position (in world coordinates)

• Camera orientation (in world coordinates)

• To project into the image plane
• Need to know camera intrinsics

[Source: N. Snavely]



Projection
To project a point (X, Y, Z) in world coordinates on the image plane, we need to:
• Transform (X, Y, Z) into camera coordinates. We thus need:

• Camera position (in world coordinates)

• Camera orientation (in world coordinates)

• To project into the image plane
• Need to know camera intrinsics

• These can all be described with matrices!

[Source: N. Snavely]



Camera Extrinsics

We first need our camera position and orientation in the room’s world.
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parameters. We use homogeneous coordinates for 2D and 3D:
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Projection Equations

• Projection matrix P models the cumulative effect of all intrinsic and extrinsic  
parameters. We use homogeneous coordinates for 2D and 3D:

• It can be computed as

• To get a point q in the image plane, I need to compute P (X, Y, Z, 1)T , where P is a 3 × 4 
matrix. This gives me a 3 × 1 vector. Now I divide all coordinates with the third coordinate 
(making the third coordinate equal to 1), and then drop the last coordinate. 



• The projection matrix is defined as

The Projection Matrix

3x1



The Projection Matrix
• The projection matrix is defined as

• More compactly

• Sometimes you will see notation:

• It’s the same thing.



The Projection Matrix
• The projection matrix is defined as

• More compactly

• Sometimes you will see notation:

• It’s the same thing.

• This might look complicated. Truth is, in most cases you don’t have P at all, so you  
can’t really compute any projections. When you have a calibrated camera, then  
someone typically gives you P. And then projection is easy.



A Short Note on Camera Calibration
The general procedure:
• Place a 3D pattern (for which you know all distances) in front of camera.

[Pic from: R. Duraiswami]



A Short Note on Camera Calibration
The general procedure:
• Place a 3D pattern (for which you know all distances) in front of camera.
• Take a picture. Detect corners in image and find correspondences with the points in  
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A Short Note on Camera Calibration
The general procedure:
• Place a 3D pattern (for which you know all distances) in front of camera.
• Take a picture. Detect corners in image and find correspondences with the points in  

the pattern.
• Go to the internet and check out the math that tells you how to compute K from these 

2D-3D correspondences. We won’t cover in class.

[Pic from: R. Duraiswami]



Camera Calibration: Interesting Fact
• Let’s say you have an image but you don’t know anything about the camera (for  

example, image downloaded from the web).
• For images where you see lines corresponding to 3 orthogonal directions, like  cubes 

or rooms, you can compute the camera matrix K as well as R and t!

• How to do this is explained in the Zisserman & Hartley book (section 8).



Camera Calibration: Interesting Fact
• As a consequence, for scenes with lots of lines (e.g. man-made scenes) one can  

reconstruct the scene in 3D from a single image!
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Camera Calibration: Interesting Fact
• As a consequence, for scenes with lots of lines (e.g. man-made scenes) one can  

reconstruct the scene in 3D from a single image!
• For those interested, check out the math here:

A. Criminisi, I. Reid, and A. Zisserman

Single View Metrology
International Journal of Computer Vision, vol 40, num 2, 2000

https://www.cs.cmu.edu/~ph/869/papers/Criminisi99.pdf



Exercise (Not Very Easy, But Fun)
• We want to render (project) a 3D CAD model of a car to this image in a realistic 

way.
• How?



Exercise
• First get a CAD model. There are tones of them, e.g. 3D Warehouse (free)



Exercise
• We downloaded this model. Now what?

Figure: A CAD model is a collection of 3D vertices and faces that connect the vertices.  Each 
face represents a small triangle. It typically has color.



Exercise
• Our image was collected with a car on the road:

• A camera was on top of the car, approximately 1.7m above ground

• Image plane is orthogonal to the ground

• We have the internal parameters of the camera, K.
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• With a bit more math we can compute which point on the ground plane projects to 

an image point (x, y).



Exercise
• Our image was collected with a car on the road:

• A camera was on top of the car, approximately 1.7m above ground

• Image plane is orthogonal to the ground

• We have the internal parameters of the camera, K.

• With a little bit of math, we can compute the ground plane in 3D, relative to camera. 
• With a bit more math we can compute which point on the ground plane projects to 

an image point (x, y).

How?

• We can now “place” our CAD model to this point (compute R and t)

• Rendering:

• Compute [ax, ay, a]T = K [R | t] [X, Y, Z, 1]T for each CAD vertex [X, Y, Z]T. Divide [ax, ay, a]T 
with third coordinate and drop it.



Exercise
• That’s it. Make a video for more fun



Exercise
• That’s it. Make a video for more fun



Next time: Stereo


