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Wrap up lecture 1…
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=

Convolution

Correlation vs Convolution



• The process of performing a convolution requires K2 operations per  
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• The process of performing a convolution requires K2 operations per  
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

• In many cases (not all!), this operation can be sped up by first 
performing a 1D horizontal convolution followed by a 1D vertical 
convolution, requiring only 2K operations

• If this is possible, then the convolutional filter is called separable

• And it is the outer product of two filters:

Separable Filters: Speed-up Trick

F = vh
T

[Source: R. Urtasun]
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One famous separable filter we already know:

How it works
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Is this separable? If yes, what’s the separable version?

How it works

[Source: R. Urtasun]



Let’s play a game...

What does this filter do?

Is this separable? If yes, what’s the separable version?

How it works
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[Source: R. Urtasun]

Is this separable? If yes, what’s the separable version?

How it works

What does this filter do?
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How can we tell if a given filter F is indeed separable?

• Inspection... this is what we were doing.
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• Inspection... this is what we were doing

• Look at the singular value decomposition (SVD), and if only one singular value is 
non-zero, then it is separable

F = UΣV
T
=
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with Σ = diag(σi)

• Python: np.linalg.svd
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[Source: R. Urtasun]



Summary – Stuff You Should Know

• Correlation: Slide a filter across image and compare (via dot product)

• Convolution: Flip the filter to the right and down and do correlation

• Smooth image with a Gaussian kernel: bigger σ means more blurring

• Some filters (like Gaussian) are separable: you can filter faster. First apply  
1D convolution to each row, followed by another 1D conv. to each column

OpenCV:

• Filter2D (or sepFilter2D): can do both correlation and convolution

• GaussianBlur: create a Gaussian kernel

• medianBlur, medianBlur, bilateralFilter



[Source: S. Lazebnik]

Edges

• What does blurring take away?

–

detail

=
smoothed (5x5)original



Review of Fourier Transform



[Source: 3B1B]
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2D Fourier Transform

Example Fourier Basis Inverse Fourier TransformFourier Transform

[Source: Youtube, Tyler Moore]
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2D Fourier Transform

Example Fourier Basis Inverse Fourier TransformFourier Transform
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Fourier Transform
• any continuous, integrable function can be represented as an infinite 

sum of sines and cosines:

f (x) = f̂ (ξ )e2πiξx dξ
−∞

∞

∫ f̂ (ξ ) = f (x)e−2πiξx dx
−∞

∞

∫
Synthesize Decompose
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Fourier Transform

Fourier coefficients of real signals are
conjugate symmetric



Fourier Transform

Images are sums of 
cosines at different 
amplitudes, phases, 
spatial frequencies



Magnitude vs Phase

mag.

mag.

phase

phase



Fourier Transform
• any continuous, integrable, periodic function can be represented as an 

infinite sum of sines and cosines:

• convolution theorem (critical):

f (x) = f̂ (ξ )e2πiξx dξ
−∞

∞

∫ f̂ (ξ ) = f (x)e−2πiξx dx
−∞

∞

∫

x∗g = F−1 F x{ } ⋅F g{ }{ }



Discrete vs Continuous Fourier Transform

Primal Domain Fourier Domain



Sampling

Primal Domain Fourier Domain

?
discrete sampled signal



Primal Domain Fourier Domain

*Sampling operator

Sample rate of 𝑓! Shifted copies at 𝑓! 

Sampling



Primal Domain Fourier Domain

Highest frequency
Sample rate should 
be twice the highest 
frequency to avoid 
aliasing!

Sampling



Periodicity

Primal Domain Fourier Domain

?
periodic signal



Primal Domain Fourier Domain

*
Sample rate of 𝑓! Shifted copies at 𝑓! 

Periodicity



Primal Domain Fourier Domain

Periodicity



Primal Domain Fourier Domain

A periodic signal can be represented by a discrete set of Fourier 
coefficients

• These are called the “Fourier series coefficients”

Periodicity



Discrete Fourier Transform

Primal Domain Fourier Domain

?

In practice, we wish to take the Fourier 
transform of discrete signals.

But we need to represent the Fourier domain 
with discrete values, too!



Discrete Fourier Transform

Primal Domain Fourier Domain

?

Assume the primal domain signal is periodic



Discrete Fourier Transform

Primal Domain Fourier Domain

Assume the primal domain signal is periodic

Output of DFTInput to DFT



Discrete Fourier Transform
• most important for us: discrete Fourier transform

x[n]= 1
N

x̂[k]
k=0

N−1∑ e2πikn/N x̂[k]= x[n]
n=0

N−1∑ e−2πikn/N



Discrete Fourier Transform

Fast Fourier Transform: Cooley & Tukey 1965



Discrete Fourier Transform

Fast Fourier Transform: Cooley & Tukey 1965

O(N2) -> O(N log N)



Filter Examples



Filtering – Low-pass Filter
• low-pass filter: convolution in primal domain

• convolution kernel c is also known as point spread function (PSF)

*

=

b = x∗c

bx c

small
kernel



Filtering – Low-pass Filter
• low-pass filter: multiplication in frequency domain

.

=

F b{ } = F x{ } ⋅F c{ }

big



Filtering – Low-pass Filter

• low-pass filter: hard cutoff

.

=

F b{ } = F x{ } ⋅F c{ }



Filtering – Low-pass Filter

• Bessel function of the first kind or “jinc”

F−1{ }

imagemagick.org optique-ingenieur.org



Filtering – Low-pass Filter

• hard frequency filters often introduce ringing

ß



Filtering – High-pass Filter

• sharpening (possibly with ringing)

ß



Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

b = x*(δ − clowpass_ gauss ) = x − x*clowpass_ gauss

b = x*(δ + chighpass ) = x + x*chighpass

or



Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

originalunsharp mask



Filtering – Band-pass Filter

ß



Filtering – Oriented Band-pass Filter

ß

• edges with specific orientation (e.g., hat) are gone!



Edge Detection



Finding Waldo
•Let’s revisit the problem of finding Waldo
•And let’s take a simple example

image Template(filter)
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Finding Waldo
•Now imagine Waldo goes shopping (and the dog too)

• ... but our filter doesn’t know that

normalized cross-correlation Waldo detection
(putting box around max response)



Finding Waldo (again)
•What can we do to find Waldo again?



Finding Waldo (again)
•What can we do to find Waldo again?

•Edges!!!

image Template(filter)



Finding Waldo (again)
•What can we do to find Waldo again?

•Edges!!!

normalized cross-correlation  
(using the edge maps)

Waldo detection
(putting box around max response)



Waldo and Edges



Edge detection
•Map image to a set of curves or line segments or contours.

•More compact than pixels.
•Edges are invariant to changes in illumination

• Important for recognition

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]
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Origin of Edges
•Edges are caused by a variety of factors

[Source: N. Snavely]

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity



Characterizing Edges
•An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]



What Causes an Edge?
•An edge is a place of rapid change in the image intensity function.

[Source: K. Grauman]



Images as Functions
•Edges look like steep cliffs

[Source: N. Snavely]



How to Implement Derivatives with Convolution
• How can we differentiate a digital image f [x, y]?
• If image f  was continuous, then compute the partial derivative as

•!" #,%
!#

= lim
&→(

" #)&,% *" #,%
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•What would be the filter to implement this using correlation/convolution?

𝜕𝑓
𝜕𝑥
:

𝜕𝑓
𝜕𝑦
:

𝐻! 𝐻"

https://en.wikipedia.org/wiki/Finite_difference
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Examples: Partial Derivatives of an Image
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Figure: Using correlation filters[Source: K. Grauman]

Examples: Partial Derivatives of an Image



Finite Difference Filters

[Source: K. Grauman]



Image Gradient
•The gradient of an image ∇𝑓 = ()
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Image Gradient
•The gradient of an image ∇𝑓 = ()

(!
, ()
("

•The gradient direction (orientation of edge normal) is given by:

𝜃 = tan*+ .
𝜕𝑓
𝜕𝑦

𝜕𝑓
𝜕𝑥

The edge strength is given by the magnitude ∇) = ()
(!

,
+ ()

("

,

[Source: S. Seitz]



Example: Image Gradient



Example: Image Gradient



[Source: S. Lazebnik]

Example: Image Gradient



Effects of noise
•What if our image is noisy? What can we do?
•Consider a single row or column of the image.
•Plotting intensity as a function of position gives a signal.

[Source: S. Seitz]

Noisy input Image



Effects of noise

•Smooth first with h (e.g. Gaussian), and look for peaks in
!
!#

ℎ∗𝑓

[Source: S. Seitz]



Derivative theorem of convolution
•Differentiation property of convolution

• (
(!

ℎ ∗ 𝑓 = (-
(!

∗ 𝑓 = ℎ ∗ ()
(!

•From last time, why does this work?
• It saves one operation

[Source: S. Seitz]



2D Edge Detection Filters

[Source: S. Seitz]

Gaussian Derivative of Gaussian (x)

𝑓. 𝑥, 𝑦 =
1

2𝜋𝜎,
𝑒𝑥𝑝*

!!/"!
,.!

𝜕
𝜕𝑥
ℎ. 𝑥, 𝑦



Derivative of Gaussians

[Source: K. Grauman]



Example

•Applying the Gaussian derivatives to image

[Source: K. Grauman]



Example

•Applying the Gaussian derivatives to image

[Source: K. Grauman]



Effect of σ on derivatives
•The detected structures differ depending on the Gaussian’s scale parameter:
•Larger values: detects edges of larger scale
•Smaller values: detects finer structures

[Source: K. Grauman]



Canny Edge Detector
• OpenCV: cv2.Canny()
• Filter image with derivative of Gaussian (horizontal and vertical directions)  Find 

magnitude and orientation of gradient
• Non-maximum suppression
• Linking and thresholding (hysteresis):

• Define two thresholds: low and high
• Use the high threshold to start edge curves and the low threshold to continue 

them

[Source: D. Lowe and L. Fei-Fei]



Locating Edges – Canny’s Edge Detector
• Example “peppers” image



Locating Edges – Canny’s Edge Detector

Figure: Canny’s approach takes gradient magnitude



Locating Edges – Canny’s Edge Detector

Figure: Canny’s approach takes gradient magnitude

Where is the edge?



Non-Maxima Suppression
• Check if pixel is local maximum along gradient direction
• If yes, take it 

[Source: N. Snavely]

Figure: Gradient magnitude



Finding Edges

Figure: Problem with thresholding

Problem, some pixels 
did not survive the 
thresholding



Hysteresis thresholding
• Use a high threshold to start edge curves, and a low threshold to continue  them

[Source: K. Grauman]



Hysteresis



Hysteresis thresholding

[Source: L. Fei Fei]



Canny Edge Detector
• OpenCV: cv2.Canny()
• Filter image with derivative of Gaussian (horizontal and vertical directions)  Find 

magnitude and orientation of gradient
• Non-maximum suppression
• Linking and thresholding (hysteresis):

• Define two thresholds: low and high
• Use the high threshold to start edge curves and the low threshold to continue  

them

[Source: D. Lowe and L. Fei-Fei]



Canny Edge Detector (again)
• large σ (in step 1) detects “large-scale” edges
• small σ detects fine edges

[Source: S. Seitz]

original Canny with 𝜎 = 1 Canny with 𝜎 = 2



Canny edge detector
•Still one of the most widely used edge detectors in computer vision

• J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis 
and Machine Intelligence, 8:679-714, 1986.
•Depends on several parameters: σ of the blur and the thresholds

[Slide: R. Urtasun]



Another Way of Finding Edges: Laplacian of Gaussians
•Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]



2D Edge Filtering

[Source: S. Seitz]

With ∇, the Laplacian operator ∇-𝑓 = !!"
!#!

+ !!"
!%!



Example

•Applying the Laplacian operator to image

[Source: S. Seitz]

𝜎 = 1 pixels 𝜎 = 3 pixels
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Example

•Applying the Laplacian operator to image

[Source: S. Seitz]

𝜎 = 1 pixels 𝜎 = 3 pixels



A More ‘Modern’ Approach
• This is “old-style” Computer Vision. We are now in the era of successful Machine  
Learning techniques.

• Question: Can we use ML to do a better job at finding edges?
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A More ‘Modern’ Approach
• This is “old-style” Computer Vision. We are now in the era of successful Machine  
Learning techniques.

• Question: Can we use ML to do a better job at finding edges?

OR Should we see right now?









Summary – Stuff You Should Know
Not so good:
•Horizontal image gradient: Subtract intensity of left neighbor from pixel’s intensity  (filtering 
with [−1, 1])
•Vertical image gradient: Subtract intensity of bottom neighbor from pixel’s intensity (filtering 
with [−1, 1]T ) 

Much better (more robust to noise):
•Horizontal image gradient: Apply derivative of Gaussian with respect to x to image filtering
•Vertical image gradient: Apply derivative of Gaussian with respect to y to image
•Magnitude of gradient: compute the horizontal and vertical image gradients, square them, 
sum them, and √ the sum
•Edges: Locations in image where magnitude of gradient is high
•Phenomena that causes edges: rapid change in surface’s normals, depth  discontinuity, rapid 
changes in color, change in illumination



Summary – Stuff You Should Know
•Properties of gradient’s magnitude:

•Zero far away from edge
•Positive on both sides of the edge
•Highest value directly on the edge
•Higher σ emphasizes larger structures

•Canny edge detector:
•Compute gradient’s direction and magnitude
•Non-maxima suppression
•Thresholding at two levels and linking •OpenCV functions:

•cv2.GaussianBlur()
•cv2.Sobel(): )
•cv2.Laplacian())
•cv2.Canny()



Next time…
• Image pyramids


