
Edges
Review of Fourier Transform, Edge Detection

CSC420
David Lindell
University of Toronto
cs.toronto.edu/~lindell/teaching/420
Slide credit: Babak Taati ←Ahmed Ashraf ←Sanja Fidler

Wrap up lecture 1…

Correlation

=

Convolution

Correlation vs Convolution

• The process of performing a convolution requires K2 operations per
pixel, where K is the size (width or height) of the convolution filter

Separable Filters: Speed-up Trick

[Source: R. Urtasun]

• The process of performing a convolution requires K2 operations per
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

Separable Filters: Speed-up Trick

[Source: R. Urtasun]

• The process of performing a convolution requires K2 operations per
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

• In many cases (not all!), this operation can be sped up by first
performing a 1D horizontal convolution followed by a 1D vertical
convolution, requiring only 2K operations

Separable Filters: Speed-up Trick

[Source: R. Urtasun]

• The process of performing a convolution requires K2 operations per
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

• In many cases (not all!), this operation can be sped up by first
performing a 1D horizontal convolution followed by a 1D vertical
convolution, requiring only 2K operations

• If this is possible, then the convolutional filter is called separable

Separable Filters: Speed-up Trick

[Source: R. Urtasun]

• The process of performing a convolution requires K2 operations per
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

• In many cases (not all!), this operation can be sped up by first
performing a 1D horizontal convolution followed by a 1D vertical
convolution, requiring only 2K operations

• If this is possible, then the convolutional filter is called separable

• And it is the outer product of two filters:

Separable Filters: Speed-up Trick

F = vh
T

[Source: R. Urtasun]

How it works

How it works

How it works

How it works

One famous separable filter we already know:

How it works

f(x, y) = 1

2πσ2 exp
(

−

x
2
+y

2

σ2

)

Gaussian:

One famous separable filter we already know:

How it works

f(x, y) =
(

1
√

2πσ
e−

x
2

σ2

)

·

(

1
√

2πσ
e−

y
2

σ2

)

Gaussian:

Is this separable? If yes, what’s the separable version?

How it works

[Source: R. Urtasun]

Let’s play a game...

What does this filter do?

Is this separable? If yes, what’s the separable version?

How it works

[Source: R. Urtasun]

[Source: R. Urtasun]

Is this separable? If yes, what’s the separable version?

How it works

[Source: R. Urtasun]

Is this separable? If yes, what’s the separable version?

How it works

What does this filter do?

[Source: R. Urtasun]

Is this separable? If yes, what’s the separable version?

How it works

[Source: R. Urtasun]

Is this separable? If yes, what’s the separable version?

How it works

What does this filter do?

1

2

1

How can we tell if a given filter F is indeed separable?

• Inspection... this is what we were doing.

[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

• Inspection... this is what we were doing

• Look at the singular value decomposition (SVD), and if only one singular value is
non-zero, then it is separable

F = UΣV
T
=

∑

i

σiuiv
T

i

with Σ = diag(σi)

[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

• Inspection... this is what we were doing

• Look at the singular value decomposition (SVD), and if only one singular value is
non-zero, then it is separable

F = UΣV
T
=

∑

i

σiuiv
T

i

with Σ = diag(σi)

• Python: np.linalg.svd

[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

• Inspection... this is what we were doing

• Look at the singular value decomposition (SVD), and if only one singular value is
non-zero, then it is separable

F = UΣV
T
=

∑

i

σiuiv
T

i

with Σ = diag(σi)

• Python: np.linalg.svd

• and are the vertical and horizontal filters
√

σ1u1

√

σ1v1

[Source: R. Urtasun]

Summary – Stuff You Should Know

• Correlation: Slide a filter across image and compare (via dot product)

• Convolution: Flip the filter to the right and down and do correlation

• Smooth image with a Gaussian kernel: bigger σ means more blurring

• Some filters (like Gaussian) are separable: you can filter faster. First apply
1D convolution to each row, followed by another 1D conv. to each column

OpenCV:

• Filter2D (or sepFilter2D): can do both correlation and convolution

• GaussianBlur: create a Gaussian kernel

• medianBlur, medianBlur, bilateralFilter

[Source: S. Lazebnik]

Edges

• What does blurring take away?

–

detail

=
smoothed (5x5)original

Review of Fourier Transform

[Source: 3B1B]

1D Fourier Transform

[Source: 3B1B]

1D Fourier Transform

Fourier Transform

• What is this?

Fourier Transform

• What is this?

Fourier Transform

• What is this?

Fourier Transform

• What is this?

2D Fourier Transform

Example Fourier Basis Inverse Fourier TransformFourier Transform

[Source: Youtube, Tyler Moore]

2D Fourier Transform

Example Fourier Basis Inverse Fourier TransformFourier Transform

[Source: Youtube, Tyler Moore]

2D Fourier Transform

Example Fourier Basis Inverse Fourier TransformFourier Transform

[Source: Youtube, Tyler Moore]

Fourier Transform
• any continuous, integrable function can be represented as an infinite

sum of sines and cosines:

f (x) = f̂ (ξ)e2πiξx dξ
−∞

∞

∫ f̂ (ξ) = f (x)e−2πiξx dx
−∞

∞

∫
Synthesize Decompose

Fourier Transform

Fourier Transform

Fourier Transform

Fourier Transform

Fourier Transform

Fourier coefficients of real signals are
conjugate symmetric

Fourier Transform

Images are sums of
cosines at different
amplitudes, phases,
spatial frequencies

Magnitude vs Phase

mag.

mag.

phase

phase

Fourier Transform
• any continuous, integrable, periodic function can be represented as an

infinite sum of sines and cosines:

• convolution theorem (critical):

f (x) = f̂ (ξ)e2πiξx dξ
−∞

∞

∫ f̂ (ξ) = f (x)e−2πiξx dx
−∞

∞

∫

x∗g = F−1 F x{ } ⋅F g{ }{ }

Discrete vs Continuous Fourier Transform

Primal Domain Fourier Domain

Sampling

Primal Domain Fourier Domain

?
discrete sampled signal

Primal Domain Fourier Domain

*Sampling operator

Sample rate of 𝑓! Shifted copies at 𝑓!

Sampling

Primal Domain Fourier Domain

Highest frequency
Sample rate should
be twice the highest
frequency to avoid
aliasing!

Sampling

Periodicity

Primal Domain Fourier Domain

?
periodic signal

Primal Domain Fourier Domain

*
Sample rate of 𝑓! Shifted copies at 𝑓!

Periodicity

Primal Domain Fourier Domain

Periodicity

Primal Domain Fourier Domain

A periodic signal can be represented by a discrete set of Fourier
coefficients

• These are called the “Fourier series coefficients”

Periodicity

Discrete Fourier Transform

Primal Domain Fourier Domain

?

In practice, we wish to take the Fourier
transform of discrete signals.

But we need to represent the Fourier domain
with discrete values, too!

Discrete Fourier Transform

Primal Domain Fourier Domain

?

Assume the primal domain signal is periodic

Discrete Fourier Transform

Primal Domain Fourier Domain

Assume the primal domain signal is periodic

Output of DFTInput to DFT

Discrete Fourier Transform
• most important for us: discrete Fourier transform

x[n]= 1
N

x̂[k]
k=0

N−1∑ e2πikn/N x̂[k]= x[n]
n=0

N−1∑ e−2πikn/N

Discrete Fourier Transform

Fast Fourier Transform: Cooley & Tukey 1965

Discrete Fourier Transform

Fast Fourier Transform: Cooley & Tukey 1965

O(N2) -> O(N log N)

Filter Examples

Filtering – Low-pass Filter
• low-pass filter: convolution in primal domain

• convolution kernel c is also known as point spread function (PSF)

*

=

b = x∗c

bx c

small
kernel

Filtering – Low-pass Filter
• low-pass filter: multiplication in frequency domain

.

=

F b{ } = F x{ } ⋅F c{ }

big

Filtering – Low-pass Filter

• low-pass filter: hard cutoff

.

=

F b{ } = F x{ } ⋅F c{ }

Filtering – Low-pass Filter

• Bessel function of the first kind or “jinc”

F−1{ }

imagemagick.org optique-ingenieur.org

Filtering – Low-pass Filter

• hard frequency filters often introduce ringing

ß

Filtering – High-pass Filter

• sharpening (possibly with ringing)

ß

Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

b = x*(δ − clowpass_ gauss) = x − x*clowpass_ gauss

b = x*(δ + chighpass) = x + x*chighpass

or

Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

originalunsharp mask

Filtering – Band-pass Filter

ß

Filtering – Oriented Band-pass Filter

ß

• edges with specific orientation (e.g., hat) are gone!

Edge Detection

Finding Waldo
•Let’s revisit the problem of finding Waldo
•And let’s take a simple example

image Template(filter)

Finding Waldo
•Let’s revisit the problem of finding Waldo
•And let’s take a simple example

normalized cross-correlation Waldo detection
(putting box around max response)

Finding Waldo
•Let’s revisit the problem of finding Waldo

•And let’s take a simple example

image Template(filter)

Finding Waldo
•Now imagine Waldo goes shopping (and the dog too)

• ... but our filter doesn’t know that

normalized cross-correlation Waldo detection
(putting box around max response)

Finding Waldo (again)
•What can we do to find Waldo again?

Finding Waldo (again)
•What can we do to find Waldo again?

•Edges!!!

image Template(filter)

Finding Waldo (again)
•What can we do to find Waldo again?

•Edges!!!

normalized cross-correlation
(using the edge maps)

Waldo detection
(putting box around max response)

Waldo and Edges

Edge detection
•Map image to a set of curves or line segments or contours.

•More compact than pixels.
•Edges are invariant to changes in illumination

• Important for recognition

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

Edge detection
•Map image to a set of curves or line segments or contours.

•More compact than pixels.
•Edges are invariant to changes in illumination

• Important for recognition

• Important for various applications

Figure: [Shotton et al. PAMI, 07]

Edge detection
•Map image to a set of curves or line segments or contours.

•More compact than pixels.
•Edges are invariant to changes in illumination

• Important for recognition

• Important for various applications

Figure: How can a robot pick up or grasp objects?

Edge detection
•Map image to a set of curves or line segments or contours.

•More compact than pixels.
•Edges are invariant to changes in illumination

• Important for recognition

• Important for various applications

Figure: How can a robot pick up or grasp objects?

Origin of Edges
•Edges are caused by a variety of factors

[Source: N. Snavely]

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Characterizing Edges
•An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]

What Causes an Edge?
•An edge is a place of rapid change in the image intensity function.

[Source: K. Grauman]

Images as Functions
•Edges look like steep cliffs

[Source: N. Snavely]

How to Implement Derivatives with Convolution
• How can we differentiate a digital image f [x, y]?
• If image f was continuous, then compute the partial derivative as

•!" #,%
!#

= lim
&→(

" #)&,% *" #,%
&

How to Implement Derivatives with Convolution
• How can we differentiate a digital image f [x, y]?
• If image f was continuous, then compute the partial derivative as

•!" #,%
!#

= lim
&→(

" #)&,% *" #,%
&

•Since it’s discrete, take first-order forward discrete derivative (finite difference)

•!" #,%
!#

≈ lim
&→(

" #)+,% *" #,%
+

https://en.wikipedia.org/wiki/Finite_difference

How to Implement Derivatives with Convolution
• How can we differentiate a digital image f [x, y]?
• If image f was continuous, then compute the partial derivative as

•!" #,%
!#

= lim
&→(

" #)&,% *" #,%
&

•Since it’s discrete, take first-order forward discrete derivative (finite difference)

•!" #,%
!#

≈ lim
&→(

" #)+,% *" #,%
+

•What would be the filter to implement this using correlation/convolution?

https://en.wikipedia.org/wiki/Finite_difference

How to Implement Derivatives with Convolution
• How can we differentiate a digital image f [x, y]?
• If image f was continuous, then compute the partial derivative as

•!" #,%
!#

= lim
&→(

" #)&,% *" #,%
&

•Since it’s discrete, take first-order forward discrete derivative (finite difference)

•!" #,%
!#

≈ lim
&→(

" #)+,% *" #,%
+

•What would be the filter to implement this using correlation/convolution?

𝜕𝑓
𝜕𝑥
:

𝜕𝑓
𝜕𝑦
:

𝐻! 𝐻"

https://en.wikipedia.org/wiki/Finite_difference

Examples: Partial Derivatives of an Image
• How does the horizontal derivative using the filter [−1, 1] look like?

Image

Examples: Partial Derivatives of an Image
• How does the horizontal derivative using the filter [−1, 1] look like?

Image with [−1, 1] and correlation𝜕𝑓 𝑥, 𝑦
𝜕𝑥

Examples: Partial Derivatives of an Image
• How about the vertical derivative using filter [−1, 1]T ?

Image

Examples: Partial Derivatives of an Image
• How about the vertical derivative using filter [−1, 1]T ?

Image with [−1, 1]T and correlation𝜕𝑓 𝑥, 𝑦
𝜕𝑦

Examples: Partial Derivatives of an Image
•How does the horizontal derivative using the filter [−1, 1] look like?

Image

Examples: Partial Derivatives of an Image
•How does the horizontal derivative using the filter [−1, 1] look like?

Image with [−1, 1] and correlation𝜕𝑓 𝑥, 𝑦
𝜕𝑥

Examples: Partial Derivatives of an Image
•How about the vertical derivative using filter [−1, 1]T ?

Image

Examples: Partial Derivatives of an Image
•How about the vertical derivative using filter [−1, 1]T ?

Image with [−1, 1]T and correlation𝜕𝑓 𝑥, 𝑦
𝜕𝑦

Figure: Using correlation filters[Source: K. Grauman]

Examples: Partial Derivatives of an Image

Finite Difference Filters

[Source: K. Grauman]

Image Gradient
•The gradient of an image ∇𝑓 = ()

(!
, ()
("

Image Gradient
•The gradient of an image ∇𝑓 = ()

(!
, ()
("

Image Gradient
•The gradient of an image ∇𝑓 = ()

(!
, ()
("

•The gradient direction (orientation of edge normal) is given by:

𝜃 = tan*+ .
𝜕𝑓
𝜕𝑦

𝜕𝑓
𝜕𝑥

Image Gradient
•The gradient of an image ∇𝑓 = ()

(!
, ()
("

•The gradient direction (orientation of edge normal) is given by:

𝜃 = tan*+ .
𝜕𝑓
𝜕𝑦

𝜕𝑓
𝜕𝑥

The edge strength is given by the magnitude ∇) = ()
(!

,
+ ()

("

,

[Source: S. Seitz]

Example: Image Gradient

Example: Image Gradient

[Source: S. Lazebnik]

Example: Image Gradient

Effects of noise
•What if our image is noisy? What can we do?
•Consider a single row or column of the image.
•Plotting intensity as a function of position gives a signal.

[Source: S. Seitz]

Noisy input Image

Effects of noise

•Smooth first with h (e.g. Gaussian), and look for peaks in
!
!#

ℎ∗𝑓

[Source: S. Seitz]

Derivative theorem of convolution
•Differentiation property of convolution

• (
(!

ℎ ∗ 𝑓 = (-
(!

∗ 𝑓 = ℎ ∗ ()
(!

•From last time, why does this work?
• It saves one operation

[Source: S. Seitz]

2D Edge Detection Filters

[Source: S. Seitz]

Gaussian Derivative of Gaussian (x)

𝑓. 𝑥, 𝑦 =
1

2𝜋𝜎,
𝑒𝑥𝑝*

!!/"!
,.!

𝜕
𝜕𝑥
ℎ. 𝑥, 𝑦

Derivative of Gaussians

[Source: K. Grauman]

Example

•Applying the Gaussian derivatives to image

[Source: K. Grauman]

Example

•Applying the Gaussian derivatives to image

[Source: K. Grauman]

Effect of σ on derivatives
•The detected structures differ depending on the Gaussian’s scale parameter:
•Larger values: detects edges of larger scale
•Smaller values: detects finer structures

[Source: K. Grauman]

Canny Edge Detector
• OpenCV: cv2.Canny()
• Filter image with derivative of Gaussian (horizontal and vertical directions) Find

magnitude and orientation of gradient
• Non-maximum suppression
• Linking and thresholding (hysteresis):

• Define two thresholds: low and high
• Use the high threshold to start edge curves and the low threshold to continue

them

[Source: D. Lowe and L. Fei-Fei]

Locating Edges – Canny’s Edge Detector
• Example “peppers” image

Locating Edges – Canny’s Edge Detector

Figure: Canny’s approach takes gradient magnitude

Locating Edges – Canny’s Edge Detector

Figure: Canny’s approach takes gradient magnitude

Where is the edge?

Non-Maxima Suppression
• Check if pixel is local maximum along gradient direction
• If yes, take it

[Source: N. Snavely]

Figure: Gradient magnitude

Finding Edges

Figure: Problem with thresholding

Problem, some pixels
did not survive the
thresholding

Hysteresis thresholding
• Use a high threshold to start edge curves, and a low threshold to continue them

[Source: K. Grauman]

Hysteresis

Hysteresis thresholding

[Source: L. Fei Fei]

Canny Edge Detector
• OpenCV: cv2.Canny()
• Filter image with derivative of Gaussian (horizontal and vertical directions) Find

magnitude and orientation of gradient
• Non-maximum suppression
• Linking and thresholding (hysteresis):

• Define two thresholds: low and high
• Use the high threshold to start edge curves and the low threshold to continue

them

[Source: D. Lowe and L. Fei-Fei]

Canny Edge Detector (again)
• large σ (in step 1) detects “large-scale” edges
• small σ detects fine edges

[Source: S. Seitz]

original Canny with 𝜎 = 1 Canny with 𝜎 = 2

Canny edge detector
•Still one of the most widely used edge detectors in computer vision

• J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis
and Machine Intelligence, 8:679-714, 1986.
•Depends on several parameters: σ of the blur and the thresholds

[Slide: R. Urtasun]

Another Way of Finding Edges: Laplacian of Gaussians
•Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]

2D Edge Filtering

[Source: S. Seitz]

With ∇, the Laplacian operator ∇-𝑓 = !!"
!#!

+ !!"
!%!

Example

•Applying the Laplacian operator to image

[Source: S. Seitz]

𝜎 = 1 pixels 𝜎 = 3 pixels

Example

•Applying the Laplacian operator to image

[Source: S. Seitz]

𝜎 = 1 pixels 𝜎 = 3 pixels

Example

•Applying the Laplacian operator to image

[Source: S. Seitz]

𝜎 = 1 pixels 𝜎 = 3 pixels

A More ‘Modern’ Approach
• This is “old-style” Computer Vision. We are now in the era of successful Machine
Learning techniques.

• Question: Can we use ML to do a better job at finding edges?

A More ‘Modern’ Approach
• This is “old-style” Computer Vision. We are now in the era of successful Machine
Learning techniques.

• Question: Can we use ML to do a better job at finding edges?

We will see later.

A More ‘Modern’ Approach
• This is “old-style” Computer Vision. We are now in the era of successful Machine
Learning techniques.

• Question: Can we use ML to do a better job at finding edges?

OR Should we see right now?

Summary – Stuff You Should Know
Not so good:
•Horizontal image gradient: Subtract intensity of left neighbor from pixel’s intensity (filtering
with [−1, 1])
•Vertical image gradient: Subtract intensity of bottom neighbor from pixel’s intensity (filtering
with [−1, 1]T)

Much better (more robust to noise):
•Horizontal image gradient: Apply derivative of Gaussian with respect to x to image filtering
•Vertical image gradient: Apply derivative of Gaussian with respect to y to image
•Magnitude of gradient: compute the horizontal and vertical image gradients, square them,
sum them, and √ the sum
•Edges: Locations in image where magnitude of gradient is high
•Phenomena that causes edges: rapid change in surface’s normals, depth discontinuity, rapid
changes in color, change in illumination

Summary – Stuff You Should Know
•Properties of gradient’s magnitude:

•Zero far away from edge
•Positive on both sides of the edge
•Highest value directly on the edge
•Higher σ emphasizes larger structures

•Canny edge detector:
•Compute gradient’s direction and magnitude
•Non-maxima suppression
•Thresholding at two levels and linking •OpenCV functions:

•cv2.GaussianBlur()
•cv2.Sobel():)
•cv2.Laplacian())
•cv2.Canny()

Next time…
• Image pyramids

