Edges

Review of Fourier Transform, Edge Detection

o
N
4
O
n
O

©
o
c
£
0
>
o
O

Imaging Group

Toronto Computational

G

(@]
N
<t
N
Ol
=
-
O
o]
o
~
©
..@IG
c .S
o
O N
— D>
w O
o o
>0
-
o 2
> O
n .
5 3

—
2
0
L
Rl
c
o)
1
L
O
—
-
(%]
<
©
o)
S
-
1
IS
O
o
=
o)
Q
O
o0
o
o
—
O
o
2
n

Wrap up lecture 1...

Correlation vs Convolution

filter flipped horiz.
and vertically

7 VA
F 4 F § I F I | N T T Y " 7 7 7 T T T 1T 1 ¥ F T X
T A I 1§ ¢ 1 &\ [| I T ¢
) e I | T T 7 G S A R R | T T T
= U\
i ; . i |] 1 11
| W N
[1] |
[] VbV VN [/ []]
[T \ LU UV [T I O W W
[T T 1T 1 | N U [/ T 1T 1T] N
image [image [

Correlation Convolution

Separable Filters: Speed-up Trick

* The process of performing a convolution requires K? operations per
pixel, where K is the size (width or height) of the convolution filter

[Source: R. Urtasun]

Separable Filters: Speed-up Trick
* The process of performing a convolution requires K? operations per

pixel, where K is the size (width or height) of the convolution filter

 Can we do faster?

[Source: R. Urtasun]

Separable Filters: Speed-up Trick

* The process of performing a convolution requires K? operations per
pixel, where K is the size (width or height) of the convolution filter

* Can we do faster?
* In many cases (not alll), this operation can be sped up by first

performing a 1D horizontal convolution followed by a 1D vertical
convolution, requiring only 2K operations

[Source: R. Urtasun]

Separable Filters: Speed-up Trick

* The process of performing a convolution requires K? operations per
pixel, where K is the size (width or height) of the convolution filter

 Can we do faster?

* In many cases (not alll), this operation can be sped up by first
performing a 1D horizontal convolution followed by a 1D vertical
convolution, requiring only 2K operations

* Ifthis is possible, then the convolutional filter is called separable

[Source: R. Urtasun]

Separable Filters: Speed-up Trick

* The process of performing a convolution requires K? operations per
pixel, where K is the size (width or height) of the convolution filter

 Can we do faster?

* In many cases (not alll), this operation can be sped up by first
performing a 1D horizontal convolution followed by a 1D vertical
convolution, requiring only 2K operations

* Ifthis is possible, then the convolutional filter is called separable

* And itis the outer product of two filters:

F = vh’

[Source: R. Urtasun]

How it works

filter

image [

How it works

filter

How it works

filter

image [

How it works flter

output of horizontal convolution

How it works

One famous separable filter we already know:

2 2
Gaussian: f(x,y) = ﬁ exp (—x :_zy)

How it works

One famous separable filter we already know:

Gaussian: f(z,y) = (ﬁe f'i_z) : (

How it works

s this separable? If yes, what's the separable version?

1]1 1
1]1 1
1
K2 |
1]1 1

[Source: R. Urtasun]

How it works

s this separable? If yes, what's the separable version?

11 1

111 1

LS I I gl l[1]-]1
1|1 1

What does this filter do?

[Source: R. Urtasun]

How it works

s this separable? If yes, what's the separable version?

121
1)
Llola]2
12

[Source: R. Urtasun]

How it works

s this separable? If yes, what's the separable version?

121
1) 1
Liolal2] Lif1]2]1
1|2

What does this filter do?

[Source: R. Urtasun]

How it works

s this separable? If yes, what's the separable version?

Q0 | =

—1

—2

—1

[Source: R. Urtasun]

How it works

s this separable? If yes, what's the separable version?

—1]0]1 1

1

2102 L —1]0]1
—1]0]1 1

What does this filter do?

[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

* Inspection... this is what we were doing.

[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

* Inspection... this is what we were doing

* Look at the singular value decomposition (SVD), and if only one singular value is
non-zero, then it is separable

F = UEVT = ZO'Z"LLZ'U;-T

with 3} = diag(o;)

[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

* Inspection... this is what we were doing

* Look at the singular value decomposition (SVD), and if only one singular value is
non-zero, then it is separable

F = UEVT = ZO'Z"LLZ'U;-T
with 3} = diag(o;)

* Python:np.linalg.svd

[Source: R. Urtasun]

How can we tell if a given filter F is indeed separable?

* Inspection... this is what we were doing

* Look at the singular value decomposition (SVD), and if only one singular value is
non-zero, then it is separable

F = UEVT = ZO'Z"LLZ'U;-T
with 3} = diag(o;)
* Python:np.linalg.svd

e Joiuy and /o1Vvi are the vertical and horizontal filters

[Source: R. Urtasun]

Summary - Stuff You Should Know

Correlation: Slide a filter across image and compare (via dot product)

Convolution: Flip the filter to the right and down and do correlation

Smooth image with a Gaussian kernel: bigger 0 means more blurring

Some filters (like Gaussian) are separable: you can filter faster. First apply
1D convolution to each row, followed by another 1D conv. to each column

4 I
OpenCV:

« Filter2D (or sepFilter2D): can do both correlation and convolution

e GaussianBlur: create a Gaussian kernel

« medianBlur, medianBlur, bilateralFilter
\— J

Edges

* What does blurring take away?

detail

[Source: S. Lazebnik]

Review of Fourier Transform

1D Fourier Transform

[Source: 3B1B]

1D Fourier Transform

Intensity

Time

Fourier
transform

a A ‘A " A /\!,) {\ A
ENrTe. “-.‘vaJTA.-M -sw‘—‘,lq!—’y-‘ﬁ;':rm;,j.“.‘+‘;#rd-k-2;_!ﬁi%';zﬁr&yh-j—&3&&-’—95«:1&&;-‘ VAU -,....{_,._»‘m......“gum_ﬁ,m — m«ﬂ.%ﬁa,a&mﬂ-.mm>

Frequency

[Source: 3B1B]

Fourier Transform

What is this?

Fourier Transform

e Whatis this?

Fourier Transform

e Whatis this?

Fourier Transform

e Whatis this?

2D Fourier Transform

Example Fourier Basis Fourier Transform Inverse Fourier Transform

[Source: Youtube, Tyler Moore]

2D Fourier Transform

Example Fourier Basis Fourier Transform Inverse Fourier Transform

[Source: Youtube, Tyler Moore]

2D Fourier Transform

Example Fourier Basis Fourier Transform Inverse Fourier Transform

[Source: Youtube, Tyler Moore]

Fourier Transform

any continuous, integrable function can be represented as an infinite

sum of sines and cosines:

fo=] F&e™ds —— f&=| fx)e™ dx

Synthesize Decompose

Fourier Transform

f(z,y) = / F(ky, ky)e?m™ ket they) k. dk,

— OO

Fourier Transform

f(z,y) = / F(ky, ky)e?m™ ket they) k. dk,

|
cos(2m|kzx + kyy|) + jsin(27[kzx + kyy)

Fourier Transform

f(z,y) = / F(ky, ky)e?m™ ket they) k. dk,

0 J

Y
Apl?

Fourier Transform

f(z,y) = / F(ky, ky)e?m™ ket they) k. dk,

—00 | |

I
Acos(2m|kyx + kyy| + ¢) + jAsin(2n|kyx + kyy] + @)

Fourier Transform

f(z,y) = / F(ky, ky)e?m™ ket they) k. dk,

0 J

I
Acos(2mlkyx + kyy| + ¢) + jAsin(2n|kyx + kyy] + @)

Fourier coetficients of real signals are
conjugate symmetric

Fourier Transform

f(z,y) = / F(ky, ky)e?m™ ket they) k. dk,
o0 J

I
Acos(2mlkyx + kyy| + ¢) + jAsin(2n|kyx + kyy] + @)

Images are sums of
cosines at different
amplitudes, phases,
spatial frequencies

Magnitude vs Phas_

mag.

phase

phase

mag.

Fourier Transform

any continuous, integrable, periodic function can be represented as an

infinite sum of sines and cosines:

fo=] F&e™ds —— f&=| fx)e™ dx

convolution theorem (critical): xkg=F" {F{x} ' F{g}}

Discrete vs Continuous Fourier Transform
Primal Domain Fourier Domain

F

)

Sampling

Primal Domain Fourier Domain
| |
I 4 ?
> u
..IMM th |

discrete sampled signal

Sampling

Primal Domain

@ Sampling operator

Sample rate of f;

F

A=

Fourier Domain

k)

A

Shifted copies at f;

Sampling

Primal Domain

..,IMM

Fourier Domain

Highest frequency

Sample rate should
be twice the highest
frequency to avoid

aliasing!

Periodicity

Primal Domain Fourier Domain

AAA =

periodic signal

Periodicity

Primal Domain Fourier Domain

1+

A = __A

* ®

1+

Sample rate of f; Shifted copies at f;

Periodicity

Primal Domain Fourier Domain

Vi

. .,,III‘H “‘lh,'.

Periodicity

Primal Domain Fourier Domain

N\/\ s : .,,IM\H l\hh,,.

A periodic signal can be represented by a discrete set of Fourier
coefficients

« These are called the “Fourier series coefficients”

Discrete Fourier Transform

Primal Domain Fourier Domain
|
I 4 ?
S u
..IMM th . |

In practice, we wish to take the Fourier
transform of discrete signals.

But we need to represent the Fourier domain
with discrete values, too!

Discrete Fourier Transform

Primal Domain Fourier Domain

l
F ?

........

Assume the primal domain signal is periodic

Primal Domain

Discrete Fourier Transform

\ J
|

Input to DFT

........

Fourier Domain

Mh],.l .,IMH

Output of DFT

Assume the primal domain signal is periodic

Discrete Fourier Transform

most important for us: discrete Fourier transform

1 N-1

—1 A Ttikn ~ —2 wikn
x[n]:Nz:jjzox[k]e2 N e x[k]zznzox[n]e 2rikn/N

Discrete Fourier Transform

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2™ factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the calculation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N X N matrix which can be factored
into m sparse matrices, where m is proportional to log N. This results in-a procedure
requiring a number of operations proportional to N log N rather than N*. These
methods are applied here to the calculation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
different form. Attention is given to the choice of N. It is also shown how special
advantage can be obtained in the use of a binary computer with N = 2™ and how
the entire calculation can be performed within the array of N data storage locations
used for the given Fourier coefficients.

Fast Fourier Transform: Cooley & Tukey 1965

Discrete Fourier Transform

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2™ factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the calculation of Fourier
series. In their full generalit : 1 in problems in
which one my 2 be factored
into m sparse O(N) —> O(N |Og N) -a procedure
requiring a n n N* These
methods are applied here to the calculation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
different form. Attention is given to the choice of N. It is also shown how special
advantage can be obtained in the use of a binary computer with N = 2™ and how
the entire calculation can be performed within the array of N data storage locations
used for the given Fourier coefficients.

Fast Fourier Transform: Cooley & Tukey 1965

Filter Examples

Filtering — Low-pass Filter

* |ow-pass filter: convolution in primal domain b=x*c

« convolution kernel cis also known as point spread function (PSF)

small
kernel

Filtering — Low-pass Filter

+ low-pass filter: multiplication in frequency domain F{b}=F{x} - F{c}

Filtering — Low-pass Filter

low-pass filter: hard cutoff F{b} = F{X}F{C}

Filtering — Low-pass Filter

Bessel function of the first kind or “jinc”

optique-ingenieur.org 2 -2

imagemagick.org

Filtering — Low-pass Filter

« hard frequency filters often introduce ringing

Filtering — High-pass Filter

« sharpening (possibly with ringing)

Filtering — Unsharp Masking

« sharpening (without ringing): unsharp masking, €.g. in Photoshop

— vk _ — v— y ¥
b=x (6 Clowpass_ gauss) =X—X ClOWPaSS _gauss

or

— v+ ¥k — 3k
b=x (5 T Chighpass) =XtX Chighpass

Filtering — Unsharp Masking

sharpening (without ringing): unsharp masking, e.g. in Photoshop

original

Filtering — Band-pass Filter

pass Filter

ted Band-

ien

tering — Ori

F

edges with specific orientation (e.g., hat) are gone!

Edge Detection

Finding Waldo

*Let’s revisit the problem of finding Waldo

*And let’s take a simple example

image Template(filter)

Finding Waldo

*Let’s revisit the problem of finding Waldo

*And let’s take a simple example

normalized cross-correlation Woaldo detection
(putting box around max response)

Finding Waldo

*Let’s revisit the problem of finding Waldo

*And let’s take a simple example

image Template(filter)

Finding Waldo

*Now imagine Waldo goes shopping (and the dog too)

e ... but our filter doesn’t know that

L |

normalized cross-correlation Woaldo detection
(putting box around max response)

Finding Waldo (again)

*What can we do to find Waldo again?

(again)

*What can we do to find Waldo again?

Finding Waldo
*Edges!!!

o nuili s <
Qi (0 S

Zal
£ 4
L <
S— "N
) A
s |)
v 7=) L -y |
& .]
T = v
SESS 5
S -
(-
- -
A7
\;
J‘ y

Template(filter)

S>3

=
.w\.mWM

i

image

Finding Waldo (again)

*What can we do to find Waldo again?

*Edgesl!!

. T B

normalized cross-correlation Woaldo detection
(using the edge maps) (putting box around max response)

Waldo and Edges

Edge detection

*Map image to a set of curves or line segments or contours.
* More compact than pixels.
*Edges are invariant to changes in illumination

*Important for recognition

s @
[-
TL &
5
F A

-

[4

e
= = i
i — I
-
T

»
LTl
[e

-y
L=

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

Edge detection

*Map image to a set of curves or line segments or contours.
* More compact than pixels.

*Edges are invariant to changes in illumination

*Important for recognition

*Important for various applications

Figure: [Shotton et al. PAMI, 07]

Edge detection

*Map image to a set of curves or line segments or contours.
* More compact than pixels.

*Edges are invariant to changes in illumination

*Important for recognition

*Important for various applications

Figure: How can a robot pick up or grasp objects?

Edge detection

*Map image to a set of curves or line segments or contours.
* More compact than pixels.

*Edges are invariant to changes in illumination

*Important for recognition

*Important for various applications

Figure: How can a robot pick up or grasp objects?

Origin of Edges

*Edges are caused by a variety of factors

surface normal discontinuity

depth discontinuity

-
/—{\ surface color discontinuity

-

N~

illumination discontinuit
\Q/ ~ | | Inuity

[Source: N. Snavely]

Characterizing Edges

*An edge is a place of rapid change in the image intensity function.

intensity function
image (along horizontal scanline) first derivative

\ |

edges correspond to

extrema of derivative
[Source: S. Lazebnik]

What Causes an Edge?

*An edge is a place of rapid change in the image intensity function.

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape

[Source: K. Grauman]

Images as Functions

*Edges look like steep cliffs

[Source: N. Snavely]

How to Implement Derivatives with Convolution

* How can we differentiate a digital image f[x,]2
*|fimage f was continuous, then compute the partial derivative as

af (x,y) _ lim fx+ey)—f(x,y)
ax =0 £

How to Implement Derivatives with Convolution

* How can we differentiate a digital image f[x,]2
*|fimage f was continuous, then compute the partial derivative as

of (x,y) _ lim fx+ey)—f(x,y)
ax =0 £

*Since it's discrete, take first-order forward discrete derivative (finite difference)

of (x,y) ~ lim fx+1,y)-f(x,y)
ox -0 1

https://en.wikipedia.org/wiki/Finite_difference

How to Implement Derivatives with Convolution

* How can we differentiate a digital image f[x,]2
*|fimage f was continuous, then compute the partial derivative as

of (x,y) _ lim fx+ey)—f(x,y)
ax =0 £

*Since it's discrete, take first-order forward discrete derivative (finite difference)

of (x,y) ~ lim fx+1,y)-f(x,y)
ox -0 1

*What would be the filter to implement this using correlation/convolution®

https://en.wikipedia.org/wiki/Finite_difference

How to Implement Derivatives with Convolution

* How can we differentiate a digital image #[x, »]2
*|fimage f was continuous, then compute the partial derivative as

af (x,y) _ lim fx+ey)-f(x,y)
ax =0 £

*Since it's discrete, take first-order forward discrete derivative (finite difference)

ox -0 1

*What would be the filter to implement this using correlation/convolution®

of of
ox dy

https://en.wikipedia.org/wiki/Finite_difference

Examples: Partial Derivatives of an Image

* How does the horizontal derivative using the filter [-1, 1] look like®

Image

Examples: Partial Derivatives of an Image

* How does the horizontal derivative using the filter [-1, 1] look like®

af (x,y)
0x

Image with [-1, 1] and correlation

Examples: Partial Derivatives of an Image

* How about the vertical derivative using filter [-1, 1]T 2

Image

Examples: Partial Derivatives of an Image

* How about the vertical derivative using filter [-1, 1]T 2

af (x,y)
dy

Image with [-1, 1]7 and correlation

Examples: Partial Derivatives of an Image

*How does the horizontal derivative using the filter [-1, 1] look like?

Image

Examples: Partial Derivatives of an Image

*How does the horizontal derivative using the filter [-1, 1] look like?

af (x,y)
0x

Image with [-1, 1] and correlation

Examples: Partial Derivatives of an Image

*How about the vertical derivative using filter [-1, 1]72

Image

Examples: Partial Derivatives of an Image

*How about the vertical derivative using filter [-1, 1]72

N

Image afg;'y) with [-1, 1]7 and correlation

Examples: Partial Derivatives of an Image

-1

1

[Source: K. Grauman]

Figure: Using correlation filters

Finite Difference Filters

Prewitt: M, =

Sobel: M, =

-1

o
[—

-1

o
(=

-1

-1

o=

-2

-1

f]

u—ralu—

Roberts: M, =

=) -

>> My = fspecial(‘'‘sobel’) ;
>> outim = imfilter (double(im), My) ;

>> imagesc (outim) ;
>> colormap gray;

[Source: K. Grauman]

1] 1] 1
M,= [0[o0]o
X [k [
121
M,=[0]0]0O
SNE B

[0

My, = 51T

Image Gradient

of of

*The gradient of an image Vf = lax’ay

Image Gradient

of of
ox’ 0y

I vs = [3.0] . L. vr =35
Vf— ;

*The gradient of an image Vf = [

Image Gradient

- - _[or or
The gradient of an image Vf = [ax,ay
I vs=[3.0] I L. v7 =35
vreogy
*The gradient direction (orientation of edge normal) is given by:
of /0
6 =tan~! (i i)
dy/ 0x

Image Gradient

- - _ [oF oF
The gradient of an image Vf = lax, 3y
I vi =[5 0]] .MV“[%*%]
vi=[o3]
*The gradient direction (orientation of edge normal) is given by:
of /0
6 = tan~! (i i)
dy/ 0x
2 2
The edge strength is given by the magnitude ||Vf|| = \/(%) + (%)

[Source: S. Seitz]

Example: Image Gradient

Example: Image Gradient

Example: Image Gradient

[Source: S. Lazebnik]

Effects of noise

*What if our image is noisy? What can we do?
*Consider a single row or column of the image.
* Plotting intensity as a function of position gives a signal.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Noisy input Image

[Source; S. Seifz] 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Effects of noise

» Smooth first with h (e.g. Gaussian), and look for peaks in

Sigma = 50

EpE—— e SipE e e e
T : :
c : —
¥ = IR SO S S SURPON SRR SRS SRS SO N
) :
v, : . o 00 l Y |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
T T l T T T T | T
- : ; :
h £
D
X
0
c : - N
$ 5 i é
= : . 5
hx f z z s
S S om0 LA G S e
0 200 400 600 800 1000 1200 1400 1600 1800 2000
- ; ; ! ; ! ; ! ; ;
5 g ? e 8
Z(hxf) & S
ox & : : . s z : z
o e — AT R \ e A
. H 0 200 400 600 800 1000 1200 1400 1600 1800 2000
[Source: S. Seitz]

Derivative theorem of convolution

* Differentiation property of convolution S Sigma= 50

o= (G) = (G)

...

—
Signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
*From last time, why does this work? ————T— T

*|t saves one operation 0

..

=
Kernel

| | | | | | | | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

—
o
—
~—
>
—_
Convolution

| | | I | | | |
[SOUI'CG: S Sele] 0 200 400 600 800 1000 1200 1400 1600 1800 2000

2D Edge Detection Filters

o P G
o
SRS

AR
, X KOS RSOSSN) il
i N et e U 0y e 2 0 S A S
HIXIRI) ' o S S O SIS S ST
A s S S OS OSESOC SISO
:"3)";"" 0'0‘0‘0“"“““\“‘\\\\‘: e ey Sy e ey e e
o,’{'.:l‘:""‘:‘:.:’:“.“’“" “‘: -
LR K)

Gaussian

Derivative of Gaussian (x)
1 _x*4y® 0
folx,y) = 2mg2 OXP 207 aha(x»)’)

[Source: S. Seitz]

Derivative of Gaussians

x-direction y-direction

[Source: K. Grauman]

* Applying the Gaussian derivatives to image

[Source: K. Grauman]

* Applying the Gaussian derivatives to image

[Source: K. Grauman]

Effect of o on derivatives

*The detected structures differ depending on the Gaussian’s scale parameter:
*Larger values: detects edges of larger scale
* Smaller values: detects finer structures

o = 1 pixel o = 3 pixels
[Source: K. Grauman]

Canny Edge Detector

* OpenCV: cv2.Canny()
e Filter image with derivative of Gaussian (horizontal and vertical directions) Find
magnitude and orientation of gradient

* Non-maximum suppression

* Linking and thresholding (hysteresis):
* Define two thresholds: low and high
* Use the high threshold to start edge curves and the low threshold to continue

them

[Source: D. Lowe and L. Fei-Fei]

Locating Edges — Canny’s Edge Detector

* Example “peppers” image

Locating Edges — Canny’s Edge Detector

Figure: Canny’s approach takes gradient magnitude

Locating Edges — Canny’s Edge Detector

Where is the edge?

Figure: Canny’s approach takes gradient magnitude

Non-Maxima Suppression

* Check if pixel is local maximum along gradient direction

* If yes, take it

® ® o e

p
[]
| q °
Gradient
® O o ®
r
@ ® ®

6 0 :

[Source: N. Snavely]

L 1 1
1000 1200 1400 1600 1800 2000

Figure: Gradient magnitude

Finding Edges

Problem, some pixels
did not survive the
thresholding

Figure: Problem with thresholding

Hysteresis thresholding

* Use a high threshold to start edge curves, and a low threshold to continue them

[Source: K. Grauman]

Hysteresis

.
1

) |

T

Hysteresis thresholding

original image

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

[Source: L. Fei Fei]

Canny Edge Detector

* OpenCV: cv2.Canny()
e Filter image with derivative of Gaussian (horizontal and vertical directions) Find
magnitude and orientation of gradient

* Non-maximum suppression

* Linking and thresholding (hysteresis):
* Define two thresholds: low and high
* Use the high threshold to start edge curves and the low threshold to continue

them

[Source: D. Lowe and L. Fei-Fei]

Canny Edge Detector (again)

* large o (in step 1) detects “large-scale” edges
* small o detects fine edges

‘h'”
‘ |:j' \\“ 5_._'13‘_{" _j\[l:\. /7

H/F’ '|

originol Canny with g =1

[Source: S. Seitz]

Canny with o = 2

Canny edge detector

« Still one of the most widely used edge detectors in computer vision

¢ J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis
and Machine Intelligence, 8:679-714, 1986.

*Depends on several parameters: o of the blur and the thresholds

[Slide: R. Urtasun]

Another Way of Finding Edges: Laplacian of Gaussians

*Edge by detecting zero-crossings of bottom graph

Sigma = 50
T

-
Signal

I I I i I i I L I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

02 ; 30 /\ """ Laplacian of Gaussian]
Ox? < : 5 ' .operator : :
0 2(I)O 4CI)O 6(I30 8(I)0 10IOO 12I00 14IOO 1600 18I00 2000
5
02 4 5
(5 zh)*f 2op - :
ox 5

[Source; S. Seifz] 0 200 400 600 800 1000 1200 1400 1600 1800 2000

2D Edge Filtering

)

Laplacian of Gaussian

X

Gaussian derivative of Gaussian

, 1 _u2_+22£ 0)
/l : — 20 e & u-‘\ ?-)
o(u,v) Syl L
0%f 0%*f
o2 . 2¢ _
With V# the Laplacian operator V* f 32 + 92

[Source: S. Seitz]

o =1 pixels o = 3 pixels

* Applying the Laplacian operator to image

[Source: S. Seitz]

o =1 pixels o = 3 pixels

* Applying the Laplacian operator to image

[Source: S. Seitz]

%l
S
el

“

- o he
"‘:‘Q\

AR

o =1 pixels

* Applying the Laplacian operator to image

[Source: S. Seitz]

A More ‘Modern’ Approach

* This is “old-style” Computer Vision. We are now in the era of successful Machine
Learning techniques.

* Question: Can we use ML to do a better job at finding edges?

A More ‘Modern’ Approach

* This is “old-style” Computer Vision. We are now in the era of successful Machine
Learning techniques.

* Question: Can we use ML to do a better job at finding edges?

We will see later.

A More ‘Modern’ Approach

* This is “old-style” Computer Vision. We are now in the era of successful Machine
Learning techniques.

* Question: Can we use ML to do a better job at finding edges?

OR Should we see right now?

1504.06375v2 [cs.CV] 4 Oct 2015

Holistically-Nested Edge Detection

Saining Xie
Dept. of CSE and Dept. of CogSci
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

s9xieleng.ucsd.edu

Abstract

We develop a new edge detection algorithm that ad-
dresses two important issues in this long-standing vision
problem: (1) holistic image training and prediction; and (2)
multi-scale and multi-level feature learning. Our proposed
method, holistically-nested edge detection (HED), performs
image-to-image prediction by means of a deep learning
model that leverages fully convolutional neural networks
and deeply-supervised nets. HED automatically learns rich
hierarchical representations (guided by deep supervision on
side responses) that are important in order to resolve the
challenging ambiguity in edge and object boundary detec-
tion. We significantly advance the state-of-the-art on the
BSD500 dataset (ODS F-score of .782) and the NYU Depth
dataset (ODS F-score of .746), and do so with an improved
speed (0.4s per image) that is orders of magnitude faster
than some recent CNN-based edge detection algorithms.

1. Introduction
In this paper, we address the problem of detecting edges

Zhuowen Tu
Dept. of CogSci and Dept. of CSE
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

ztu@ucsd.edu

)\/? C)
- [O
AN [

(I s 3

Ul

. I (1
g’ G NN
|~ 2L
: i e SN o
(g) Canny: 0 = 2 (h) Canny: 0 = 4 (i) Canny: o =8

Figure 1. Ilustration of the proposed HED algorithm. In the first row:
(a) shows an example test image in the BSD500 dataset [28]; (b) shows its
corresponding edges as annotated by human subjects; (c) displays the HED
results. In the second row: (d), (e), and (f), respectively, show side edge
responses from layers 2, 3, and 4 of our convolutional neural networks. In
the third row: (g), (h), and (i), respectively, show edge responses from the
Canny detector [4] at the scales 0 = 2.0, 0 = 4.0, and 0 = 8.0. HED
shows a clear advantage in consistency over Canny.

2 (h) Canny: 0 = 4 (i) Canny: 0 =8

Figure 1. Ilustration of the proposed HED algorithm. In the first row:
(a) shows an example test image in the BSD500 dataset [28]; (b) shows its
corresponding edges as annotated by human subjects; (c) displays the HED
results. In the second row: (d), (e), and (f), respectively, show side edge
responses from layers 2, 3, and 4 of our convolutional neural networks. In
the third row: (g), (h), and (i), respectively, show edge responses from the
Canny detector [4] at the scales 0 = 2.0, 0 = 4.0, and 0 = 8.0. HED
shows a clear advantage in consistency over Canny.

Input image X

v',v‘..(b
Side-output VA

Side-output 2 A& \ s ~ '-'.'-’,'u‘_"‘
; ~. 1
4 M
Side-output 3 =, (OIS
' D= = = %“.1!_ - Y
i — 73

Receptive Field Size : A
Side-output 4 y

5| |14 [40] |92 [196 Side-outputs 1| [

o ﬁ\\\

A LLLLLLLLY] Weighted-fusion layer Error Propagation Path (\‘
Y “}.‘,‘grouhd truth

* ! Side-output layer Error Propagation Path

Figure 3. Illustration of our network architecture for edge detection, high-
lighting the error backpropagation paths. Side-output layers are inserted
after convolutional layers. Deep supervision is imposed at each side-output
layer, guiding the side-outputs towards edge predictions with the charac-
teristics we desire. The outputs of HED are multi-scale and multi-level,
with the side-output-plane size becoming smaller and the receptive field
size becoming larger. One weighted-fusion layer is added to automatically
learn how to combine outputs from multiple scales. The entire network is
trained with multiple error propagation paths (dashed lines).

Summary — Stuft You Should Know

Not so good:

* Horizontal image gradient: Subtract intensity of left neighbor from pixel’s intensity (filtering
with [-1, 1])

*Vertical image gradient: Subtract intensity of bottom neighbor from pixel’s intensity (filtering
with [-1, 1]7)

Much better (more robust to noise):
* Horizontal image gradient: Apply derivative of Gaussian with respect to x to image filtering
*Vertical image gradient: Apply derivative of Gaussian with respect to y'to image

* Magnitude of gradient: compute the horizontal and vertical image gradients, square them,
sum them, and v the sum

* Edges: Locations in image where magnitude of gradient is high

* Phenomena that causes edges: rapid change in surface’s normals, depth discontinuity, rapid
changes in color, change in illumination

Summary - Stuff You Should Know

* Properties of gradient’s magnitude:
* Zero far away from edge
* Positive on both sides of the edge
*Highest value directly on the edge
* Higher o emphasizes larger structures

 Canny edge detector:
» Compute gradient’s direction and magnitude

* Non-maxima suppression s
* Thresholding at two levels and linking *OpenCV functions:

*cv2.GaussianBlur()
*cv2.Sobel():)

*cv2.Laplacian())

*cv2.Canny()

Next time...

*Image pyramids

Level 4
Blur and & 1/16 resolution
subsample |/ Level 3
Blur and 1/8 resolution

subsample Level 2

1/4 resolution

Blur and
subsample
Level 1
1/2 resolution
Blur and
subsample

Level 0
Original
image

