Object Detection
Logistics

- Final exam April 27th SF 3202 9AM – 12 PM
 - multiple choice, short answer, long answer
- Office hours will continue until the exam (zoom)
- request to upload course notes (see Ed Discussion)
Where are we in the Vision Landscape

- Template Detection, Normalized Correlation
- Linear Filters, Convolutions, Gradients
- Edges ... Non-Max Suppression
- Interest Points – Corners – Harris Corner Detector
- SIFT – Scale Invariant Feature Transform
- Feature Descriptor around Interest Points (Remember 128D descriptor)
- Feature Matching and RANSAC, Homography
- Camera Models, Perspective Projections, Stereo
- Deep Learning – Neural Nets
- Automatic Differentiation – Training Neural Nets
- Object Detection
Fast retrieval
Recognizing or Retrieving Specific Objects

• Example: Visual search in feature films

Visually defined query

“Find this clock”

“Find this place”

“Groundhog Day” [Rammis, 1993]

Demo: http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

[Source: J. Sivic, slide credit: R. Urtasun]
Recognizing or Retrieving Specific Objects

• Example: Search photos on the web for particular places

Find these landmarks ...in these images and 1M more

[Source: J. Sivic, slide credit: R. Urtasun]
Why is it Difficult?

• Objects can have possibly large changes in scale, viewpoint, lighting and partial occlusion.

[Source: J. Sivic, slide credit: R. Urtasun]
Why is it Difficult?

• There is tons of data.
Our Case: Matching with Local Features

• For each image in our database we extracted local descriptors (e.g., SIFT)

Database of images

image 1 image 2 image 3 ...

Bounding Boxes

each has: (x,y, scale, orientation)
and: a descriptor (e.g., SIFT which is 128-dim)
Our Case: Matching with Local Features

• For each image in our database we extracted local descriptors (e.g., SIFT)
Our Case: Matching with Local Features

• Let’s focus on descriptors only (vectors of e.g. 128 dim for SIFT)

![Diagram showing database of images and descriptors](image)
Our Case: Matching with Local Features

Now I get a reference (query) image of an object. I want to retrieve all images from the database that contain the object. **How?**
Our Case: Matching with Local Features

Database of images

image 1
$f_1^1 = [0.1, 0.2, \ldots, 0.15]^T$
$f_1^2 = [0.23, 0.12, \ldots, 0.1]^T$
$f_1^3 = [0.12, 0.15, \ldots, 0.05]^T$
\vdots
$f_1^m = [0.05, 0.18, \ldots, 0.09]^T$

image 2
$f_2^1 = [0.05, 0.11, \ldots, 0.2]^T$
$f_2^2 = [0.09, 0.01, \ldots, 0.18]^T$
$f_2^3 = [0.0, 0.08, \ldots, 0.1]^T$
\vdots
$f_2^m = [0.1, 0.15, \ldots, 0.14]^T$

image 3
$f_3^1 = [0.12, 0.15, \ldots, 0.19]^T$
$f_3^2 = [0.1, 0.2, \ldots, 0.2]^T$
$f_3^3 = [0.12, 0.22, \ldots, 0.18]^T$
\vdots
$f_3^m = [0.15, 0.02, \ldots, 0.08]^T$

image hugeN
$f_{hugeN}^1 = [0.12, 0.15, \ldots, 0.19]^T$
$f_{hugeN}^2 = [0.1, 0.2, \ldots, 0.2]^T$
$f_{hugeN}^3 = [0.12, 0.22, \ldots, 0.18]^T$
\vdots
$f_{hugeN}^k = [0.15, 0.02, \ldots, 0.08]^T$

Before (Assignment 3) we were matching all reference descriptors to all descriptors in each database image. Not very efficient.
Our Case: Matching with Local Features

Database of images

image 1

image 2

image 3

image hugeN

... descriptors (vectors)

What can we do to speed-up?

Before (Assignment 3) we were matching all reference descriptors to all descriptors in each database image. Not very efficient.
Indexing!

A Word Index!

Ch*

Where ???????!
Indexing Local Features: Inverted File Index

• For text documents, an efficient way to find all pages on which a word occurs is to use an index.

[Source: K. Grauman, slide credit: R. Urtasun]
Indexing Local Features: Inverted File Index

- For text documents, an efficient way to find all pages on which a word occurs is to use an index.
- We want to find all images in which a feature occurs.

[Source: K. Grauman, slide credit: R. Urtasun]
Indexing Local Features: Inverted File Index

• For text documents, an efficient way to find all pages on which a word occurs is to use an index.
• We want to find all images in which a feature occurs.
• To use this idea, we’ll need to map our features to “visual words”.

(Source: K. Grauman, slide credit: R. Urtasun)
How would “visual words” help us?

Imagine that I am somehow able to “name” my descriptors with a set of “words”.

How can this help me?
How would “visual words” help us?

Database of images

image 1

W1
W5
W4
...
W1

image 2

W2
W3
W6
...
W7

image 3

W7
W9
W1
...
W9

... image hugeN

W6
W2
W7
...
W8

We can now build an inverted file index
This is like an Index of a book
How would “visual words” help us?

We can also assign the descriptors in the reference image to the visual words.
How would “visual words” help us?

And for each word in the reference image, we lookup our inverted file and check which images contain it. **We only need to match our reference image to the retrieved set of images.**
How would “visual words” help us?

Database of images

- **image 1**
 - \(f_1^1 = [0.1, 0.2, \ldots, 0.15]^T \)
 - \(f_2^1 = [0.23, 0.12, \ldots, 0.1]^T \)
 - \(f_3^1 = [0.12, 0.15, \ldots, 0.05]^T \)
 - \(\vdots \)
 - \(f_n^1 = [0.05, 0.18, \ldots, 0.09]^T \)

- **image 2**
 - \(f_1^2 = [0.05, 0.11, \ldots, 0.2]^T \)
 - \(f_2^2 = [0.09, 0.01, \ldots, 0.18]^T \)
 - \(f_3^2 = [0.0, 0.08, \ldots, 0.1]^T \)
 - \(\vdots \)
 - \(f_m^2 = [0.1, 0.15, \ldots, 0.14]^T \)

- **image 3**
 - \(f_1^3 = [0.12, 0.15, \ldots, 0.19]^T \)
 - \(f_2^3 = [0.1, 0.2, \ldots, 0.2]^T \)
 - \(f_3^3 = [0.12, 0.22, \ldots, 0.18]^T \)
 - \(\vdots \)
 - \(f_k^3 = [0.15, 0.02, \ldots, 0.08]^T \)

What are our visual “words”?

Reference (query) image

- \(f_1^{ref} = [0.1, 0.2, \ldots, 0.15]^T \)
- \(f_2^{ref} = [0.15, 0.02, \ldots, 0.06]^T \)
- \(f_3^{ref} = [0.14, 0.22, \ldots, 0.09]^T \)
- \(\vdots \)
- \(f_n^{ref} = [0.17, 0.18, \ldots, 0.2]^T \)
How would “visual words” help us?

The quest for visual words

We could do something like:

If all coordinates of vector smaller than 0.1, then call this vector word 1
If first n-1 coordinates < 0.1, but last coordinate is > 0.1, call this vector word 2
If first n-2 and last coordinate < 0.1, but n-1 coordinate > 0.1, call this vector word 3
...

Why is this not a very good choice? How can we do this better?
How would “visual words” help us?

Database of images

image 1

image 2

image 3

... image hugeN

The quest for visual words

You can imagine each descriptor vector as a point in a high-dimensional space (128-dim for SIFT).

Disclaimer: This is only for the purpose of easier visualization of the solution.
How would “visual words” help us?

Database of images

```
image 1
f_1^1 = [0.1, 0.2, ..., 0.15]^T
f_2^1 = [0.23, 0.12, ..., 0.1]^T
f_3^1 = [0.1, 0.15, ..., 0.05]^T
... 
f_n^1 = [0.05, 0.18, ..., 0.09]^T
```

```
image 2
f_1^2 = [0.05, 0.11, ..., 0.2]^T
f_2^2 = [0.09, 0.01, ..., 0.18]^T
f_3^2 = [0.0, 0.08, ..., 0.1]^T
... 
f_m^2 = [0.1, 0.15, ..., 0.14]^T
```

```
image hugeN
f_1^{hugeN} = [0.12, 0.15, ..., 0.19]^T
f_2^{hugeN} = [0.1, 0.2, ..., 0.2]^T
f_3^{hugeN} = [0.12, 0.22, ..., 0.18]^T
... 
f_k^{hugeN} = [0.15, 0.02, ..., 0.08]^T
```

descriptors (vectors)

The quest for visual words

- We can choose our visual words as “representative” vectors in this space
- We can perform clustering (for example k-means)
How would "visual words" help us?

Visual words: cluster centers

- $W_1 = [0.1, 0.15, \ldots, 0.8]^T$
- $W_2 = [0.15, 0.01, \ldots, 0.09]^T$
- $W_3 = [0.01, 0.09, \ldots, 0.1]^T$
- $W_4 = [0.2, 0.02, \ldots, 0.14]^T$

Descriptors (vectors):

- $f_1 = [0.1, 0.2, \ldots, 0.15]^T$
- $f_2 = [0.23, 0.12, \ldots, 0.1]^T$
- $f_3 = [0.12, 0.15, \ldots, 0.05]^T$
- \vdots
- $f_m = [0.05, 0.18, \ldots, 0.09]^T$

- $f_1^{hugeN} = [0.12, 0.15, \ldots, 0.19]^T$
- $f_2^{hugeN} = [0.1, 0.2, \ldots, 0.2]^T$
- $f_3^{hugeN} = [0.12, 0.22, \ldots, 0.18]^T$
- \vdots
- $f_k^{hugeN} = [0.15, 0.02, \ldots, 0.08]^T$
How would “visual words” help us?

Visual words
- $W_1 = [0.1, 0.15, \ldots, 0.8]^T$
- $W_2 = [0.15, 0.01, \ldots, 0.09]^T$
- $W_3 = [0.01, 0.09, \ldots, 0.1]^T$
- $W_4 = [0.2, 0.02, \ldots, 0.14]^T$

Database of images

- Image 1
- Image 2
- Image 3
- Image hugeN

Descriptors (vectors)
- $f_1^1 = [0.1, 0.2, \ldots, 0.15]^T$
- $f_2^1 = [0.23, 0.12, \ldots, 0.1]^T$
- $f_3^1 = [0.12, 0.15, \ldots, 0.05]^T$
- \vdots
- $f_m^1 = [0.05, 0.18, \ldots, 0.09]^T$
- $f_1^2 = [0.05, 0.11, \ldots, 0.2]^T$
- $f_2^2 = [0.09, 0.01, \ldots, 0.18]^T$
- $f_3^2 = [0.0, 0.08, \ldots, 0.1]^T$
- \vdots
- $f_m^2 = [0.1, 0.15, \ldots, 0.14]^T$
- $f_{hugeN}^1 = [0.12, 0.15, \ldots, 0.19]^T$
- $f_{hugeN}^2 = [0.1, 0.2, \ldots, 0.2]^T$
- $f_{hugeN}^3 = [0.12, 0.22, \ldots, 0.18]^T$
- \vdots
- $f_{hugeN}^n = [0.15, 0.02, \ldots, 0.08]^T$

How do we map this vector to a visual word?
How would “visual words” help us?

Database of images

![Images](image1.png) ![Images](image2.png) ![Images](image3.png) ...

descriptors (vectors)

\[
\begin{align*}
W_1 &= [0.23, 0.12, \ldots, 0.1]^T \\
W_2 &= [0.05, 0.11, \ldots, 0.2]^T \\
W_3 &= [0.09, 0.01, \ldots, 0.18]^T \\
&\vdots \\
W_n &= [0.15, 0.18, \ldots, 0.09]^T \\
\end{align*}
\]

Visual words

- \(W_1 = [0.1, 0.15, \ldots, 0.8]^T \)
- \(W_2 = [0.15, 0.01, \ldots, 0.09]^T \)
- \(W_3 = [0.01, 0.09, \ldots, 0.1]^T \)
- \(W_4 = [0.2, 0.02, \ldots, 0.14]^T \)

We find the closest visual word (Euclidean distance)

\[\arg \min_i ||f - W_i|| \]
Visual Words

• All example patches on the right belong to the same visual word.

[Source: R. Urtasun]
Now We Can do Our Fast Matching

And for each word in the reference image, we lookup our inverted file and check which images contain it. **We only need to match our reference image to the retrieved set of images.**
Inverted File Index

• Now we found all images in the database that have at least one visual word in common with the query image
• But this can still give us lots of images... What can we do?
Inverted File Index

- Now we found all images in the database that have at least one visual word in common with the query image
- But this can still give us lots of images... What can we do?
- Idea: Compute meaningful similarity (efficiently) between query image and retrieved images. Then just match query to top K most similar images and forget about the rest.
Inverted File Index

• Now we found all images in the database that have at least one visual word in common with the query image
• But this can still give us lots of images... What can we do?
• Idea: Compute meaningful similarity (efficiently) between query image and retrieved images. Then just match query to top K most similar images and forget about the rest.
• How can we do compute a meaningful similarity, and do it fast?
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach us through our eyes. For a long time, the visual centers in the brain were thought of as a movie screen upon which images are projected. We now know that this is not the case. The perception of visual images is more complex. Each of the cells in the retina of the eye, like each of the neurons throughout the nervous system, has a specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% increase in exports to $750bn, compared with $660bn. This would annoy the US, which delibera
tly agrees the yuan is undervalued by the government, but also needs China's huge demand so much. China's big banks, whose yuan against the dollar has been sharply permitted it to trade within a narrower range, but the US wants the yuan to be allowed to float freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.

[Slide credit: R. Urtasun]
Bags of Visual Words

- Summarize entire image based on its distribution (histogram) of word occurrences.
- Analogous to bag of words representation commonly used for documents.

[Slide credit: R. Urtasun]
Compute a Bag-of-Words Description

Database of images

image 1 image 2 image 3 image hugeN

W1 W2 W7 W6
W5 W3 W2 W2
W4 W6 W9 W7
: : : :
W1 W7 W8

(words)

How many times a word repeats in image (frequency)

image 1 representation

[2 6 3 1 5 2 1 ...]
Compute a Bag-of-Words Description

Database of images

We can do the same for the reference image

\[
\begin{bmatrix}
2 & 6 & 3 & 1 & 5 & 2 & 1 & \ldots
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 4 & 5 & 1 & 2 & 2 & \ldots
\end{bmatrix}
\]
Compute a Bag-of-Words Description

How do we compare?

[2 6 3 1 5 2 1 ...]

[1 2 4 5 1 2 2 ...]
Comparing Images

• Compute the similarity by normalized dot product between their representations (vectors)

\[\text{sim}(t_i, q) = \frac{\langle t_i, q \rangle}{\|t_i\| \cdot \|q\|} \]
Comparing Images

• Compute the similarity by normalized dot product between their representations (vectors)

\[
\text{sim}(t_i, q) = \frac{\langle t_i, q \rangle}{\|t_i\| \cdot \|q\|}
\]

• Rank images in database based on the similarity score (the higher the better)
• Take top K best ranked images and do spatial verification (compute transformation and count inliers)
Compute a Better Bag-of-Words Description

Problem can quickly occur if one word appears in many many images and has a big count in each image (it dominates the vector)

This way any similarity based on this vector will be dominated with this very frequent, non-discriminative word.

Our similarity will not have much sense.
Compute a Better Bag-of-Words Description

Database of images

image 1

W1
W5
W4
W1

image 2

W2
W3
W6
...

image 3

W7
W9
W1
W9

Intuition:

Re-weigh the entries such that words that appear in many images (documents) are down-weighted

This re-weighting is called **tf-idf**
Compute a Better Bag-of-Words Description

• Instead of a histogram, for retrieval it’s better to re-weight the image description vector \(t = [t_1, t_2, \ldots, t_i, \ldots] \) with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

\[
t_i = \frac{n_{id} \log \frac{N}{n_i}}{n_d}
\]

Where:
- \(n_{id} \) is the number of occurrences of word i in image d
- \(n_d \) is the total number words in image d
- \(n_i \) is the number of occurrences of word i in the whole database
- \(N \) is the number of documents in the whole database
Compute a Better Bag-of-Words Description

• Instead of a histogram, for retrieval it’s better to re-weight the image description vector
 \[t = [t_1, t_2, \ldots, t_i, \ldots] \] with term frequency-inverse document frequency (tf-idf), a
 standard trick in document retrieval:

 \[
 t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}
 \]

Where:

- \(n_{id} \) is the number of occurrences of word \(i \) in image \(d \)
- \(n_d \) is the total number words in image \(d \)
- \(n_i \) is the number of occurrences of word \(i \) in the whole database
- \(N \) is the number of documents in the whole database

• The weighting is a product of two terms: the word frequency \(\frac{n_{id}}{n_d} \), and the inverse
 document frequency \(\log \frac{N}{n_i} \)
Compute a Better Bag-of-Words Description

• Instead of a histogram, for retrieval it’s better to re-weight the image description vector $t = [t_1, t_2, ..., t_i, ...]$ with term frequency-inverse document frequency (tf-idf), a standard trick in document retrieval:

$$t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}$$

Where:

- n_{id}...is the number of occurrences of word i in image d
- n_d...is the total number words in image d
- n_i...is the number of occurrences of word i in the whole database
- N...is the number of documents in the whole database

• Intuition behind this: word frequency weights words occurring often in a particular document, and thus describe it well, while the inverse document frequency describes how much information the word provides (is it common or rare across documents?)
Comparing Images

• Compute the similarity by normalized dot product between their tf-idf representations (vectors)

\[
\text{sim}(t_i, q) = \frac{\langle t_i, q \rangle}{\|t_i\| \cdot \|q\|}
\]

• Rank images in database based on the similarity score (the higher the better)
• Take top K best ranked images and do spatial verification (compute transformation and count inliers)
Spatial Verification

• Both image pairs have many visual words in common
• Only some of the matches are mutually consistent

[Source: O. Chum]
Visual Words/Bags of Words

Good

- flexible to geometry / deformations / viewpoint
- compact summary of image content
- provides vector representation for sets
- good results in practice
Visual Words/Bags of Words

Good
- flexible to geometry / deformations / viewpoint
- compact summary of image content
- provides vector representation for sets
- good results in practice

Bad
- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear
- basic model ignores geometry, must verify afterwards, or encode via features
Summary – Stuff You Need To Know

Fast image retrieval:
• Compute features in all images from database, and query image.
• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors that live in the same dimensional space as the descriptors. We call them visual words.
• Assign each descriptor in database and query image to the closest cluster.
• Build an inverted file index
• For a query image, lookup all the visual words in the inverted file index to get a list of images that share at least one visual word with the query
• Compute a bag-of-words (BoW) vector for each retrieved image and query. This vector just counts the number of occurrences of each word. It has as many dimensions as there are visual words. Weight the vector with tf-idf.
• Compute similarity between query BoW vector and all retrieved image BoW vectors. Sort (highest to lowest). Take top K most similar images (e.g., 100)
• Do spatial verification on all top K retrieved images (RANSAC + affine or homography + remove images with too few inliers)
Even Faster?

Can we make the retrieval process even more efficient?
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
Vocabulary Trees

• Hierarchical clustering for large vocabularies, [Nister et al., 06].
• k defines the branch factor (number of children of each node) of the tree.
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
- The same process is then recursively applied to each group.
Vocabulary Trees

- Hierarchical clustering for large vocabularies, [Nister et al., 06].
- k defines the branch factor (number of children of each node) of the tree.
- First, an initial k-means process is run on the training data, defining k cluster centers (same as we did before).
- The same process is then recursively applied to each group.
- The tree is determined level by level, up to some maximum number of levels L.
Constructing the tree

- Offline phase: hierarchical clustering (e.g., k-means at leach level).
Constructing the tree

- Offline phase: hierarchical clustering (e.g., k-means at leach level).
Constructing the tree

- Offline phase: hierarchical clustering (e.g., k-means at leach level).
Constructing the tree

- Offline phase: hierarchical clustering (e.g., k-means at leach level).
Assigning Descriptors to Words

``Vocabulary'' tree
(visual words in a hierarchy)

The words that I use to form the descriptor are the leaves of the tree
Assigning Descriptors to Words

\[f_2^1 = [0.23, 0.12, \ldots, 0.1]^T \]
\[f_3^1 = [0.12, 0.15, \ldots, 0.05]^T \]
\[\vdots \]
\[f_n^1 = [0.05, 0.18, \ldots, 0.09]^T \]

How do I transform my (eg, SIFT) descriptors into such visual words?

```
`````````
Assigning Descriptors to Words

- Each descriptor vector is propagated down the tree by at each level comparing the descriptor vector to the k candidate cluster centers (represented by k children in the tree) and choosing the closest one.

\[
\begin{align*}
\mathbf{f}_k^2 &= [0.23, 0.12, \ldots, 0.1]^T \\
\mathbf{f}_k^3 &= [0.12, 0.15, \ldots, 0.03]^T \\
\vdots \\
\mathbf{f}_k^n &= [0.05, 0.18, \ldots, 0.09]^T \\
\end{align*}
\]

```

```

Find the closest word at each level for a selected parent, starting from top

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```

```
Assigning Descriptors to Words

• Each descriptor vector is propagated down the tree by at each level comparing the descriptor vector to the k candidate cluster centers (represented by k children in the tree) and choosing the closest one.

\[ f^1_2 = [0.23, 0.12, \ldots, 0.1]^T \]
\[ f^1_3 = [0.12, 0.15, \ldots, 0.03]^T \]
\[ \vdots \]
\[ f^1_n = [0.05, 0.18, \ldots, 0.09]^T \]

Find the closest word at each level for a selected parent, starting from top
Assigning Descriptors to Words

- The tree allows us to efficiently match a descriptor to a very large vocabulary

\[
\begin{align*}
    f_2 &= [0.23, 0.12, \ldots, 0.1]^T \\
    f_3 &= [0.12, 0.15, \ldots, 0.05]^T \\
    \vdots \\
    f_n &= [0.05, 0.18, \ldots, 0.09]^T
\end{align*}
\]

Efficiency: At each level we are only comparing to \( k \) words (and \( k \) is small)
Assigning Descriptors to Words

image 1
W1
W5
W4
...
W1

image 2
W2
W3
W6
...
W7

image 3
W7
W9
W1
...
W9

image hugeN
W6
W2
W7
...
W8

words

``Vocabulary'' tree

As many words as leaves in tree

image 1 representation

[ 2 6 3 1 5 2 1 ... ]
Querying Images

``Vocabulary'' tree
(visual words in a hierarchy)

Assign a weight $w_i$ to each node based on entropy
Querying Images

```
Assign a weight w_i to each node based on entropy

```

(visual words in a hierarchy)

For all descriptors in the image calculate $q_i = n_i w_i$
where $n_i$ is the number of descriptors with a path through node $i$
Querying Images

```
``Vocabulary” tree
(visual words in a hierarchy)

Assign a weight w_i to each node based on entropy

For all descriptors in the image calculate $q_i = n_i w_i$
where n_i is the number of descriptors with a path through node i

Do the same for all images in the database ($d_i = m_i w_i$) and retrieve images based on the similarity between d and q
Vocabulary Size

- Complexity: branching factor and number of levels
- Most important for the retrieval quality is to have a large vocabulary
Object Detection
Object Detection

- The goal of object detection is to localize objects in an image and tell their class
- Localization: place a tight bounding box around object
Object Detection

- The goal of object detection is to localize objects in an image and tell their class.
- Localization: place a tight bounding box around object.
- Can scale up to many classes using hierarchical tree of visual concepts.
Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

• Find interest points, followed by Hough voting
Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a box (contains object or not?)
Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

- Find interest points, followed by Hough voting
- Sliding windows: “slide” a box around image and classify each image crop inside a box (contains object or not?)
- Generate region (object) proposals, and classify each region
Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a box (contains object or not?)
• Generate region (object) proposals, and classify each region
Interest Point Based Approaches

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points
Interest Point Based Approaches

• Compute interest points (e.g., Harris corner detector is a popular choice)
• Vote for where the object could be given the content around interest points
Interest Point Based Approaches

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points
Interest Point Based Approaches

• Compute interest points (e.g., Harris corner detector is a popular choice)
• Vote for where the object could be given the content around interest points
Interest Point Based Approaches

- Compute interest points (e.g., Harris corner detector is a popular choice)
- Vote for where the object could be given the content around interest points
Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

- Find interest points, followed by Hough voting
- Sliding windows: “slide” a box around image and classify each image crop inside a box (contains object or not?)
- Generate region (object) proposals, and classify each region
Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”

[Slide: R. Urtasun]
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”

[Slide: R. Urtasun]
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”

[Slide: R. Urtasun]
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”

[Slide: R. Urtasun]
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”

0.4 confidence

[Slide: R. Urtasun]
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”

[Slide: R. Urtasun]
Sliding Window Approaches

- Slide window and ask a classifier: “Is sheep in window or not?”
Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a box (contains object or not?)
• Generate region (object) proposals, and classify each region
Region Proposal Based Approaches

• Group pixels into object-like regions
Region Proposal Based Approaches

- Group pixels into object-like regions
Region Proposal Based Approaches

• Generate many different regions
Region Proposal Based Approaches

- Generate many different regions
Region Proposal Based Approaches

- Generate many different regions
Region Proposal Based Approaches

• Generate many different regions
Region Proposal Based Approaches

- The hope is that at least a few will cover real objects
Region Proposal Based Approaches

- The hope is that at least a few will cover real objects
Region Proposal Based Approaches

• Select a region
Region Proposal Based Approaches

• Crop out an image patch around it, throw to classifier (e.g., Neural Net)

classifier "dog" or not?

confidence: -2.5
Region Proposal Based Approaches

- Do this for every region
Region Proposal Based Approaches

- Do this for every region
Region Proposal Based Approaches

• Do this for every region

classifier
``dog'' or not?

confidence: 1.5

Dog!!!
Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into three main types:

• Find interest points, followed by Hough voting ← Let’s first look at one example method for this

• Sliding windows: “slide” a box around image and classify each image crop inside a box (contains object or not?)

• Generate region (object) proposals, and classify each region
Object Detection via Hough Voting: Implicit Shape Model

B. Leibe, A. Leonardis, B. Schiele
Robust Object Detection with Interleaved Categorization and Segmentation
IJCV, 2008
Paper:
Start simple: line detection

• How can I find lines in this image?

[Source: K. Grauman]
Hough Transform

- Idea: Voting (Hough Transform)

[Source: K. Grauman]
Hough Transform

- Idea: Voting (Hough Transform)
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.

[Source: K. Grauman]
Hough Transform: Line Detection

• Hough space: parameter space

\[y = m_0x + b_0 \]

• Connection between image \((x, y)\) and Hough \((m, b)\) spaces
 • A line in the image corresponds to a point in Hough space
 • What does a point \((x_0, y_0)\) in the image space map to in Hough space?

[Source: S. Seitz]
Hough Transform: Line Detection

- Hough space: parameter space

\[b = -x_0 m + y_0 \]

- Connection between image \((x, y)\) and Hough \((m, b)\) spaces
 - A line in the image corresponds to a point in Hough space
 - A point in image space votes for all the lines that go through this point. These votes are a line in the Hough space.

[Source: S. Seitz]
Hough Transform: Line Detection

- Hough space: parameter space

\[b = -x_0 m + y_0 \]

- Two points: Each point corresponds to a line in the Hough space
- A point where these two lines meet defines a line in the image!
Hough Transform: Line Detection

- Hough space: parameter space

- Vote with each image point
- Find peaks in Hough space. Each peak is a line in the image.

[Source: S. Seitz]
Hough Transform: Line Detection

- Issues with usual \((m, b)\) parameter space: undefined for vertical lines
- A better representation is a polar representation of lines

\[x \cos \theta - y \sin \theta = d \]

[Source: S. Seitz]
Example Hough Transform

- With the parameterization \(x \cos \theta + y \sin \theta = d \)
- Points in picture represent sinusoids in parameter space
- Points in parameter space represent lines in picture
- Example \(0.6x + 0.4y = 2.4 \), Sinusoids intersect at \(d = 2.4 \), \(\theta = 0.9273 \)

[Source: M. Kazhdan, slide credit: R. Urtasun]
Hough Transform: Line Detection

- Hough Voting algorithm

Using the polar parameterization:

\[x \cos \theta - y \sin \theta = d \]

Basic Hough transform algorithm

1. Initialize \(H[d, \theta] = 0 \)
2. for each edge point \(l[x, y] \) in the image

 for \(\theta = [\theta_{\text{min}} \text{ to } \theta_{\text{max}}] \) // some quantization

 \[d = x \cos \theta - y \sin \theta \]

 \(H[d, \theta] += 1 \)
3. Find the value(s) of \((d, \theta) \) where \(H[d, \theta] \) is maximum
4. The detected line in the image is given by

\[d = x \cos \theta - y \sin \theta \]

[Source: S. Seitz]
Hough Transform: Circle Detection

• What about circles? How can I fit circles around these coins?

[Source: S. Seitz]
Hough Transform: Circle Detection

Assume we are looking for a circle of known radius r

- Circle: $(x - a)^2 + (y - b)^2 = r^2$
- Hough space (a, b): A point (x_0, y_0) maps to $(a - x_0)^2 + (b - y_0)^2 = r^2$
 \[\rightarrow\] a circle around (x_0, y_0) with radius r
- Each image point votes for a circle in Hough space

[Source: H. Rhody]
Hough Transform: Circle Detection

• What if we don’t know r?
 • Hough space: ?

[Source: K. Grauman]
Hough Transform: Circle Detection

• What if we don’t know r?
 • Hough space: conics

[Source: K. Grauman]
Hough Transform: Circle Detection

• Find the coins

Original

Edges

Votes: Penny

[Source: K. Grauman]
Hough Transform: Circle Detection

• Iris detection

[Source: K. Grauman]
Generalized Hough Transform

[Source: Kris Kitani]
<table>
<thead>
<tr>
<th>Edge Direction</th>
<th>$\bar{\pi} = (\pi, \alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td>$\pi_1^1, \pi_2^1, \pi_3^1$</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>π_1^2, π_2^2</td>
</tr>
<tr>
<td>ϕ_i</td>
<td>$\bar{\pi}_1, \bar{\pi}_2$</td>
</tr>
<tr>
<td>ϕ_n</td>
<td>$\bar{\pi}_1^n, \bar{\pi}_2^n$</td>
</tr>
</tbody>
</table>
Generalized Hough Transform

Find Object Center \((x_c, y_c)\) given edges \((x_i, y_i, \phi_i)\)

Create Accumulator Array \(A(x_c, y_c)\)

Initialize: \(A(x_c, y_c) = 0 \quad \forall(x_c, y_c)\)

For each edge point \((x_i, y_i, \phi_i)\)

For each entry \(r^i_k\) in table, compute:

\[
\begin{align*}
x_c &= x_i + r^i_k \cos \alpha^i_k \\
y_c &= y_i + r^i_k \sin \alpha^i_k
\end{align*}
\]

Increment Accumulator: \(A(x_c, y_c) = A(x_c, y_c) + 1\)

Find Local Maxima in \(A(x_c, y_c)\)

[Source: Kris Kitani]
Scale & Rotation:

Use Accumulator Array:
\[A[xc, yc, S, 0] \]

Use:
\[
\begin{align*}
xc &= x_i + r_k^i S \cos (\alpha_k^i + \theta) \\
yc &= y_i + r_k^i S \sin (\alpha_k^i + \theta)
\end{align*}
\]

\[A(xc, yc, S, 0) = A(xc, yc, S, 0) + 1. \]

[Source: Kris Kitani]
A. Train phase:
 1. Get features
 2. Store all displacements of feature from center

B. Test phase:
 1. Get features & lookup displacements
 2. Vote for center location

Template
A. Train phase:
1. Get features
2. Store all displacements of feature from center

B. Test phase:
1. Get features & lookup displacements
2. Vote for center location

[Source: Kris Kitani]
A. Train phase:
1. Get features
2. Store all displacements of feature from center

B. Test phase:
1. Get features & lookup displacements
2. Vote for center location
Implicit Shape Model

- Implicit Shape Model adopts the idea of voting
- Basic idea:
 - Find interest points in an image
 - Match patch around each interest point to a training patch
 - Vote for object center given that training instance
Implicit Shape Model: Basic Idea

- Vote for object center

vote for center of object
Implicit Shape Model: Basic Idea

- Vote for object center

vote for center of object
Implicit Shape Model: Basic Idea

- Vote for object center

vote for center of object
Implicit Shape Model: Basic Idea

- Vote for object center

of course some wrong votes are bound to happen...
Implicit Shape Model: Basic Idea

- Vote for object center

But that’s ok. We want only peaks in voting space.
Implicit Shape Model: Basic Idea

• Find the patches that produced the peak

Find patches that voted for the peaks (back-projection).
Implicit Shape Model: Basic Idea

- Place a box around these patches \rightarrow objects!

Find full objects based on the back-projected patches.
Implicit Shape Model: Basic Idea

- Really easy. Only one problem... Would be slow... How do we make it fast?

we need to match a patch around each yellow + to all patches in all training images → SLOW
Implicit Shape Model: Basic Idea

• Visual vocabulary (we saw this for retrieval)
• Compare each patch to a small set of visual words (clusters)
Implicit Shape Model: Basic Idea

• Training: Getting the vocabulary
Implicit Shape Model: Basic Idea

- Find interest points in each training image

![training image](image)
detect interest points (e.g. Harris)
Implicit Shape Model: Basic Idea

- Collect patches around each interest point

training image

extract an image patch around each interest point
Implicit Shape Model: Basic Idea

- Collect patches across all training examples
Implicit Shape Model: Basic Idea

- Cluster the patches to get a small set of “representative” patches

- cluster the patches to get a few “representative” patches
- each cluster represented as the average of all patches that belong to the cluster
Implicit Shape Model: Training

- Represent each training patch with the closest visual word.
- Record the displacement vectors for each word across all training examples.

[Leibe et al. IJCV 2008]
Implicit Shape Model: Test

- At test times detect interest points
- Assign each patch around interest point to closes visual word
- Vote with all displacement vectors for that word

[Source: B. Leibe]
Recognition Pipeline

Original Image → Interest Points → Matched Codebook Entries → Probabilistic Voting

Segmentation → Refined Hypotheses (optional) → Backprojected Hypotheses → Backprojection of Maxima

3D Voting Space (continuous)

[Source: B. Leibe]
Recognition Summary

- Apply interest points and extract features around selected locations.
- Match those to the codebook.
- Collect consistent configurations using Generalized Hough Transform.
- Each entry votes for a set of possible positions and scales in continuous space.
- Extract maxima, localize in continuous space using Mean Shift.
- Refinement can be done by sampling more local features.

[Source: R. Urtasun]
Example

[Source: B. Leibe, credit: R. Urtasun]
Example

[Source: B. Leibe, credit: R. Urtasun]
Example

Matched patches

[Source: B. Leibe, credit: R. Urtasun]
Example

[Source: B. Leibe, credit: R. Urtasun]
Example

1st hypothesis

[Source: B. Leibe, credit: R. Urtasun]
Example

2nd hypothesis

[Source: B. Leibe, credit: R. Urtasun]
Example

3rd hypothesis

[Source: B. Leibe, credit: R. Urtasun]
Scale Invariant Voting

• Scale-invariant feature selection
• Scale-invariant interest points
• Based on patches around interest points, at training time a codebook of visual words is created.

• Associated with each codebook entry, the displacements to object centre are stored along with the scale at which the interest point (mapped to the respective codebook entry) occurs... x_{occ}, y_{occ}, s_{occ}.
Scale Invariant Voting

• Generate scale votes (suppose an image feature was found at x_{img}, y_{img}, s_{img}, and gets mapped to a codebook entry that was observed while training at x_{occ}, y_{occ}, s_{occ}, then vote for the following location and scale:

 • Scale as 3rd dimension in voting space

 \[
 x_{vote} = x_{img} - x_{occ} \left(\frac{s_{img}}{s_{occ}} \right) \\
 y_{vote} = y_{img} - y_{occ} \left(\frac{s_{img}}{s_{occ}} \right) \\
 s_{vote} = \frac{s_{img}}{s_{occ}}
 \]

• Search for maxima in 3D voting space
Scale Invariant Voting

[Slide credit: R. Urtasun]
Scale Voting: Efficient Computation

- Continuous Generalized Hough Transform
 - Binned accumulator array similar to standard Gen. Hough Transf.
 - Quickly identify candidate maxima locations
 - Refine locations by Mean-Shift search only around those points
 - Avoid quantization effects by keeping exact vote locations.

[Source: B. Leibe, credit: R. Urtasun]
Extension: Rotation-Invariant Detection

- Polar instead of Cartesian voting scheme
- Recognize objects under image-plane rotations
- Possibility to share parts between articulations
- But also increases false positive detections

[Source: B. Leibe, credit: R. Urtasun]
Sometimes it’s Necessary

[Figure from Mikolajczyk et al., CVPR’06]
Source: B. Leibe, credit: R. Urtasun]
Recognition and Segmentation

- Augment each visual word with meta-data: for example, segmentation mask.
Recognition and Segmentation

Local Features → Matched Codebook Entries → Probabilistic Voting

Segmentation

Pixel Contributions → Backprojected Hypotheses → Backprojection of Maxima
Results

(a) detections (b) p(figure) (c) segmentation

(a) detections (b) p(figure) (c) segmentation

[Source: B. Leibe]
Results

[Source: B. Leibe]
Results

[Source: B. Leibe]
Inferring Other Information: Part Labels

[Source: B. Leibe]
Inferring Other Information: Part Labels

[Source: B. Leibe]
Inferring Other Information: Depth

“Depth from a single image”

[Source: B. Leibe]
Some concluding thoughts...
What is computer vision?

- A field trying to develop automatic algorithms that can “see”
This course focused on standard techniques in vision and image processing

... But you have the skills to understand how state-of-the-art builds on these methods
Generate an image from a caption (stable diffusion)

“Dwayne Johnson side view” “Dwayne Johnson top view”
The picture above is funny.
That's all Folks!