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Course Info

• Class time: Mondays 1pm-3pm (LEC0101; MP137) and 3pm-5pm (LEC0201; ES B149)

• Tutorials: Wednesdays 1pm-2pm (LEC0101; MP137) and 3pm-4pm (LEC0201; ES B149)

• TA Office Hours: Wednesdays 2pm (MP137)

• Class Website: https://www.cs.toronto.edu/~lindell/teaching/420/

• Quercus: https://q.utoronto.ca/

• Course material (lecture notes, reading material, assignments,  announcements, etc.) will be 
posted on Quercus

• Forum: Piazza (link on Quercus)

• Your grade will not depend on your participation on discussions. It’s just a good way for 
asking questions, discussing with your instructor, TAs and your peers

https://www.cs.toronto.edu/~lindell/teaching/420/
https://q.utoronto.ca/


Textbook: We won’t directly follow any book, but extra reading  in 
this textbook will be useful:

Rick Szeliski

Computer Vision: Algorithms and Applications 

available free online: http://szeliski.org/Book/

Links to other material (papers, code, etc.) will be posted on the  
class webpage

http://szeliski.org/Book/


Course Prerequisites

• Data structures
• Linear Algebra
• Vector calculus
• Without this you’ll need some serious catching up to do!

Knowing some basics in these is a plus:
• Python
• Machine Learning 
• Neural Networks
• (Solving assignments sooner rather than later)

Course Prerequisites



Course Prerequisites
Grading

• Assignment 1: 12%
• Assignment 2: 20%
• Assignment 3: 16%
• Assignment 4: 16%
• Ethics Module: 1% (2 surveys, 0.5 each)
• Final Exam: 35%

• Assignments: They will consist of problem sets and  programming problems with the 
goal of deepening your  understanding of the material covered in class.



Course Prerequisites
Assignments

• Download from Files section on Quercus, Submitted via MarkUs

• Assignments: They will consist of problem sets and  programming problems with the 
goal of deepening your understanding of the material covered in class.

• Code in python

• Please comment your code!

• Assignment 1 is out now, due Jan 24 at 11:59 PM



Lateness

Deadline 
• The solutions to the assignments / project should be submitted by 11:59 pm 

on the date they are due. 

Lateness 
• Each student will be given a total of 5 free late days.

• This means that you can hand in three of the assignments one day late, or one 
assignment three days late.

• After you have used the 5-day budget, late assignments will not be accepted.

Assignments



Term Work Dates

All info on the course website



Accessibility Services is seeking volunteer note takers for students in this 
class who are registered in Accessibility Services. 

“By volunteering to take notes for students with disabilities, you are making a positive 
contribution to their academic success. By volunteering as a note-taker, you will benefit 
as well - It is an excellent way to improve your own note-taking skills and to maintain 
consistent class attendance.  At the end of term, we would be happy to provide a 
Certificate of Appreciation for your hard work."

See Piazza for details



Introduction to Intro to Image Understanding

• What is Computer Vision?

• Why study Computer Vision?

• Which cool applications can we do with it?  Is vision a hard problem?

Let’s begin!



What is Computer Vision?



• A field trying to develop automatic algorithms that can “see”

What is computer vision?



[adapted from A. Torralba]

example scene

What is computer vision?

• What does it mean to see?



What is Computer Vision?

[adapted from A. Torralba]

example scene segmentation

What is computer vision?

• What does it mean to see?
• To know what is where by looking – Marr, 1982  

• Understand where things are in the world
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What is Computer Vision?

Image: Vladlen Koltun

• What does it mean to see?
• To know what is where by looking – Marr, 1982  

• Understand where things are in the world

• Understand 3D structure

• Understand physical properties

What is computer vision?



What is Computer Vision?

Image: www.cobblehillpuzzles.com

What is computer vision?

• What does it mean to see?
• To know what is where by looking – Marr, 1982  

• Understand where things are in the world

• Understand 3D structure

• Understand physical properties

• Understand what actions are taking place

http://www.cobblehillpuzzles.com/


“Full” Image Understanding?What is computer vision?

• Full understanding of an image? 
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“Full” Image Understanding?What is computer vision?

• Full understanding of an image? 
• Can answer any question about it



Why study computer vision?



Why study Computer Vision?

Because you want your robot to fold your laundry



Why study Computer Vision?

And drive you to work

Why study Computer Vision?



Why study Computer Vision?

Allows you to manipulate images

Scene Completion using Millions of Photographs, Hays & Efros, SIGGRAPH 2007
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Why study Computer Vision?

Allows you to manipulate images

Google Magic Eraser



Image Inpainting

Online demo (NVIDIA inpainting demo)

Why study Computer Vision?

Allows you to manipulate images

https://www.nvidia.com/research/inpainting/index.html


Why study Computer Vision?

[Gatys, Ecker, Bethge. A Neural Algorithm of Artistic Style. Arxiv’15.]

Change style of images…

Why study Computer Vision?



Inpainting art…
Why study Computer Vision?



Automatically caption images…

[Source: L. Zitnick, NIPS’14 Workshop on Learning Semantics]

Why study Computer Vision?



Why study Computer Vision?

[Bergman et al. ‘22]

Why study Computer Vision?

Synthesize and animate digital humans



Why study Computer Vision?

[Bergman et al. ‘22]

Synthesize and animate digital humans

Why study Computer Vision?



Why study Computer Vision?

Generate an image from a caption (stable diffusion)

“Dwayne Johnson side view”



Generate an image from a caption (stable diffusion)

“Dwayne Johnson side view” “Dwayne Johnson top view”

Why study Computer Vision?



Why study Computer Vision?

“a panda dancing” “a space shuttle launching” “a bear driving a car”

generate animated 3D models from text



[Wu et al. SIGGRAPH ‘12]

Why study Computer Vision?
See ”invisible” changes in a scene…



See ”invisible” changes in a scene…

[Wu et al. SIGGRAPH ‘12]

Why study Computer Vision?



Why study Computer Vision?

[Slide: N. Snavely]

Movie-like image forensics 

[Nayar and Nishino, Eyes for Relighting]

Why study Computer Vision?
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[Nayar and Nishino, Eyes for Relighting]

[Slide: N. Snavely]

Movie-like image forensics 

Why study Computer Vision?



Why study Computer Vision?

[Slide: N. Snavely]

[Nayar and Nishino, Eyes for Relighting]

Movie-like image forensics 

Why study Computer Vision?



• Stanford Multi-Camera Array

125 cameras using custom hardware
[Wilburn et al. 2002, Wilburn et al. 2005]

Capture light fields

Why study Computer Vision?





regular image

glowing fiber
optic cable

picosecond
laser



transient image



NLOS 
Imaging 
System

Occluder

[Lindell et al. SIGGRAPH ‘19]

Hidden Scene



NLOS 
Imaging 
System

Occluder

[Lindell et al. SIGGRAPH ‘19]

Hidden Scene



NLOS 
Imaging 
System

Occluder

Time-resolved Measurements
[Lindell et al. SIGGRAPH ‘19]

Hidden Scene



Hidden Scene

NLOS 
Imaging 
System

Occluder

3D Reconstruction
[Lindell et al. SIGGRAPH ‘19]
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Captured Measurements
Lindell et al., SIGGRAPH 2019
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Lindell et al., SIGGRAPH 2019







How it all began



How It All Began...

[Slide: A. Torralba]



56 years and thousands of PhDs later...

Popular benchmarks:

http://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

http://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research


56 years and thousands of PhDs later...
• Algorithms work pretty well

• Still some embarrassing mistakes...

• The general vision problem is not yet solved



Why is vision hard?



Half of the cerebral cortex in primates is devoted to processing visual  
information. This is a lot. Means that vision has to be pretty hard!

Why is vision hard?



Why is vision hard?

Visual information is complicated and nuanced… 

[Slide: R. Urtasun]

These are all dogs!

Why is vision hard?



Image: Karen Zack

Why is vision hard?



Image: Karen Zack

Why is vision hard?



Why is vision hard?

Biederman, 1987

[Slide: R. Urtasun]

Why is vision hard?



Lots of data to process:

• Thousands to millions of pixels  in an image

• 400 hours of video added to  YouTube per 
minute (2022)

• Every day, people watch one  billion hours of 
video on  YouTube (2022)

• Much more considering all other platforms

Why is vision hard?



Why is vision hard?

Human vision seems to work quite well.  

How well does it really work?

Let’s play some games!



Which square is lighter, A or B?

[Slide: A. Torralba]

How good are humans?



How good are humans?

[Slide: A. Torralba]

They are the same…

Which square is lighter, A or B?

How good are humans?



How good are humans?

Which red line is longer?

[Slide: A. Torralba]

[Walt Anthony 2006]

How good are humans?



How good are humans?

[Slide: A. Torralba]

[Walt Anthony 2006]

They are the same…

How good are humans?

Which red line is longer?



How good are humans?

[Chabris & Simons]

• Count the number of times the white 
team pass the ball  

• Concentrate, it’s difficult!

How good are humans?



Can you describe what this is?

[ Torralba et al.]

How good are humans?



How good are humans?

[ Torralba et al.]

Humans can tell a lot from a little information… 
we have prior knowledge that can (usually) fill in the right information  

How good are humans?
Can you describe what this is?



What do I need...

What do I need to become a good Computer Vision researcher?

• Some math knowledge

• Good programming skills

• Imagination

• Even better intuition

• Lots of persistence

• Some luck always helps



Images



Digital Image

An image is a matrix with (typically) integer values

Digital Image

• We will typically denote the image as

• Pixel values in the image are given by            , the intensity value at each pixel 

• For a grayscale image we have                    , color is 

I

I(i, j)

I ∈ R
m×n

I ∈ R
m×n×3
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Digital Image

• We will typically denote the image as

• Pixel values in the image are given by            , the intensity value at each pixel 

• For a grayscale image we have                    , color is 

I

I(i, j)

I ∈ R
m×n

I ∈ R
m×n×3

An image is a matrix with (typically) integer values

Digital Image



Intensity

• We can think of a (grayscale) image as a function 
giving  the intensity at position 

• Intensity 0 is black and 255 is white

f : R
2
!→ R

(i, j)

Digital Image



Image Transformations

As with any function, we can apply operators to an image, e.g.:

We’ll talk about special kinds of operators, correlation 
and convolution (linear filtering)

[Slide: N. Snavely]
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Image Transformations

As with any function, we can apply operators to an image, e.g.:

We’ll talk about special kinds of operators, correlation 
and convolution (linear filtering)

[Slide: N. Snavely]

Digital Image



Reading: Szeliski book, Chapter 3.2

Linear Filters



How can we find Waldo?

[Source: R. Urtasun]

Motivation: Finding Waldo



Slide and compare! In formal language: filtering

Motivation: Finding Waldo



10 5 3

4 5 1

1 1 7

7

[Source: L. Zhang]

• Modify the pixels in an image based on some function of a local 
neighborhood of each pixel

• In other words, filtering

Local image data Modified image data

Some function

Image Filtering



Applications of Filtering

• Enhance an image, e.g., denoise.

• Detect patterns, e.g., template matching.  

• Extract information, e.g., texture, edges.



Applications of Filtering

• Enhance an image, e.g., denoise.

• Detect patterns, e.g., template matching.  

• Extract information, e.g., texture, edges.



Motivation: Noise reduction

Given a camera and a still scene, how can you reduce noise?

[Source: S. Seitz]

Noise reduction



Noise reduction

• Simplest thing: replace each pixel by the 
average of its neighbors.

[Source: S. Marschner]

Noise reduction



Noise reduction

• Simplest thing: replace each pixel by the 
average of its neighbors.

• This assumes that neighboring pixels are similar, 
and the noise to be  independent from pixel to 
pixel.

[Source: S. Marschner]
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Noise reduction

• Simplest thing: replace each pixel by the 
average of its neighbors.

• This assumes that neighboring pixels are similar, 
and the noise to be  independent from pixel to 
pixel.

• Moving average in 1D: [1, 1, 1, 1, 1]/5

[Source: S. Marschner]

Noise reduction



Noise reduction

• Simplest thing: replace each pixel by the 
average of its neighbors.

• This assumes that neighboring pixels are similar, 
and the noise to be  independent from pixel to 
pixel.

• Non-uniform weights [1, 4, 6, 4, 1] / 16

[Source: S. Marschner]

Noise reduction



Moving Average in 2D

[Source: S. Seitz]

Moving average in 2D



Moving Average in 2D

[Source: S. Seitz]

Moving average in 2D



Moving Average in 2D

[Source: S. Seitz]

Moving average in 2D



Moving Average in 2D

[Source: S. Seitz]

Moving average in 2D



Moving Average in 2D

[Source: S. Seitz]

Moving average in 2D



Moving Average in 2D

[Source: S. Seitz]

Moving average in 2D



Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods (avg. filter):

Linear Filtering: Correlation

G(i, j) = 1
(2k+1)2

k∑

u=−k

k∑

v=−k

I(i+ u, j + v)
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Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods (avg. filter):

The output pixels value is determined as a weighted sum of input  pixel values

Linear Filtering: Correlation

G(i, j) = 1
(2k+1)2

k∑

u=−k

k∑

v=−k

I(i+ u, j + v)

G(i, j) =
k∑

u=−k

k∑

v=−k

F (u, v) · I(i+ u, j + v)

The entries of the weight kernel or mask are often called the filter coefficientsThe entries of the weight kernel or mask are often called the filter coefficients

This operator is called the correlation operator

G = F
⊗

I
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Linear Filtering: CorrelationLinear Filtering: Correlation

G(i, j) =
k∑

u=−k

k∑

v=−k

F (u, v) · I(i+ u, j + v)

What happens at the borders?



[Source: S. Lazebnik]

Boundary Effects

• What happens at the border of the image? What’s the size of the output matrix?
• depends on how you implement it

• Scipy: scipy.signal.convolve2d
• mode = ’full’ output size is bigger than the image
• mode = ’same’: output size is same as
• mode = ’valid’: output size is smaller than the image

I



• What happens at the border of the image? What’s the size of the output matrix?
• depends on how you implement it

• Scipy: scipy.signal.convolve2d
• mode = ’full’ output size is bigger than the image
• mode = ’same’: output size is same as
• mode = ’valid’: output size is smaller than the image

[Source: S. Lazebnik]

Boundary Effects

I



Filtering with Correlation: Example

[Source: D. Lowe]

Correlation Example

What’s the result?
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Filtering with Correlation: Example

[Source: D. Lowe]

Correlation Example

What’s the result?

Sharpening FilterOriginal



This is a prelude to edge detection (next time)!

[Source: D. Lowe]

Sharpening



unfiltered

[Source: N. Snavely]

Sharpening

filtered



Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3? 

Smoothing by averaging

[Source: K. Grauman]



Gaussian filter

What if we want nearest neighboring pixels to have the most influence  on the output?

Removes high-frequency components from the image (low-pass filter).

[Source: S. Seitz]

Gaussian filter



Smoothing with a GaussianGaussian filter

[Source: K. Grauman]



Mean vs GaussianMean vs. Gaussian filter

[Source: K. Grauman]



Size of filter or mask: Gaussian function has infinite support, but  
discrete filters use finite kernels.

Gaussian filter parameters

[Source: K. Grauman]



Gaussian filter: Parameters

Variance of the Gaussian: determines extent of smoothing.

Gaussian filter parameters

[Source: K. Grauman]



Gaussian filter: Parameters

[Source: K. Grauman]

Gaussian filter parameters



Is this the most general Gaussian?

No, the most general form is anisotropic (i.e., not symmetric) x ∈ ℜd

But the simplified version is typically used for filtering.

Is this the most general Gaussian?

N (x;µ,Σ) = 1
(2π)d/2|Σ|1/2

exp
(

− 1
2 (x− µ)TΣ−1(x− µ)

)



Properties of the Smoothing

• All values are positive.

• They all sum to 1 to prevent re-scaling of the image. 

Properties of smoothing kernels
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Properties of the Smoothing

• All values are positive.

• They all sum to 1 to prevent re-scaling of the image.  

• Remove high-frequency components; low-pass filter.  

• What is frequency in this context?

• Edges!

Properties of smoothing kernels



Finding Waldo

How can we use what we just learned to find Waldo?

Finding Waldo



Finding Waldo

Correlation?

Finding Waldo

Filter F



A Slight Detour: Correlation in Matrix Form

Remember correlation:

Can we write that in a more compact form (with vectors)?

G(i, j) =
k∑

u=−k

k∑

v=−k

F (u, v) · I(i+ u, j + v)

Interlude: Correlation in Matrix form
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Can we write that in a more compact form (with vectors)?
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Where    is a dot product

G(i, j) =
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Interlude: Correlation in Matrix form
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G(i, j) = f · tij

·
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Where    is a dot product
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G(i, j) = f · tij

·

Can we write full correlation G = F ⊗ I in matrix form?
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Remember correlation:

Can we write that in a more compact form (with vectors)?

Define 
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Finding Waldo: How could we ensure to get the best “score” (e.g. 1)  
for an image crop that looks exactly like our filter?



A Slight Detour: Correlation in Matrix FormInterlude: Correlation in Matrix form

Finding Waldo: How could we ensure to get the best “score” (e.g. 1)  
for an image crop that looks exactly like our filter?

G(i, j) =
f
T
tij

∥f∥∥tij∥

Normalized cross-correlation:



Finding Waldo

Image

Back to Finding Waldo

Filter



Back to Waldo

Result of normalized cross-correlation

Back to Finding Waldo



Back to WaldoBack to Finding Waldo

Result of normalized cross-correlation



Back to WaldoBack to Finding Waldo

Find the highest peak



Find the highest peak

Back to Finding Waldo



Back to Waldo

With a bounding box (rectangle the size of the template) at the point…

Back to Finding Waldo



What is the result of filtering the impulse signal (image) I with an arbitrary filter F?

[Source: K. Grauman]

Correlation example



Convolution operator

G(i, j) =
k∑

u=−k

k∑

v=−k

F (u, v) · I(i− u, j − v)

Convolution



Convolution operator

G(i, j) =
k∑

u=−k

k∑

v=−k

F (u, v) · I(i− u, j − v)

Convolution

Equivalent to flipping the filter in both dimensions (bottom to top,  right to 
left) and apply correlation.



Correlation

=

Convolution

Correlation vs Convolution



Correlation vs Convolution

For a Gaussian or box filter, how will the outputs F ∗ I and F ⊗ I differ?

Correlation vs Convolution



Correlation vs Convolution

For a Gaussian or box filter, how will the outputs F ∗ I and F ⊗ I differ?

Correlation vs Convolution

How will the outputs differ for:

⎡

⎣

0 0 0

0 0 1

0 0 0

⎤

⎦



Camera Shake

=

Blur in out-of-focus regions of an image

Bokeh: http://lullaby.homepage.dk/diy-camera/bokeh.html

[Fergus et al. ,SIGGRAPH 2006]

∗

[Source: N. Snavely]

“Optical” Convolution

http://lullaby.homepage.dk/diy-camera/bokeh.html


Properties of Convolution

Commutative:

Associative:

Distributive:

Assoc. with scalar multiplier:

f ∗ g = g ∗ f

f ∗ (g ∗ h) = (f ∗ g) ∗ h

f ∗ (g + h) = f ∗ g + f ∗ h

λ · (f ∗ g) = (λ · f) ∗ g
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Properties of Convolution

Commutative:

Associative:

Distributive:

Assoc. with scalar multiplier:

f ∗ g = g ∗ f

f ∗ (g ∗ h) = (f ∗ g) ∗ h

f ∗ (g + h) = f ∗ g + f ∗ h

λ · (f ∗ g) = (λ · f) ∗ g

Properties of Convolution

The Fourier transform of two convolved images is the product 
of their individual Fourier transforms:

F(f ∗ g) = F(f) · F(g)

Why is this good news?
• Hint: Think of complexity of convolution and Fourier Transform
• What if we wanted to undo the result of convolution?
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Separable Filters: Speed-up Trick

[Source: R. Urtasun]



• The process of performing a convolution requires K2 operations per  
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

Separable Filters: Speed-up Trick

[Source: R. Urtasun]



• The process of performing a convolution requires K2 operations per  
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

• In many cases (not all!), this operation can be sped up by first 
performing a 1D horizontal convolution followed by a 1D vertical 
convolution, requiring only 2K operations

Separable Filters: Speed-up Trick

[Source: R. Urtasun]



• The process of performing a convolution requires K2 operations per  
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

• In many cases (not all!), this operation can be sped up by first 
performing a 1D horizontal convolution followed by a 1D vertical 
convolution, requiring only 2K operations

• If this is possible, then the convolutional filter is called separable

Separable Filters: Speed-up Trick

[Source: R. Urtasun]



• The process of performing a convolution requires K2 operations per  
pixel, where K is the size (width or height) of the convolution filter

• Can we do faster?

• In many cases (not all!), this operation can be sped up by first 
performing a 1D horizontal convolution followed by a 1D vertical 
convolution, requiring only 2K operations

• If this is possible, then the convolutional filter is called separable

• And it is the outer product of two filters:

Separable Filters: Speed-up Trick

F = vh
T

[Source: R. Urtasun]
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One famous separable filter we already know:

How it works

f(x, y) = 1

2πσ2 exp
(

−

x
2
+y

2

σ2

)

Gaussian: 



One famous separable filter we already know:

How it works

f(x, y) =
(

1
√

2πσ
e−

x
2

σ2

)

·

(

1
√

2πσ
e−

y
2

σ2

)

Gaussian: 



Is this separable? If yes, what’s the separable version?

How it works

[Source: R. Urtasun]



Let’s play a game...

What does this filter do?

Is this separable? If yes, what’s the separable version?

How it works
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[Source: R. Urtasun]

Is this separable? If yes, what’s the separable version?

How it works

What does this filter do?

1

2

1



How can we tell if a given filter F is indeed separable?

• Inspection... this is what we were doing.

[Source: R. Urtasun]
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F = UΣV
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=
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σiuiv
T
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with Σ = diag(σi)
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How can we tell if a given filter F is indeed separable?

• Inspection... this is what we were doing

• Look at the singular value decomposition (SVD), and if only one singular value is 
non-zero, then it is separable

F = UΣV
T
=

∑

i

σiuiv
T

i

with Σ = diag(σi)

• Python: np.linalg.svd

•              and                are the vertical and horizontal filters
√

σ1u1

√

σ1v1

[Source: R. Urtasun]



Summary – Stuff You Should Know

• Correlation: Slide a filter across image and compare (via dot product)

• Convolution: Flip the filter to the right and down and do correlation

• Smooth image with a Gaussian kernel: bigger σ means more blurring

• Some filters (like Gaussian) are separable: you can filter faster. First apply  
1D convolution to each row, followed by another 1D conv. to each column

OpenCV:

• Filter2D (or sepFilter2D): can do both correlation and convolution

• GaussianBlur: create a Gaussian kernel

• medianBlur, medianBlur, bilateralFilter



[Source: S. Lazebnik]

Edges

• What does blurring take away?

–

detail

=
smoothed (5x5)original



Next time:
Edge Detection


