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Overview

• motivation
• scale invariant keypoint detection
• learned keypoint detection
• image features
• matching



Scale Invariant Feature Transform (SIFT)



Properties of Harris Corner Detector

[Source: J. Hays]

•Scale?

•Corner location is not scale invariant/covariant!



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc.

Figure: We want to be able to match these two objects / images



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?

Figure: But these shouldn’t be matched!



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image

Figure: Find some interest points in an image



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image

Figure: And independently in other images



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image

Figure: How can we match points??



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image
•Form a vector description of each point. How? What size? Length?

Figure: We could match if we took a patch around each point, and describe it with 
a  feature vector (we know how to compare vectors)



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image
•Form a vector description of each point. How? What size? Length?

Figure: What if my interest point detector tells me the size (scale) of the patch? We 
are  hoping that this “canonical” size somehow reflects size of the object.



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image
•Form a vector description of each point. How? What size? Length?

Figure: And then we can form our feature vectors with respect to this size (how?)



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image
•Form a vector description of each point. How? What size? Length?
•Matching

Figure: Then life is easy: we find the best matches and compute a transformation (scale,  
rotation, etc) of the object – in a later lecture



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image
•Form a vector description of each point. How? What size? Length?
•Matching

Figure: And we are hoping that our feature vectors and our matching algorithm will be  able to 
say that this image does not contain our object!



Our Goal: Matching Objects / Images

•Our goal is to be able to match an object in different images where the object  appears 
in different scale, rotation, viewpoints, etc. How?
•Find interest points on each image   Let’s do this first!
•Form a vector description of each point. How? What size? Length?
•Matching



Overview

• motivation
• scale invariant keypoint detection
• learned keypoint detection
• image features
• matching



Scale Invariant Interest Points

•How can we independently select interest points in each image, such that the detections  
are repeatable across different scales?

[Source: K. Grauman]



Scale Invariant Interest Points

•How can we independently select interest points in each image, such that the detections  
are repeatable across different scales?

[Source: K. Grauman]



Scale Invariant Interest Points

•How can we independently select interest points in each image, such that the detections  
are repeatable across different scales?
•Extract features at a variety of scales, e.g., by using multiple resolutions in a pyramid, and then 

matching features at the “corresponding” level.
•When does this work?

[Source: K. Grauman]



Scale Invariant Interest Points

•How can we independently select interest points in each image, such that the detections  
are repeatable across different scales?
•More efficient to extract features that are stable in both location and scale.

[Source: K. Grauman]



Scale Invariant Interest Points

•How can we independently select interest points in each image, such that the detections  
are repeatable across different scales?
•With the Harris corner detector we found a maxima in a spatial search window
•Find scale that gives local maxima of a function f in both position and scale.

[Source: K. Grauman]



Automatic Scale Selection

•Function responses for increasing scale (scale signature).
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Automatic Scale Selection

•Function responses for increasing scale (scale signature).



What Can the Signature Function Be?

what does this function detect?



What Can the Signature Function Be?



Blob Detection – Laplacian of Gaussian

•Laplacian of Gaussian: We mentioned it for edge detection

•∇!" 𝑥, 𝑦, 𝜎 = #!! $,&,'
#$! + #!! $,&,'

#&!  where G is Gaussian

[Source: K. Grauman]



Blob Detection – Laplacian of Gaussian

•Laplacian of Gaussian: We mentioned it for edge detection

•∇!" 𝑥, 𝑦, 𝜎 = #!! $,&,'
#$! + #!! $,&,'

#&!  where G is Gaussian

•∇!" 𝑥, 𝑦, 𝜎 = − (
)'" 1 − $!*&!

"'! exp− $!*&!

"'! 	

[Source: K. Grauman]



Blob Detection – Laplacian of Gaussian

•Laplacian of Gaussian: We mentioned it for edge detection
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[Source: K. Grauman]



Blob Detection – Laplacian of Gaussian

•Laplacian of Gaussian: We mentioned it for edge detection
•It is a circularly symmetric operator (finds difference in all directions)
•It can be used for 2D blob detection! How?

[Source: K. Grauman]



Blob Detection – Laplacian of Gaussian

•It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
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Blob Detection – Laplacian of Gaussian

•It can be used for 2D blob detection! How?
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Blob Detection – Laplacian of Gaussian

•It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]



Characteristic Scale

•We define the characteristic scale as the scale that produces peak (minimum or  
maximum) of the Laplacian response

[Source: S. Lazebnik]



Example

[Source: K. Grauman]



Example

[Source: K. Grauman]



Example

[Source: K. Grauman]



Example

[Source: K. Grauman]



Example

[Source: K. Grauman]



Example

[Source: K. Grauman]



Scale Invariant Interest Points

[Source: K. Grauman]



Example

[Source: S. Lazebnik]



Blob Detection – Laplacian of Gaussian

•That’s nice. But can we do faster?
•Remember again the Laplacian of Gaussian:

∇!" 𝑥, 𝑦, 𝜎 =
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Blob Detection – Laplacian of Gaussian

•That’s nice. But can we do faster?
•Remember again the Laplacian of Gaussian:

∇!" 𝑥, 𝑦, 𝜎 =
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• Is this separable?
• Larger scale (σ), larger the filters (more work for convolution)
• Can we do it faster?



Approximate the Laplacian of Gaussian

•We can approximate the Laplacian with a difference of Gaussians; and use separable 
convolution.

[Source: K. Grauman]



Lowe’s DoG

•Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian  filters 
looking for 3D (space+scale) maxima in the resulting structure

[Source: R. Szeliski]



Lowe’s DoG

•First compute a Gaussian image pyramid

[Source: F. Flores-Mangas]



Lowe’s DoG

•First compute a Gaussian image pyramid
•Compute Difference of Gaussians

[Source: F. Flores-Mangas]



Lowe’s DoG

•First compute a Gaussian image pyramid
•Compute Difference of Gaussians
•At every scale

[Source: F. Flores-Mangas]



Lowe’s DoG

•First compute a Gaussian image pyramid
•Compute Difference of Gaussians
•At every scale
•Find local maxima in scale
•A bit of pruning of bad maxima and we’re done!

[Source: F. Flores-Mangas]



Examples

Figure: Let’s first try out some synthetic images



Examples

Figure: Detected interest points (kind of make sense)



Examples

Figure: Other roundy objects



Examples

Figure: Detected interest points



Examples

Figure: Real images



Examples

Figure: Detected interest points



Examples



Other Interest Point Detectors (Many Good Options!)

•Lindeberg: Laplacian of Gaussian
•Lowe: DoG (typically called the SIFT interest point detector)
•Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
•Tuyttelaars & Van Gool: EBR and IBR
•Matas: MSER
•Kadir & Brady: Salient Regions



Summary – Stuff You Should Know
•To match the same scene or object under different viewpoint, it’s useful to first detect interest 
points (keypoints)
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Summary – Stuff You Should Know
•To match the same scene or object under different viewpoint, it’s useful to first detect interest 
points (keypoints)
•We looked at these interest point detectors:

•Harris corner detector: translation and rotation but not scale invariant
•Scale invariant interest points: Laplacian of Gaussians and Lowe’s DoG

•Harris’ approach computes IX2 , IY2  and IX .Iy and blurs each one with a  gaussian. 
•Denote with: A = g ∗ Ix2 , B = g ∗ (Ix Iy) and C = g ∗ Iy2 . Then

•𝑀𝑥𝑦 =
𝐴	(𝑥, 𝑦) 𝐵	(𝑥, 𝑦)
𝐵	(𝑥, 𝑦) 𝐶	(𝑥, 𝑦)   characterizes the shape of Ewssd for a window around (x,y). 

•Compute “cornerness” score for each (x, y) as
R(x, y) = det(M) − α trace(M)2. Find R(x, y) > threshold and do non-maxima suppression to find corners.

•Lowe’s approach creates a Gaussian pyramid with “s” blurring levels per octave, computes 
difference between consecutive levels, and finds local extrema in space  and scale



Overview

• motivation
• scale invariant keypoint detection
• learned keypoint detection
• image features
• matching



Let’s Remember How Interest Point Stuff Started

•Which city is in the photo above?

New York City



Local Features

•Detection: Identify the interest points.
•Description: Extract feature vector descriptor around each interest point.
•Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]



SIFT Interest Points

•Works pretty well in variety of settings

Figure: Lowe’s interest point detector finds scale-invariant points that can  be reliably matched across 
different images. (We will talk about how to do  matching soon)
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SIFT Interest Points

•Works pretty well in variety of settings

Figure: Lowe’s interest point detector finds scale-invariant points that can  be reliably matched across 
different images. (We will talk about how to do  matching soon)



SIFT Interest Points

•What about in different lighting/weather conditions?



SIFT Interest Points

•Fails in very different lighting conditions

Figure: Green point(s) are repeatable interest 
points, red are non-repeatable

[Pic from: Y. Verdie, K. M. Yi, P. Fua and V. Lepetit. TILDE: A Temporally 
Invariant Learned DEtector. CVPR’15]



SIFT Interest Points

•Can we use Machine Learning to detect interest points more reliably?

[Pic from: Y. Verdie, K. M. Yi, P. Fua and V. Lepetit. TILDE: A Temporally 
Invariant Learned DEtector. CVPR’15]

SIFT Learned Interest Point Detector?



Training Data
•What can we use?



Training Data
•What can we use? Data from Webcam



Training Data
•Now that we have training images, how shall we train the detector?



Training the Detector
•Detect e.g. SIFT Interest Points in images across time  
•Keep only those that are repeatable across time.
•These are our (super reliable) positive training examples. What about negative 
examples?
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Training the Detector
•Detect e.g. SIFT Interest Points in images across time  
•Keep only those that are repeatable across time.
•These are our (super reliable) positive training examples. What about negative 
examples? All other points with some distance wrt positive points
•Take a patch around each point, extract some features on it.  Train a classifier/regressor



Trained Filters
•Remember from the lecture where we trained a classifier to detect edges:  If we train a 
linear classifier on a patch, it can be seen as a filter



Trained Filters
•Remember from the lecture where we trained a classifier to detect edges:  If we train a 
linear classifier on a patch, it can be seen as a filter

Tiny lesson learned: Sometime our intermediate results (filters in this case) don’t  look interpretable at all, but they still do 
the job



Using the Learned Interest Point Detector
•Now that we trained our detector, how can we use it on new images?
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•Apply our filter on each image patch (convolution, if it’s a linear classifier)
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Using the Learned Interest Point Detector
•Apply our filter on each image patch (convolution, if it’s a linear classifier)  
•This has response everywhere. How can we find the actual interest points?  
•Non-maxima suppression (keep only points that are local maxima)



Results
•Visually check how well we can now match with new interest points

•SIFT, SURF are hand-designed interest point detectors
•FAST is trained to detect corners fast: First employs a slow method to  detect corners, then trains 

decision trees to detect them really fast

[E. Rosten and T. Drummond. Machine Learning for High Speed Corner Detection. ECCV 2006]
[Verdie et al. TILDE: A Temporally Invariant Learned Detector. CVPR 2015]



Overview

• motivation
• scale invariant keypoint detection
• learned keypoint detection
• image features
• matching



Local Features
•Detection: Identify the interest points.
•Description: Extract a feature descriptor around each interest point.
•Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]



The Ideal Feature Descriptor
•Repeatable: Invariant to rotation, scale, photometric variations
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The Ideal Feature Descriptor
•Repeatable: Invariant to rotation, scale, photometric variations
•Distinctive: We will need to match it to lots of images/objects!
•Compact: Should capture rich information yet not be too high-dimensional (otherwise 
matching will be slow)
•Efficient: We would like to compute it (close-to) real-time



Invariances

[Source: T. Tuytelaars]



Invariances

[Source: T. Tuytelaars]



What If We Just Took Pixels?
•The simplest way is to write down the list of intensities to form a feature vector, and 
normalize them (i.e., mean 0, variance 1).
•Why normalization?
•But this is very sensitive to even small shifts, rotations and any affine transformation.

[Source: K. Grauman]



Tons Of Better Options
•SIFT
•PCA-SIFT
•GLOH
•HOG
•SURF
•DAISY
•LBP
•Shape Contexts
•Color Histograms



Tons Of Better Options
•SIFT   TODAY
•PCA-SIFT
•GLOH
•HOG
•SURF
•DAISY
•LBP
•Shape Contexts
•Color Histograms



SIFT Descriptor [Lowe 2004]
•SIFT stands for Scale Invariant Feature Transform
•Invented by David Lowe, who also did DoG scale invariant interest points
•Actually in the same paper, which you should read:

David G. Lowe
Distinctive image features from scale-invariant keypoints

International Journal of Computer Vision, 2004
Paper: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT Descriptor
•Our scale invariant interest point detector gives scale ρ for each keypoint

[Adopted from: F. Flores-Mangas]



SIFT Descriptor
•For each keypoint, we take the Gaussian-blurred image at corresponding  scale ρ

[Adopted from: F. Flores-Mangas]



SIFT Descriptor
•Compute the gradient magnitude and orientation in neighborhood of each keypoint 
proportional to the detected scale

[Adopted from: F. Flores-Mangas]



SIFT Descriptor
•Compute the gradient magnitude and orientation in neighborhood of each keypoint 
proportional to the detected scale

[Adopted from: F. Flores-Mangas]



SIFT Descriptor
•Compute dominant orientation of each keypoint. How?

[Adopted from: F. Flores-Mangas]



SIFT Descriptor: Computing Dominant Orientation

•Compute a histogram of gradient orientations, each bin covers 10◦

[Adopted from: F. Flores-Mangas]



SIFT Descriptor: Computing Dominant Orientation

•Compute a histogram of gradient orientations, each bin covers 10◦
•Orientations closer to the keypoint center should contribute more
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SIFT Descriptor: Computing Dominant Orientation

•Compute a histogram of gradient orientations, each bin covers 10◦
•Orientations closer to the keypoint center should contribute more
•Orientation giving the peak in the histogram is the keypoint’s orientation

[Adopted from: F. Flores-Mangas]



SIFT Descriptor
•Compute dominant orientation

[Adopted from: F. Flores-Mangas]



SIFT Descriptor
•Compute a 128 dimensional descriptor: 4 × 4 grid, each cell is a histogram of 8 
orientation bins relative to dominant orientation

[Adopted from: F. Flores-Mangas]



SIFT Descriptor: Computing the Feature Vector
•Compute the orientations relative to the dominant orientation
•Otherwise rotating an object would phase shift entries in histogram
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SIFT Descriptor: Computing the Feature Vector

•Compute the orientations relative to the dominant orientation
•Otherwise rotating an object would phase shift entries in histogram
•Form a 4 × 4 grid. For each grid cell compute a histogram of orientations for 8  
orientation bins spaced apart by 45◦

[Adopted from: F. Flores-Mangas]



SIFT Descriptor: Computing the Feature Vector
•Compute the orientations relative to the dominant orientation
•Otherwise rotating an object would phase shift entries in histogram
•Form a 4 × 4 grid. For each grid cell compute a histogram of orientations for 8  
orientation bins spaced apart by 45◦
•Form the 128 dimensional feature vector

[Adopted from: F. Flores-Mangas]
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SIFT Descriptor: Post-processing
•The resulting 128 non-negative values form a raw version of the SIFT  descriptor vector.
•To reduce the effects of contrast or gain (additive variations are already  removed by the 
gradient), the 128-D vector is normalized to unit length:  fi = fi/||fi||
•To further make the descriptor robust to other photometric variations, values are clipped 
to 0.2 and the resulting vector is once again renormalized to unit length.
•Great engineering effort!
•What is SIFT invariant to?
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Properties of SIFT
•Invariant to:

•Scale 
•Rotation 

•Partially invariant to:
•Illumination changes (sometimes even day vs. night)
•Camera viewpoint (up to about 60 degrees of out-of-plane rotation)
•Occlusion, clutter (why?)

•Also important:
•Fast and efficient – can run in real time
•Lots of code available



Examples

Figure: Matching in day / night under viewpoint change

[Source: S. Seitz]



Examples

[Source: N. Snavely]
Figure: NASA Mars Rover images with SIFT feature matches



PCA-SIFT
•The dimensionality of SIFT is pretty high, i.e., 128D for each keypoint
•Reduce the dimensionality using linear dimensionality reduction
•In this case, principal component analysis (PCA)
•Use 10D or so descriptor

[Source: R. Urtasun]



Other Descriptors
•SURF
•DAISY
•LBP
•HOG
•Shape Contexts
•Color Histograms



Local Features
•Detection: Identify the interest points.
•Description: Extract feature descriptor around each interest point.
•Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]



Overview

• motivation
• scale invariant keypoint detection
• learned keypoint detection
• image features
• matching



Matching the Local Descriptors
Once we have extracted keypoints and their descriptors, we want to match the features  
between pairs of images.
•Ideally a match is a correspondence between a local part of the object on one  image to 
the same local part of the object in another image



Matching the Local Descriptors
Once we have extracted keypoints and their descriptors, we want to match the features  
between pairs of images.
•Ideally a match is a correspondence between a local part of the object on one  image to 
the same local part of the object in another image
•How should we compute a match?

Figure: Images from K. Grauman



Matching the Local Descriptors

Simple: Compare them all, compute Euclidean distance



Matching the Local Descriptors

Simple: Compare them all, compute Euclidean distance



Matching the Local Descriptors

Find closest match (min distance). How do we know if match is reliable?



Matching the Local Descriptors
Find also the second closest match. Match reliable if first distance “much” smaller  than 
second distance



Matching the Local Descriptors

Compute the ratio:𝜙, =
-#.-$/∗

-#.-$/∗∗

where f′∗i is the closest and f′∗i ∗ second closest match to fi.



Which Threshold to Use?
Setting the threshold too high results in too many false positives, i.e., incorrect  matches 
being returned.
Setting the threshold too low results in too many false negatives, i.e., too many  correct 
matches being missed

50
75
200

false match

true match

Feature Distance



Which Threshold to Use?
Threshold ratio of nearest to 2nd nearest descriptor
Typically: ϕi < 0.8

Figure: Images from D. Lowe
[Source: K. Grauman]



Applications of Local Invariant Features
• Wide baseline stereo
• Motion tracking
• Panorama stitching
• Mobile robot navigation
• 3D reconstruction
• Recognition
• Retrieval

[Source: K. Grauman]



Wide Baseline Stereo

[Source: T. Tuytelaars]



Motion Tracking

Figure: Images from J. Pilet



Now What

• Now we know how to extract scale and rotation invariant features
• We even know how to match features across images
• Can we use this to find Waldo in an even more sneaky scenario?



Now What

• Now we know how to extract scale and rotation invariant features
• We even know how to match features across images
• Can we use this to find Waldo in an even more sneaky scenario?

Waldo on the road

template



He comes closer... We know how to solve this

template

Now What

• Now we know how to extract scale and rotation invariant features
• We even know how to match features across images
• Can we use this to find Waldo in an even more sneaky scenario?



Someone takes a (weird) picture of him!

template

Now What

• Now we know how to extract scale and rotation invariant features
• We even know how to match features across images
• Can we use this to find Waldo in an even more sneaky scenario?



Find My DVD!

• More interesting: If we have DVD covers (e.g., from Amazon), can we  match them to 
DVDs in real scenes?


