
Corner Detection & Optical Flow

CSC420
David Lindell
University of Toronto
cs.toronto.edu/~lindell/teaching/420
Slide credit: Babak Taati ←Ahmed Ashraf ←Sanja Fidler

Logistics

•A2 due on Friday

•no lecture next Monday (reading week)

Overview

•Recap

• Image features

•Corner detection

•Optical flow

Recap

Review
• Images

• what is an image?

Review
• Images

• what is an image?
• what do pixel values represent?

Review
• Filtering

• what is correlation?

Review
• Filtering

• what is correlation?
• what is convolution?

Review
• Filtering

• what is correlation?
• what is convolution?
• what is the convolution theorem?

Review
• Filtering

• what is correlation?
• what is convolution?
• what is the convolution theorem?
• what is the Nyquist theorem?

Review
• Filtering

• what is correlation?
• what is convolution?
• what is the convolution theorem?
• what is the Nyquist theorem?
• how do we “smooth” an image?

Review
• Edges

• how do we extract edges from an image?

Review
• Edges

• how do we extract edges from an image?
• advantages of using edges vs. a conventional image for computer vision?

Review
• Image resizing

• what is an image pyramid?

Review
• Image resizing

• what is an image pyramid?
• what is aliasing?

Review
• Image resizing

• what is an image pyramid?
• what is aliasing?
• how do we downsample an image?

Review
• Image resizing

• what is an image pyramid?
• what is aliasing?
• how do we downsample an image?
• how do we upsample an image?

Image Features:
Interest Point (Keypoint) Detection

Image Features
•What skyline is this?

Image Features
•What skyline is this?

Image Features
•What skyline is this?

Image Features
•What skyline is this?

We matched in:

•Distinctive locations:
keypoints

•Distinctive features:
descriptors

Application Example: Image Stitching

[Source: K. Grauman]

Application Example: Image Stitching
•Detection: Identify the interest points.

[Source: K. Grauman]

Application Example: Image Stitching
•Detection: Identify the interest points.
•Description: Extract feature vector descriptor around each interest point.

[Source: K. Grauman]

Application Example: Image Stitching
•Detection: Identify the interest points.
•Description: Extract feature vector descriptor around each interest point.
•Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]

Goal: Repeatability of the Interest Point Operator

•Our goal is to detect (at least some of) the same points in both images
•We need to run the detection procedure independently per image

[Source: K. Grauman, slide credit: R. Urtasun]

Figure: Too few keypoints → little chance to find the true matches

Goal: Repeatability of the Interest Point Operator

•Our goal is to detect (at least some of) the same points in both images
•We need to run the detection procedure independently per image
• Is it better to detect more interest points or fewer interest points?

[Source: K. Grauman, slide credit: R. Urtasun]

Figure: Too few keypoints → little chance to find the true matches

What Points to Choose?

[Source: K. Grauman]

What Points to Choose for matching?

What Points to Choose for matching?

[Adopted from: Szelski (Book)]

is this a good interest point?

What Points to Choose for matching?

[Adopted from: Szelski (Book)]

how about this one?

What Points to Choose for matching?

[Adopted from: Szelski (Book)]

this one? which is best?

• textureless patches are nearly impossible to localize.

What Points to Choose for matching?

[Adopted from: Szelski (Book)]

• textureless patches are nearly impossible to localize.
• large contrast changes (gradients) make it easier!

What Points to Choose for matching?

[Adopted from: Szelski (Book)]

• textureless patches are nearly impossible to localize.
• large contrast changes (gradients) make it easier!

• can we localize with a single horizontal/vertical/diagonal edge?

What Points to Choose for matching?

[Adopted from: Szelski (Book)]

• textureless patches are nearly impossible to localize.
• large contrast changes (gradients) make it easier!

• can we localize with a single horizontal/vertical/diagonal edge?

• no—gradients with at least two orientations are easiest (corners)

What Points to Choose for matching?

[Adopted from: Szelski (Book)]

Aperture Problem

Aperture Problem

Aperture Problem

•“Corner-like” patch can be reliably matched
•A straight line patch can have multiple matches (Aperture Problem)
•Zero texture, useless, can have infinite matches

Aperture Problem

[Source: K. Grauman]

Corner Detection

•How can we find corners in an image?

Interest Points: Corners

Interest Points: Corners

[Source: Alyosha Efros, Darya Frolova, Denis Simakov]

What if we use a small window?

What happens to the intensity variation within the window if we change it’s location?

Interest Points: Corners

[Source: Alyosha Efros, Darya Frolova, Denis Simakov]

What if we use a small window?

What happens to the intensity variation within the window if we change it’s location?

Interest Points: Corners

[Source: Alyosha Efros, Darya Frolova, Denis Simakov]

What if we use a small window?

What happens to the intensity variation within the window if we change it’s location?

•Compare two image patches using (weighted) summed square difference
•Measures change in appearance of window w(x, y) for the shift

Interest Points: Corners

[Source: J. Hays]

•Compare two image patches using (weighted) summed square difference
•Measures change in appearance of window w(x, y) for the shift

Interest Points: Corners

[Source: J. Hays]

•Compare two image patches using (weighted) summed square difference
•Measures change in appearance of window w(x, y) for the shift

Interest Points: Corners

[Source: J. Hays]

•Compare two image patches using (weighted) summed square difference
•Measures change in appearance of window w(x, y) for the shift

Interest Points: Corners

[Source: J. Hays]

•Compare two image patches using (weighted) summed square difference
•Measures change in appearance of window w(x, y) for the shift

Interest Points: Corners

[Source: J. Hays]

what does EWSSD look like?

•Compare two image patches using (weighted) summed square difference
•Measures change in appearance of window w(x, y) for the shift

Interest Points: Corners

[Source: J. Hays]

•Let’s look at EWSSD

•We want to find out how this function behaves for small shifts

•Remember our goal to detect corners:

Interest Points: Corners

• Using a simple first order Taylor series expansion about x, y :

Interest Points: Corners

• Using a simple first order Taylor series expansion about x, y :

• Using a series of polynomials to approximate I, more info on Taylor Series here

Interest Points: Corners

https://www.mathsisfun.com/algebra/taylor-series.html

• Using a simple first order Taylor series expansion about x, y :

• Using a series of polynomials to approximate I, more info on Taylor Series here
• And plugging it in our expression for EWSSD:

Interest Points: Corners

https://www.mathsisfun.com/algebra/taylor-series.html

• Using a simple first order Taylor series expansion about x, y :

• Using a series of polynomials to approximate I, more info on Taylor Series here
• And plugging it in our expression for EWSSD:

Interest Points: Corners

https://www.mathsisfun.com/algebra/taylor-series.html

• Using a simple first order Taylor series expansion about x, y :

• Using a series of polynomials to approximate I, more info on Taylor Series here
• And plugging it in our expression for EWSSD:

Interest Points: Corners

https://www.mathsisfun.com/algebra/taylor-series.html

• Using a simple first order Taylor series expansion about x, y :

• Using a series of polynomials to approximate I, more info on Taylor Series here
• And plugging it in our expression for EWSSD:

Interest Points: Corners

https://www.mathsisfun.com/algebra/taylor-series.html

Interest Points: Corners

Interest Points: Corners

• Since (u, v) doesn’t depend on (x, y) we can rewrite it slightly:

Interest Points: Corners

• Since (u, v) doesn’t depend on (x, y) we can rewrite it slightly:

Interest Points: Corners

• Since (u, v) doesn’t depend on (x, y) we can rewrite it slightly:

Interest Points: Corners

• Since (u, v) doesn’t depend on (x, y) we can rewrite it slightly:

what is M?

Interest Points: Corners

• Since (u, v) doesn’t depend on (x, y) we can rewrite it slightly:

• M is a 2x2 second moment matrix computed from image gradients

How Do I Compute M ?

How Do I Compute M ?

•Let’s say I have this image

How Do I Compute M ?

•Let’s say I have this image
•I need to compute a 2 × 2 second moment matrix in each image location

How Do I Compute M ?

•Let’s say I have this image
•I need to compute a 2 × 2 second moment matrix in each image location
•In a particular location I need to compute M as a weighted average of gradients in a
window

How Do I Compute M ?

•Let’s say I have this image
•I need to compute a 2 × 2 second moment matrix in each image location
•In a particular location I need to compute M as a weighted average of gradients in a
window

How Do I Compute M ?

•Let’s say I have this image
•I need to compute a 2 × 2 second moment matrix in each image location
•In a particular location I need to compute M as a weighted average of gradients in a
window

I can do this efficiently by computing three images, Ix2 , Iy2 and Ix· Iy , and convolving each one with
a filter, e.g. a box or Gaussian filter

How Do I Compute M ?

• Let’s take a “slice” of EWSSD(u, v):

what is this the equation for?

How Do I Compute M ?

• Let’s take a “slice” of EWSSD(u, v):

• This is the equation of an ellipse

Figure: Different ellipses obtain by different horizontal “slices”

How Do I Compute M ?

• We now have M computed in each image location
• Our EWSSD is a quadratic function where M implies its shape

[Source: J. Hays]

• Our matrix M is symmetric:

• And thus we can diagonalize it (in Matlab: [V,D] = eig(M)):

• Columns of V are major and minor axes of ellipse, the lengths of the radii proportional
to λ−1/2

How Do I Compute M ?

How Do I Compute M ?

[Source: R. Szeliski, slide credit: R. Urtasun]

•for these images, what will the eigenvalues and eigenvectors look like?

How Do I Compute M ?

[Source: K. Grauman, slide credit: R. Urtasun]

•how about for these windows?

How Do I Compute M ?

[Source: K. Grauman, slide credit: R. Urtasun]

•how about for these windows?

How Do I Compute M ?

[Source: K. Grauman, slide credit: R. Urtasun]

•how about for these windows?

How Do I Compute M ?

[Source: K. Grauman, slide credit: R. Urtasun]

•how about for these windows?

How Do I Compute M ?

[Source: K. Grauman, slide credit: R. Urtasun]

•how about for these windows?

How Do I Compute M ?

[Source: K. Grauman, slide credit: R. Urtasun]

•how about for these windows?

Interest Points: Criteria to Find Corners

[Source: K. Bala]

Interest Points: Criteria to Find Corners

[Source: K. Bala]
•can you write an equation that uses the eigenvalues to detect a corner?

Interest Points: Criteria to Find Corners

• Harris and Stephens, ’88, is rotationally invariant and downweighs edge-like features
where λ1 ≫ λ0

• α a constant (0.04 to 0.06)

Interest Points: Criteria to Find Corners

• Harris and Stephens, ’88, is rotationally invariant and downweighs edge-like features
where λ1 ≫ λ0

• α a constant (0.04 to 0.06)
corner

Interest Points: Criteria to Find Corners

• Harris and Stephens, ’88, is rotationally invariant and downweighs edge-like features
where λ1 ≫ λ0

• α a constant (0.04 to 0.06)

• The corresponding detector is called Harris corner detector

Interest Points: Criteria to Find Corners

•Harris & Stephens (1998)

•Kande & Tomasi (1994)

•Nobel (1998)

[Source Mubarak Shah, Szelski]

R = min(λ1,λ2)

R =

det(M)
trace(M)+ϵ

Harris Corner detector

1. Compute gradients Ix and Iy

Harris Corner detector

1. Compute gradients Ix and Iy

2. Compute Ix
2, Iy

2 , Ix· Iy

Harris Corner detector

1. Compute gradients Ix and Iy

2. Compute Ix
2, Iy

2 , Ix· Iy

3. Average (Gaussian) → gives M per
voxel

Harris Corner detector

1. Compute gradients Ix and Iy

2. Compute Ix
2, Iy

2 , Ix· Iy

3. Average (Gaussian) → gives M per
voxel

4. Compute R = det(M) − α trace(M)2 for
each image window (cornerness score)

Harris Corner detector

1. Compute gradients Ix and Iy

2. Compute Ix
2, Iy

2 , Ix· Iy

3. Average (Gaussian) → gives M per
voxel

4. Compute R = det(M) − α trace(M)2 for
each image window (cornerness score)

5. Find points with large R (R > threshold).

Harris Corner detector

1. Compute gradients Ix and Iy

2. Compute Ix
2, Iy

2 , Ix· Iy

3. Average (Gaussian) → gives M per
voxel

4. Compute R = det(M) − α trace(M)2 for
each image window (cornerness score)

5. Find points with large R (R > threshold).

6. Take only points of local maxima, i.e.,
perform non-maximum suppression

Example

[Source: K. Grauman]

1) Compute Cornerness

[Source: K. Grauman]

2) Find High Response

[Source: K. Grauman]

3) Non-maxima Suppresion

[Source: K. Grauman]

Results

[Source: K. Grauman]

Another Example

[Source: K. Grauman]

Cornerness

[Source: K. Grauman]

Interest Points

[Source: K. Grauman]

Properties of Harris Corner Detector

[Source: J. Hays]

•Is the Harris corner detector rotation invariant? Shift invariant?

Properties of Harris Corner Detector

[Source: J. Hays]

•Is the Harris corner detector rotation invariant? Shift invariant?

Properties of Harris Corner Detector

[Source: J. Hays]

•Is the Harris corner detector rotation invariant? Shift invariant?

•Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same
•Harris corner detector is rotation-covariant
•what about scale?

Properties of Harris Corner Detector

[Source: J. Hays]

•Scale?

Properties of Harris Corner Detector

[Source: J. Hays]

•Scale?

•Corner location is not scale invariant/covariant!

Optical Flow

Slide Credit: Ali Farhadi

We live in a moving world

• Perceiving, understanding and predicting motion is an important part of our daily lives

Motion scenarios (priors)

How can we recover motion?

• Extract visual features (corners, textured areas) and “track” them
over multiple frames.

• Recover image motion at each pixel from spatio-temporal image
brightness variations (optical flow).

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 674–679, 1981.

Jo
ns

ch
ko

w
sk

i e
t a

l.
20

20
]

Feature tracking

• Given two subsequent frames, estimate the point translation

Feature tracking

• Given two subsequent frames, estimate the point translation

• Key assumptions:
• Brightness constancy: projection of the same point looks the

same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors

Feature tracking

• Given two subsequent frames, estimate the point translation

• Key assumptions:
• Brightness constancy: projection of the same point looks the

same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors

The brightness constancy constraint

The brightness constancy constraint

Brightness Constancy Equation: 𝐼 𝑥, 𝑦, 𝑡 = 𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1

The brightness constancy constraint

• Now, take the Taylor expansion of 𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1 at
𝑥, 𝑦, 𝑡 to linearize the right side

Brightness Constancy Equation: 𝐼 𝑥, 𝑦, 𝑡 = 𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1

The brightness constancy constraint

𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1 	≈ 𝐼 𝑥, 𝑦, 𝑡 + 𝐼!. 𝑢 + 𝐼". 𝑣 + 𝐼#

Brightness Constancy Equation: 𝐼 𝑥, 𝑦, 𝑡 = 𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1

The brightness constancy constraint

𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1 	≈ 𝐼 𝑥, 𝑦, 𝑡 + 𝐼!. 𝑢 + 𝐼". 𝑣 + 𝐼#

𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1 − 𝐼 𝑥, 𝑦, 𝑡 ≈ 𝐼!. 𝑢 + 𝐼". 𝑣 + 𝐼#

Brightness Constancy Equation: 𝐼 𝑥, 𝑦, 𝑡 = 𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1

The brightness constancy constraint

𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1 	≈ 𝐼 𝑥, 𝑦, 𝑡 + 𝐼!. 𝑢 + 𝐼". 𝑣 + 𝐼#

𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1 − 𝐼 𝑥, 𝑦, 𝑡 ≈ 𝐼!. 𝑢 + 𝐼". 𝑣 + 𝐼#

∇𝐼 𝑢
𝑣 + 𝐼! = 0	

Brightness Constancy Equation: 𝐼 𝑥, 𝑦, 𝑡 = 𝐼 𝑥 + 𝑢	, 𝑦 + 𝑣, 𝑡 + 1

The brightness constancy constraint

• Can we use this equation to recover image motion (u,v) at each pixel?

∇𝐼	. 𝑢𝑣 + 𝐼# = 0	

• How many equations and unknowns per pixel?

The brightness constancy constraint

• Can we use this equation to recover image motion (u,v) at each pixel?

∇𝐼	. 𝑢𝑣 + 𝐼# = 0	

• How many equations and unknowns per pixel?

• One equation (this is a scalar equation!), two unknowns (u,v)

The brightness constancy constraint

• The component of the motion perpendicular to the gradient (i.e., parallel to the edge)
cannot be measured.

The brightness constancy constraint

• The component of the motion perpendicular to the gradient (i.e., parallel to the edge)
cannot be measured.
• If (𝑢, 𝑣)	satisfies the equation, so does (𝑢 + 𝑢′, 𝑣 + 𝑣′)	if

∇𝐼	. 𝑢′
𝑣′

= 0

The aperture problem

The aperture problem

The aperture problem

The barber pole illusion

Solving the ambiguity…

• How to get more equations for a pixel?

Solving the ambiguity…

• How to get more equations for a pixel?

• what if the motion is smooth over a local region?

Solving the ambiguity…

• How to get more equations for a pixel?

• what if the motion is smooth over a local region?

• Assume the pixel’s neighbors have the same (𝑢, 𝑣)
• If we use a 5x5 window, that gives us 25 equations per pixel

• For ∀$! : ∇𝐼 𝑝% .
𝑢
𝑣 + 𝐼# 𝑝% = 0

Solving the ambiguity…

𝐼! 𝑝" 	
⋮

𝐼! 𝑝#$

𝐼% 𝑝"
⋮

𝐼% 𝑝#$

𝑢
𝑣 +

𝐼& 𝑝"
⋮

𝐼& 𝑝#$
= 0	

Solving the ambiguity…

𝐼! 𝑝" 	
⋮

𝐼! 𝑝#$

𝐼% 𝑝"
⋮

𝐼% 𝑝#$

𝑢
𝑣 +

𝐼& 𝑝"
⋮

𝐼& 𝑝#$
= 0	

𝐼! 𝑝" 	
⋮

𝐼! 𝑝#$

𝐼% 𝑝"
⋮

𝐼% 𝑝#$

𝑢
𝑣 = −

𝐼& 𝑝"
⋮

𝐼& 𝑝#$

𝐴	𝑑 = 	 𝑏

Solving the ambiguity…

𝐼! 𝑝" 	
⋮

𝐼! 𝑝#$

𝐼% 𝑝"
⋮

𝐼% 𝑝#$

𝑢
𝑣 +

𝐼& 𝑝"
⋮

𝐼& 𝑝#$
= 0	

𝐼! 𝑝" 	
⋮

𝐼! 𝑝#$

𝐼% 𝑝"
⋮

𝐼% 𝑝#$

𝑢
𝑣 = −

𝐼& 𝑝"
⋮

𝐼& 𝑝#$

𝐴	𝑑 = 	 𝑏

how do we solve this?

Solving the ambiguity…

• Least squares solution for 𝑑 given by

𝐴'𝐴𝑑 = 𝐴'𝑏

Solving the ambiguity…

• Least squares solution for 𝑑 given by

𝐴'𝐴𝑑 = 𝐴'𝑏

∑𝐼!𝐼! ∑𝐼!𝐼%
∑𝐼!𝐼% ∑𝐼%𝐼%

𝑢
𝑣 = -

∑𝐼!𝐼&
∑𝐼%𝐼&

Solving the ambiguity…

• Least squares solution for 𝑑 given by

𝐴'𝐴𝑑 = 𝐴'𝑏

∑𝐼!𝐼! ∑𝐼!𝐼%
∑𝐼!𝐼% ∑𝐼%𝐼%

𝑢
𝑣 = -

∑𝐼!𝐼&
∑𝐼%𝐼&

• The summations are over all pixels in the K x K window

does this look familiar?

Solving the ambiguity…

• Least squares solution for 𝑑 given by

𝐴'𝐴𝑑 = 𝐴'𝑏

∑𝐼!𝐼! ∑𝐼!𝐼%
∑𝐼!𝐼% ∑𝐼%𝐼%

𝑢
𝑣 = -

∑𝐼!𝐼&
∑𝐼%𝐼&

• The summations are over all pixels in the K x K window

does this look familiar?

Conditions for solvability

• Optimal (𝑢, 𝑣)	satisfies Lucas-Kanade equation

• When is this solvable? I.e., what are good points to track?

Conditions for solvability

• Optimal (𝑢, 𝑣)	satisfies Lucas-Kanade equation

• When is this solvable? I.e., what are good points to track?
• ATA should be invertible

Conditions for solvability

• Optimal (𝑢, 𝑣)	satisfies Lucas-Kanade equation

• When is this solvable? I.e., what are good points to track?
• ATA should be invertible
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small

Conditions for solvability

• Optimal (𝑢, 𝑣)	satisfies Lucas-Kanade equation

• When is this solvable? I.e., what are good points to track?
• ATA should be invertible
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/λ2 should not be too large (λ1=larger eigenvalue)

Edges cause problems

– large gradients, all the same
– large l1, small l2

Low texture regions don’t work

– gradients have small magnitude
– small l1, small l2

High textured region work best

– gradients are different, large magnitudes
– large l1, large l2

Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

• When our assumptions are violated

Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

• When our assumptions are violated
• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

• window size is too large

• what is the ideal window size?

Errors in Lukas-Kanade

• What are the potential causes of errors in this procedure?
• Suppose ATA is easily invertible

• Suppose there is not much noise in the image

• When our assumptions are violated
• Brightness constancy is not satisfied

• The motion is not small

• A point does not move like its neighbors

• window size is too large

• what is the ideal window size?

Dealing with larger movements:
Iterative refinement

1. Initialize (𝑥’, 𝑦’) 	= 	 (𝑥, 𝑦)	
2. Compute (𝑢, 𝑣)	by

2nd moment matrix for feature patch in
first image displacement

Original (x,y) position

𝐼𝑡	 = 	𝐼(𝑥’, 𝑦’, 𝑡 + 1) 	− 	𝐼(𝑥, 𝑦, 𝑡)	

Dealing with larger movements:
Iterative refinement

1. Initialize (𝑥’, 𝑦’) 	= 	 (𝑥, 𝑦)	
2. Compute (𝑢, 𝑣)	by

3. Shift window by (u, v): 𝑥’ = 𝑥’ + 𝑢; 	𝑦’ = 𝑦’ + 𝑣;	

2nd moment matrix for feature patch in
first image displacement

Original (x,y) position

𝐼𝑡	 = 	𝐼(𝑥’, 𝑦’, 𝑡 + 1) 	− 	𝐼(𝑥, 𝑦, 𝑡)	

Dealing with larger movements:
Iterative refinement

1. Initialize (𝑥’, 𝑦’) 	= 	 (𝑥, 𝑦)	
2. Compute (𝑢, 𝑣)	by

3. Shift window by (u, v): 𝑥’ = 𝑥’ + 𝑢; 	𝑦’ = 𝑦’ + 𝑣;	
4. Recalculate 𝐼𝑡

2nd moment matrix for feature patch in
first image displacement

Original (x,y) position

𝐼𝑡	 = 	𝐼(𝑥’, 𝑦’, 𝑡 + 1) 	− 	𝐼(𝑥, 𝑦, 𝑡)	

Dealing with larger movements:
Iterative refinement

1. Initialize (𝑥’, 𝑦’) 	= 	 (𝑥, 𝑦)	
2. Compute (𝑢, 𝑣)	by

3. Shift window by (u, v): 𝑥’ = 𝑥’ + 𝑢; 	𝑦’ = 𝑦’ + 𝑣;	
4. Recalculate 𝐼𝑡
5. Repeat steps 2-4 until small change

• Use interpolation for subpixel values

2nd moment matrix for feature patch in
first image displacement

Original (x,y) position

𝐼𝑡	 = 	𝐼(𝑥’, 𝑦’, 𝑡 + 1) 	− 	𝐼(𝑥, 𝑦, 𝑡)	

Revisiting the small motion assumption

• Is this motion small enough?

Revisiting the small motion assumption

• Is this motion small enough?

• Probably not—it’s much larger than one pixel (2nd order terms dominate)

Revisiting the small motion assumption

• Is this motion small enough?

• Probably not—it’s much larger than one pixel (2nd order terms dominate)

How might we solve this
problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H
u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

A Few Details
•Top Level
• Apply L-K to get a flow field representing the flow from the first

frame to the second frame.
• Apply this flow field to warp the first frame toward the second

frame.

A Few Details
•Top Level
• Apply L-K to get a flow field representing the flow from the first

frame to the second frame.
• Apply this flow field to warp the first frame toward the second

frame.
• Rerun L-K on the new warped image to get a flow field from it

to the second frame.
• Repeat till convergence.

A Few Details
•Top Level
• Apply L-K to get a flow field representing the flow from the first

frame to the second frame.
• Apply this flow field to warp the first frame toward the second

frame.
• Rerun L-K on the new warped image to get a flow field from it

to the second frame.
• Repeat till convergence.

•Next Level
• Upsample the flow field to the next level as the first guess of the

flow at that level.

A Few Details
•Top Level
• Apply L-K to get a flow field representing the flow from the first

frame to the second frame.
• Apply this flow field to warp the first frame toward the second

frame.
• Rerun L-K on the new warped image to get a flow field from it

to the second frame.
• Repeat till convergence.

•Next Level
• Upsample the flow field to the next level as the first guess of the

flow at that level.
• Apply this flow field to warp the first frame toward the second

frame.
• Rerun L-K and warping till convergence as above.

•Etc.

The Flower Garden Video

• What should the
• optical flow be?

Optical Flow Results

Optical Flow Results

Next Time

•Can we also define keypoints that are shift, rotation, and scale invariant/covariant?

•What should be our description around keypoint?

