
Object Detection

CSC420
David Lindell
University of Toronto
cs.toronto.edu/~lindell/teaching/420
Slide credit: Babak Taati ←Ahmed Ashraf ←Sanja Fidler

Logistics

• A4 is out. Due date is March 28

• Final exam April 17th WB116/119 7pm–10pm
• multiple choice, short answer, long answer

• Office hours (TA + instructor) will continue until the exam, held over zoom

• please submit course evals!

Improving stereo matching

Block matching Ground truth

What are some problems with the result?

How can we improve depth estimation?

How can we improve depth estimation?

Too many discontinuities.
We expect disparity values to change slowly.

Let’s make an assumption:
depth should change smoothly

Stereo matching as …

Energy Minimization

What defines a good stereo correspondence?
1. Match quality
– Want each pixel to find a good match in the other image

2. Smoothness
– If two pixels are adjacent, they should (usually) move about the same

amount

{ {

(block matching result) (smoothness function)

Want each pixel to find a good match in
the other image

Adjacent pixels should (usually) move
about the same amount

data term smoothness term

energy function
(for one pixel)

SSD distance between windows centered
at I(x, y) and J(x+ d(x,y), y)

data term

4-connected
neighborhood

8-connected
neighborhood

: set of neighboring pixels

SSD distance between windows centered
at I(x, y) and J(x+ d(x,y), y)

smoothness term

“Potts model”

L1 distance

smoothness term

Dynamic Programming

Can minimize this independently per scanline
using dynamic programming (DP)

: minimum cost of solution such that d(x,y) = d

One possible solution…

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins

Dynamic Programming
One possible solution…

Slide: Robert Collins Disparity Space Image

Dynamic Programming
One possible solution…

Slide: Robert Collins Disparity Space Image

Match only Match & smoothness (via graph cut)

Ground Truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Where are we in the Vision Landscape

• Template Detection, Normalized Correlation

• Linear Filters, Convolutions, Gradients

• Edges ... Non-Max Suppression

• Interest Points – Corners – Harris Corner Detector

• SIFT – Scale Invariant Feature Transform

• Feature Descriptor around Interest Points (Remember 128D descriptor)

• Feature Matching and RANSAC, Homography

• Camera Models, Perspective Projections, Stereo

• Deep Learning – Neural Nets

• Automatic Differentiation – Training Neural Nets

• Object Detection

Fast retrieval

Recognizing or Retrieving Specific Objects
•Example: Visual search in feature films

[Source: J. Sivic, slide credit: R. Urtasun]

Demo: http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

Recognizing or Retrieving Specific Objects
•Example: Search photos on the web for particular places

[Source: J. Sivic, slide credit: R. Urtasun]

Why is it Difficult?
•Objects can have possibly large changes in scale, viewpoint, lighting and partial
occlusion.

[Source: J. Sivic, slide credit: R. Urtasun]

Why is it Difficult?
•There is tons of data.

Our Case: Matching with Local Features
•For each image in our database we extracted local descriptors (e.g., SIFT)

Our Case: Matching with Local Features
•For each image in our database we extracted local descriptors (e.g., SIFT)

Our Case: Matching with Local Features
•Let’s focus on descriptors only (vectors of e.g. 128 dim for SIFT)

Our Case: Matching with Local Features

Our Case: Matching with Local Features

Our Case: Matching with Local Features

Indexing!

Indexing Local Features: Inverted File Index
• For text documents, an efficient way to find all pages on which a word occurs is to use an index.

[Source: K. Grauman, slide credit: R. Urtasun]

Indexing Local Features: Inverted File Index
• For text documents, an efficient way to find all pages on which a word occurs is to use an index.
• We want to find all images in which a feature occurs.

[Source: K. Grauman, slide credit: R. Urtasun]

Indexing Local Features: Inverted File Index
• For text documents, an efficient way to find all pages on which a word occurs is to use an index.
• We want to find all images in which a feature occurs.
• To use this idea, we’ll need to map our features to “visual words”.

[Source: K. Grauman, slide credit: R. Urtasun]

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

How would “visual words” help us?

Visual Words
•All example patches on the right belong to the same visual word.

[Source: R. Urtasun]

Now We Can do Our Fast Matching

Inverted File Index
• Now we found all images in the database that have at least one visual word in

common with the query image
• But this can still give us lots of images... What can we do?

Inverted File Index
• Now we found all images in the database that have at least one visual word in

common with the query image
• But this can still give us lots of images... What can we do?
• Idea: Compute meaningful similarity (efficiently) between query image and retrieved

images. Then just match query to top K most similar images and forget about the rest.

• Now we found all images in the database that have at least one visual word in
common with the query image

• But this can still give us lots of images... What can we do?
• Idea: Compute meaningful similarity (efficiently) between query image and retrieved

images. Then just match query to top K most similar images and forget about the rest.
• How can we do compute a meaningful similarity, and do it fast?

Inverted File Index

Relation to Documents

[Slide credit: R. Urtasun]

Bags of Visual Words
•Summarize entire image based on its distribution (histogram) of word occurrences.
•Analogous to bag of words representation commonly used for documents.

[Slide credit: R. Urtasun]

Compute a Bag-of-Words Description

Compute a Bag-of-Words Description

Compute a Bag-of-Words Description

Comparing Images
•Compute the similarity by normalized dot product between their representations
(vectors)

Comparing Images
•Compute the similarity by normalized dot product between their representations
(vectors)

• Rank images in database based on the similarity score (the higher the better)
• Take top K best ranked images and do spatial verification (compute transformation

and count inliers)

Compute a Better Bag-of-Words Description

Compute a Better Bag-of-Words Description

Compute a Better Bag-of-Words Description

• Instead of a histogram, for retrieval it’s better to re-weight the image description vector
t = [t1, t2, …, ti , …] with term frequency-inverse document frequency (tf-idf), a
standard trick in document retrieval:

𝑡𝑖 =
𝑛𝑖𝑑
𝑛𝑑
𝑙𝑜𝑔

𝑁
𝑛𝑖

Where:
𝑛𝑖𝑑…is the number of occurrences of word i in image d
𝑛𝑑…is the total number words in image d
𝑛𝑖…is the number of documents where the word i occurs
𝑁…is the number of documents in the whole database

Compute a Better Bag-of-Words Description

• Instead of a histogram, for retrieval it’s better to re-weight the image description vector
t = [t1, t2, …, ti , …] with term frequency-inverse document frequency (tf-idf), a
standard trick in document retrieval:

𝑡𝑖 =
𝑛𝑖𝑑
𝑛𝑑
𝑙𝑜𝑔

𝑁
𝑛𝑖

Where:
𝑛𝑖𝑑…is the number of occurrences of word i in image d
𝑛𝑑…is the total number words in image d
𝑛𝑖…is the number of documents where the word i occurs
𝑁…is the number of documents in the whole database

• The weighting is a product of two terms: the word frequency !!"
!" 	

, and the inverse

document frequency log
"
!!

Compute a Better Bag-of-Words Description

• Instead of a histogram, for retrieval it’s better to re-weight the image description vector
t = [t1, t2, …, ti , …] with term frequency-inverse document frequency (tf-idf), a
standard trick in document retrieval:

𝑡𝑖 =
𝑛𝑖𝑑
𝑛𝑑
𝑙𝑜𝑔

𝑁
𝑛𝑖

Where:
𝑛𝑖𝑑…is the number of occurrences of word i in image d
𝑛𝑑…is the total number words in image d
𝑛𝑖…is the number of documents where the word i occurs
𝑁…is the number of documents in the whole database
• Intuition behind this: word frequency weights words occurring often in a particular
document, and thus describe it well, while the inverse document frequency describes how
much information the word provides (is it common or rare across documents?)

Comparing Images

•Compute the similarity by normalized dot product between their tf-idf representations
(vectors)

• Rank images in database based on the similarity score (the higher the better)
• Take top K best ranked images and do spatial verification (compute transformation

and count inliers)

Spatial Verification
•Both image pairs have many visual words in common
•Only some of the matches are mutually consistent

[Source: O. Chum]

Visual Words/Bags of Words

Good
• flexible to geometry / deformations / viewpoint
• compact summary of image content
• provides vector representation for sets
• good results in practice

Visual Words/Bags of Words

Good
• flexible to geometry / deformations / viewpoint
• compact summary of image content
• provides vector representation for sets
• good results in practice

Bad
• background and foreground mixed when bag covers whole image
• optimal vocabulary formation remains unclear
• basic model ignores geometry, must verify afterwards, or encode via features

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors
that live in the same dimensional space as the descriptors. We call them visual words.

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors
that live in the same dimensional space as the descriptors. We call them visual words.

• Assign each descriptor in database and query image to the closest cluster.

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors
that live in the same dimensional space as the descriptors. We call them visual words.

• Assign each descriptor in database and query image to the closest cluster.

• Build an inverted file index

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors
that live in the same dimensional space as the descriptors. We call them visual words.

• Assign each descriptor in database and query image to the closest cluster.

• Build an inverted file index

• For a query image, lookup all the visual words in the inverted file index to get a list of images that share at least one
visual word with the query

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors
that live in the same dimensional space as the descriptors. We call them visual words.

• Assign each descriptor in database and query image to the closest cluster.

• Build an inverted file index

• For a query image, lookup all the visual words in the inverted file index to get a list of images that share at least one
visual word with the query

• Compute a bag-of-words (BoW) vector for each retrieved image and query. This vector just counts the number of
occurrences of each word. It has as many dimensions as there are visual words. Weight the vector with tf-idf.

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors
that live in the same dimensional space as the descriptors. We call them visual words.

• Assign each descriptor in database and query image to the closest cluster.

• Build an inverted file index

• For a query image, lookup all the visual words in the inverted file index to get a list of images that share at least one
visual word with the query

• Compute a bag-of-words (BoW) vector for each retrieved image and query. This vector just counts the number of
occurrences of each word. It has as many dimensions as there are visual words. Weight the vector with tf-idf.

• Compute similarity between query BoW vector and all retrieved image BoW vectors. Sort (highest to lowest). Take
top K most similar images (e.g, 100)

Summary – Stuff You Need To Know
Fast image retrieval:
• Compute features in all images from database, and query image.

• Cluster the descriptors from the images in the database (e.g., k-means) to get k clusters. These clusters are vectors
that live in the same dimensional space as the descriptors. We call them visual words.

• Assign each descriptor in database and query image to the closest cluster.

• Build an inverted file index

• For a query image, lookup all the visual words in the inverted file index to get a list of images that share at least one
visual word with the query

• Compute a bag-of-words (BoW) vector for each retrieved image and query. This vector just counts the number of
occurrences of each word. It has as many dimensions as there are visual words. Weight the vector with tf-idf.

• Compute similarity between query BoW vector and all retrieved image BoW vectors. Sort (highest to lowest). Take
top K most similar images (e.g, 100)

• Do spatial verification on all top K retrieved images (RANSAC + affine or homography + remove images with too
few inliers)

Even Faster?

Can we make the retrieval process even more efficient?

Vocabulary Trees

• Hierarchical clustering for large vocabularies, [Nister et al., 06].

Vocabulary Trees

• Hierarchical clustering for large vocabularies, [Nister et al., 06].
• k defines the branch factor (number of children of each node) of the tree.

Vocabulary Trees

• Hierarchical clustering for large vocabularies, [Nister et al., 06].
• k defines the branch factor (number of children of each node) of the tree.
• First, an initial k-means process is run on the training data, defining k cluster centers

(same as we did before).

Vocabulary Trees

• Hierarchical clustering for large vocabularies, [Nister et al., 06].
• k defines the branch factor (number of children of each node) of the tree.
• First, an initial k-means process is run on the training data, defining k cluster centers

(same as we did before).
• The same process is then recursively applied to each group.

Vocabulary Trees

• Hierarchical clustering for large vocabularies, [Nister et al., 06].
• k defines the branch factor (number of children of each node) of the tree.
• First, an initial k-means process is run on the training data, defining k cluster centers

(same as we did before).
• The same process is then recursively applied to each group.
• The tree is determined level by level, up to some maximum number of levels L.

Constructing the tree

• Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree

Constructing the tree

• Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree

Constructing the tree

• Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree

Constructing the tree

• Offline phase: hierarchical clustering (e.g., k-means at leach level).

Vocabulary Tree

Assigning Descriptors to Words

Assigning Descriptors to Words

Assigning Descriptors to Words

• Each descriptor vector is propagated down the tree by at each level comparing the
descriptor vector to the k candidate cluster centers (represented by k children in the
tree) and choosing the closest one.

Assigning Descriptors to Words

• Each descriptor vector is propagated down the tree by at each level comparing the
descriptor vector to the k candidate cluster centers (represented by k children in the
tree) and choosing the closest one.

Assigning Descriptors to Words

• The tree allows us to efficiently match a descriptor to a very large vocabulary

Assigning Descriptors to Words

Querying Images

Assign a weight wi to each node based on entropy

Querying Images

Assign a weight wi to each node based on entropy

For all descriptors in the image calculate qi = ni wi
where ni is the number of descriptors with a path through node i

Querying Images

Assign a weight wi to each node based on entropy

For all descriptors in the image calculate qi = ni wi
where ni is the number of descriptors with a path through node i

Do the same for all images in the database (di = mi wi) and retrieve images based on
the similarity between d and q

Vocabulary Size

• Complexity: branching factor and number of levels
• Most important for the retrieval quality is to have a large vocabulary

Object Detection

Object Detection

• The goal of object detection is to localize objects in an image and tell their class
• Localization: place a tight bounding box around object

Object Detection

• The goal of object detection is to localize objects in an image and tell their class
• Localization: place a tight bounding box around object
• Can scale up to many classes using hierarchical tree of visual concepts

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into
three main types:
• Find interest points, followed by Hough voting

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into
three main types:
• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a

box (contains object or not?)

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into
three main types:
• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a

box (contains object or not?)
• Generate region (object) proposals, and classify each region

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into
three main types:
• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a

box (contains object or not?)
• Generate region (object) proposals, and classify each region

Interest Point Based Approaches

• Compute interest points (e.g., Harris corner detector is a popular choice)
• Vote for where the object could be given the content around interest points

Interest Point Based Approaches

• Compute interest points (e.g., Harris corner detector is a popular choice)
• Vote for where the object could be given the content around interest points

Interest Point Based Approaches

• Compute interest points (e.g., Harris corner detector is a popular choice)
• Vote for where the object could be given the content around interest points

Interest Point Based Approaches

• Compute interest points (e.g., Harris corner detector is a popular choice)
• Vote for where the object could be given the content around interest points

Interest Point Based Approaches

• Compute interest points (e.g., Harris corner detector is a popular choice)
• Vote for where the object could be given the content around interest points

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into
three main types:
• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a

box (contains object or not?)
• Generate region (object) proposals, and classify each region

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

0.1
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

-0.2
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

-0.1
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

0.1
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

1.5
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

0.5
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

0.4
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

0.3
confidence

[Slide: R. Urtasun]

Sliding Window Approaches

• Slide window and ask a classifier: “Is sheep in window or not?”

Confidence
-0.1
0.2
-0.1
0.1
…
1.5
…
0.5
0.4
0.3

[Slide: R. Urtasun]

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into
three main types:
• Find interest points, followed by Hough voting
• Sliding windows: “slide” a box around image and classify each image crop inside a

box (contains object or not?)
• Generate region (object) proposals, and classify each region

Region Proposal Based Approaches

• Group pixels into object-like regions

Region Proposal Based Approaches

• Group pixels into object-like regions

Region Proposal Based Approaches

• Generate many different regions

Region Proposal Based Approaches

• Generate many different regions

Region Proposal Based Approaches

• Generate many different regions

Region Proposal Based Approaches

• Generate many different regions

Region Proposal Based Approaches

• The hope is that at least a few will cover real objects

Region Proposal Based Approaches

• The hope is that at least a few will cover real objects

Region Proposal Based Approaches

• Select a region

Region Proposal Based Approaches

• Crop out an image patch around it, throw to classifier (e.g., Neural Net)

Region Proposal Based Approaches

• Do this for every region

Region Proposal Based Approaches

• Do this for every region

Region Proposal Based Approaches

• Do this for every region

Type of Approaches

Different approaches tackle detection differently. They can roughly be categorized into
three main types:
• Find interest points, followed by Hough voting ← Let’s first look at one example method for this

• Sliding windows: “slide” a box around image and classify each image crop inside a
box (contains object or not?)

• Generate region (object) proposals, and classify each region

Object Detection via Hough Voting:
Implicit Shape Model

B. Leibe, A. Leonardis, B. Schiele
Robust Object Detection with Interleaved Categorization and

Segmentation
IJCV, 2008

Paper:
http://www.vision.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf

http://www.vision.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf

Start simple: line detection

• How can I find lines in this image?

[Source: K. Grauman]

Hough Transform

• Idea: Voting (Hough Transform)

[Source: K. Grauman]

Hough Transform

• Idea: Voting (Hough Transform)
• Voting is a general technique where we let the features vote for all models that are

compatible with it.
• Cycle through features, cast votes for model parameters.
• Look for model parameters that receive a lot of votes.

[Source: K. Grauman]

Hough Transform: Line Detection

• Hough space: parameter space

•Connection between image (x, y) and Hough (m, b) spaces
•A line in the image corresponds to a point in Hough space
•What does a point (x0, y0) in the image space map to in Hough space?

[Source: S. Seitz]

• Hough space: parameter space

•Connection between image (x, y) and Hough (m, b) spaces
•A line in the image corresponds to a point in Hough space
•A point in image space votes for all the lines that go through this point. These votes are
a line in the Hough space.

Hough Transform: Line Detection

[Source: S. Seitz]

• Hough space: parameter space

•Two points: Each point corresponds to a line in the Hough space
•A point where these two lines meet defines a line in the image!

Hough Transform: Line Detection

[Source: S. Seitz]

• Hough space: parameter space

•Vote with each image point
•Find peaks in Hough space. Each peak is a line in the image.

Hough Transform: Line Detection

[Source: S. Seitz]

Hough Transform: Line Detection

• Issues with usual (m, b) parameter space: undefined for vertical lines
• A better representation is a polar representation of lines

[Source: S. Seitz]

Example Hough Transform

• With the parameterization x cos θ + y sin θ = d
• Points in picture represent sinusoids in parameter space
• Points in parameter space represent lines in picture
• Example 0.6x + 0.4y = 2.4, Sinusoids intersect at d = 2.4, θ = 0.9273

[Source: M. Kazhdan, slide credit: R. Urtasun]

Hough Transform: Line Detection

• Hough Voting algorithm

[Source: S. Seitz]

Hough Transform: Circle Detection

• What about circles? How can I fit circles around these coins?

[Source: S. Seitz]

Hough Transform: Circle Detection

[Source: H. Rhody]

Hough Transform: Circle Detection

• What if we don’t know r?
• Hough space: ?

[Source: K. Grauman]

Hough Transform: Circle Detection

• What if we don’t know r?
• Hough space: conics

[Source: K. Grauman]

Hough Transform: Circle Detection

• Find the coins

[Source: K. Grauman]

Hough Transform: Circle Detection

• Iris detection

[Source: K. Grauman]

[Source: Kris Kitani]

[Source: Kris Kitani]

[Source: Kris Kitani]

Shree Nayar: First Principles of Computer Vision. https://www.youtube.com/watch?v=_mGxmZWs9Zw

[Source: Kris Kitani]

[Source: Kris Kitani]

[Source: Kris Kitani]

[Source: Kris Kitani]

Implicit Shape Model

• Implicit Shape Model adopts the idea of voting
• Basic idea:
• Find interest points in an image
• Match patch around each interest point to a training patch
• Vote for object center given that training instance

Implicit Shape Model: Basic Idea

• Vote for object center

Implicit Shape Model: Basic Idea

• Vote for object center

Implicit Shape Model: Basic Idea

• Vote for object center

Implicit Shape Model: Basic Idea

• Vote for object center

Implicit Shape Model: Basic Idea

• Vote for object center

Implicit Shape Model: Basic Idea

• Find the patches that produced the peak

Implicit Shape Model: Basic Idea

• Place a box around these patches → objects!

Implicit Shape Model: Basic Idea

• Really easy. Only one problem... Would be slow... How do we make it fast?

Implicit Shape Model: Basic Idea

• Visual vocabulary (we saw this for retrieval)
• Compare each patch to a small set of visual words (clusters)

Implicit Shape Model: Basic Idea

• Training: Getting the vocabulary

Implicit Shape Model: Basic Idea

• Find interest points in each training image

Implicit Shape Model: Basic Idea

• Collect patches around each interest point

Implicit Shape Model: Basic Idea

• Collect patches across all training examples

Implicit Shape Model: Basic Idea

• Cluster the patches to get a small set of “representative” patches

Implicit Shape Model: Training

• Represent each training patch with the closest visual word.
• Record the displacement vectors for each word across all training examples.

Training image

Visual codeword with displacement vectors

[Leibe et al. IJCV 2008]

Implicit Shape Model: Test

• At test times detect interest points
• Assign each patch around interest point to closes visual word
• Vote with all displacement vectors for that word

[Source: B. Leibe]

Recognition Pipeline

[Source: B. Leibe]

Recognition Summary

• Apply interest points and extract features around selected locations.

• Match those to the codebook.

• Collect consistent configurations using Generalized Hough Transform.

• Each entry votes for a set of possible positions and scales in continuous space.

• Extract maxima, localize in continuous space using Mean Shift.

• Refinement can be done by sampling more local features.

[Source: R. Urtasun]

Example

[Source: B. Leibe, credit: R. Urtasun]
Original Image

Example

[Source: B. Leibe, credit: R. Urtasun]
Interest points

Example

[Source: B. Leibe, credit: R. Urtasun]
Matched patches

Example

[Source: B. Leibe, credit: R. Urtasun]
Voting space

Example

[Source: B. Leibe, credit: R. Urtasun]
1st hypothesis

Example

[Source: B. Leibe, credit: R. Urtasun]
2nd hypothesis

Example

[Source: B. Leibe, credit: R. Urtasun]
3rd hypothesis

Scale Invariant Voting

• Scale-invariant feature selection
• Scale-invariant interest points
• Based on patches around interest points, at training time a codebook of visual

words is created.
• Associated with each codebook entry, the displacements to object centre are stored

along with the scale at which the interest point (mapped to the respective codebook
entry) occurs... xocc, yocc, socc.

Scale Invariant Voting

• Generate scale votes (suppose an image feature was found at ximg , yimg , simg , and
gets mapped to a codebook entry that was observed while training at xocc, yocc, socc,
then vote for the following location and scale:
• Scale as 3rd dimension in voting space

• Search for maxima in 3D voting space

Scale Invariant Voting

Search window

y
x

s

[Slide credit: R. Urtasun]

Scale Voting: Efficient Computation

• Continuous Generalized Hough Transform
•Binned accumulator array similar to standard Gen. Hough Transf.
•Quickly identify candidate maxima locations
•Refine locations by Mean-Shift search only around those points
•Avoid quantization effects by keeping exact vote locations.

y

s

x

Refinement (Mean-
Shift)

y

s

x
Candidate maxima

y

s

x
Scale votes

y

s

Binned accum. array

x

[Source: B. Leibe, credit: R. Urtasun]

Extension: Rotation-Invariant Detection

• Polar instead of Cartesian voting scheme

• Recognize objects under image-plane rotations

• Possibility to share parts between articulations
• But also increases false positive detections

[Source: B. Leibe, credit: R. Urtasun]

Sometimes it’s Necessary

[Figure from Mikolajczyk et al., CVPR’06]
Source: B. Leibe, credit: R. Urtasun]

Recognition and Segmentation

• Augment each visual word with meta-deta: for example, segmentation mask

Recognition and Segmentation

Backprojected
Hypotheses

Local Features Matched Codebook
Entries

Probabilistic
Voting

Segmentation

y

s
3D Voting Spacex

(continuous)

Backprojection of
Maxima

Pixel
Contributions

Backproject
Meta-

information

Results

[Source: B. Leibe]

Results

[Source: B. Leibe]

in
pu

t
in

iti
al

 s
eg

m
en

ta
tio

n
re

fin
ed

Results

[Source: B. Leibe]

Results

[Source: B. Leibe]

Inferring Other Information: Part Labels

[Source: B. Leibe]

Training

Test Output

Inferring Other Information: Part Labels

[Source: B. Leibe]

Inferring Other Information: Depth

[Source: B. Leibe]

“Depth from a single image”

Deep learning

Some concluding thoughts…

• A field trying to develop automatic algorithms that can “see”

What is computer vision?

Finding Waldo

This course focused on standard
techniques in vision and image processing

… But you have the skills to understand
how state-of-the-art builds on these
methods

Generate an image from a caption (stable diffusion)

“Dwayne Johnson side view” “Dwayne Johnson top view”

