
Projective Transforms & RANSAC

CSC420
David Lindell
University of Toronto
cs.toronto.edu/~lindell/teaching/420
Slide credit: Babak Taati←Ahmed Ashraf ←Sanja Fidler, Yannis Gkioulekas

Christopher Moloney

Logistics

• A3 due on Friday!

Overview

• Motivation: image matching, panoramas

• What is a homography?

• computing homographies

• Random sample consensus (RANSAC)

Someone takes a (weird) picture of him!

template

Recap from last time

• Now we know how to extract scale and rotation invariant features
• We even know how to match features across images
• Can we use this to find Waldo in an even more sneaky scenario?

Find My DVD!

• More interesting: If we have DVD covers (e.g., from Amazon), can we match them to
DVDs in real scenes?

What Transformation Happened To My DVD?

•Rectangle goes to a parallelogram

Affine Transformations

[Source: N. Snavely, slide credit: R. Urtasun]

Affine transformations are combinations of
•Linear transformations, and translations

• Properties of affine transformations:
•Origin does not necessarily map to origin
• Lines map to lines
•Parallel lines remain parallel
•Ratios are preserved
•Closed under composition

• Rectangles go to parallelograms

𝑥!
𝑦! = 𝑎 𝑏 𝑒

𝑐 𝑑 𝑓

𝑥
𝑦
1

What Transformation Happened To My DVD?

•Is this an affine transformation?

What Transformation Happened To My DVD?

•Actually, a rectangle, maps to quadrilateral

2D Image Transformations

•These transformations are a nested set of groups
•Closed under composition and inverse is a member

[source: R. Szeliski]

Projective Transformations

[Source: N. Snavely, slide credit: R. Urtasun]

•Homography

• Properties:
•Origin does not necessarily map to origin
•Lines map to lines
•Parallel lines do not necessarily remain parallel
•Ratios are not preserved
•Closed under composition
•Rectangle goes to quadrilateral
•Affine transformation is a special case, where g = h = 0 and i = 1

𝑎
𝑥!
𝑦!
1

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
1

What Transformation Happened To My DVD?

For planar objects:
•Viewpoint change for planar objects is a homography
•Affine transformation approximates viewpoint change for planar objects that are far
away from camera

Homography

•Why should I care about homography?

•Now that I care, how should I estimate it?

• I want to understand the geometry behind homography. That is, why aren’t parallel lines

mapped to parallel lines in oblique viewpoints? How did we get that equation for
computing the homography?

Homography

•Why should I care about homography? Let’s answer this first
•Now that I care, how should I estimate it?

• I want to understand the geometry behind homography. That is, why aren’t parallel lines

mapped to parallel lines in oblique viewpoints? How did we get that equation for
computing the homography?

Homography

•Why do we need homography? Can’t we just assume that the transformation is affine?

The approximation on the right looks pretty decent to me...

Homography

•Why do we need homography? Can’t we just assume that the transformation is affine?

The approximation on the right looks pretty decent to me...

•That’s right. If I want to detect (match) an object in a new viewpoint, an affine

transformation is a relatively decent approximation

Homography

•Why do we need homography? Can’t we just assume that the transformation is affine?

The approximation on the right looks pretty decent to me...

•That’s right. If I want to detect (match) an object in a new viewpoint, an affine

transformation is a relatively decent approximation

•But for some applications I want to be more accurate. Which?

Application 1: a Little Bit of CSI

• Tom Cruise is taking an exam on Monday

Application 1: a Little Bit of CSI

• The professor keeps the exams in this office

Application 1: a Little Bit of CSI

• He enters (without permission) and takes a picture of the laptop screen

Application 1: a Little Bit of CSI

• His picture turns out to not be from a viewpoint he was shooting for (it’s difficult to take
pictures while hanging)

• Can he still read the exam?

Warping an Image with a Global Transformation

•Transformation T is a coordinate-changing machine:

• [x′, y′] = T (x, y)
•What does it mean that T is global?

• Is the same for any point p

• Can be described by just a few numbers (parameters)

T

p= (x,y) P’= (x’,y’)

[Source: N. Snavely, slide credit: R. Urtasun]

Warping an Image with a Global Transformation

• Example of warping for different transformations:

Forward and Inverse Warping

•Forward Warping: Send each pixel f (x) to its corresponding location

(x′, y′) = T (x, y) in g (x′, y′)

Forward and Inverse Warping

•Forward Warping: Send each pixel f (x) to its corresponding location

(x′, y′) = T (x, y) in g (x′, y′)

•May leave some holes in the target image.

Forward and Inverse Warping

•Forward Warping: Send each pixel f (x) to its corresponding location

(x′, y′) = T (x, y) in g (x′, y′)

•May leave some holes in the target image.
• Inverse Warping: Each pixel at destination is sampled from original image

Application 1: a Little Bit of CSI

• We want to transform the picture (plane) inside these 4 points into a rectangle (laptop
screen)

Application 1: a Little Bit of CSI

• We want it to look like this. How can we do this?

Application 1: a Little Bit of CSI

• A transformation that maps a projective plane (a quadrilateral) to another projective
plane (another quadrilateral, in this case a rectangle) is a homography

Application 1: a Little Bit of CSI

• If we compute the homography and warp the image according to it, we get this

Application 1: a Little Bit of CSI

• If we used affine transformation instead, we’d get this. Would be even worse if our
picture was taken closer to the laptop

Application 1: a Little More of CSI

?

Application 1: a Little More of CSI

Application 1: a Little More of CSI

Application 1: a Little More of CSI

?

Application 1: a Little More of CSI

Application 1: a Little More of CSI

A weird drawing
Holbein, “The Ambassadors”

A weird drawing
Holbein, “The Ambassadors”

What’s this???

A weird drawing
Holbein, “The Ambassadors”

rectified view

skull under anamorphic perspective

A weird drawing
Holbein, “The Ambassadors”

DIY: use a polished spoon to see the skull

Application 2: How Much do Soccer Players Run?

Application 2: How Much do Soccer Players Run?

• How many meters did this player run?

Application 2: How Much do Soccer Players Run?

• Field is planar. We know its dimensions (look on Wikipedia).

Application 2: How Much do Soccer Players Run?

• Let’s take the 4 corner points of the field

Application 2: How Much do Soccer Players Run?

• We need to compute a homography that maps them to these 4 corners

Application 2: How Much do Soccer Players Run?

• We need to compute a homography that maps the 4 corners. Any other point from this
plane (the field) also maps to the right with the same homography

Application 2: How Much do Soccer Players Run?

• Nice. What happened to the players?

Application 2: How Much do Soccer Players Run?

• We can now also transform the player’s trajectory → and we have it in meters!

Application 2: How Much do Soccer Players Run?

• If we used affine transformation... Our estimations of running would not be accurate!

Application 4: Panorama Stitching

[Source: Fernando Flores-Mangas]

Application 4: Panorama Stitching

[Source: Fernando Flores-Mangas]

Application 4: Panorama Stitching

[Source: Fernando Flores-Mangas]

• Each pair of images is related by homography! If we also moved the camera, this
wouldn’t be true (next class)

We can use homographies when…

• The scene is planar

• The scene is relatively far off or has small (relative) depth variation (i.e., scene is
approximately planar

We can use homographies when…
• The scene is captured under camera rotation only (no translation or pose change)

Homography

•Why should I care about homography?
•Now that I care, how should I estimate it? Let’s do this now

• I want to understand the geometry behind homography. That is, why aren’t parallel lines

mapped to parallel lines in oblique viewpoints? How did we get that equation for
computing the homography?

Solving for Homographies

•Projective mapping between any two projection planes with the same centre of projection
•Let (xi, yi) be a point on the reference (model) image, and (x′i , yi

′) its match in the test image
•A homography H maps (xi, yi) to (x′i , yi

′):

𝑎𝑥"!
𝑎𝑦"!
𝑎

=
ℎ## ℎ#$ ℎ#%
ℎ$# ℎ$$ ℎ$%
ℎ%# ℎ%$ ℎ%%

𝑥"
𝑦"
1

Solving for Homographies

•Projective mapping between any two projection planes with the same centre of projection
•Let (xi, yi) be a point on the reference (model) image, and (x′i , yi

′) its match in the test image
•A homography H maps (xi, yi) to (x′i , yi

′):

•Expand matrix multiplication

𝑎𝑥"!
𝑎𝑦"!
𝑎

=
ℎ## ℎ#$ ℎ#%
ℎ$# ℎ$$ ℎ$%
ℎ%# ℎ%$ ℎ%%

𝑥"
𝑦"
1

𝑎𝑥./ = ℎ00𝑥. + ℎ01𝑦. + ℎ02

𝑎 = ℎ20𝑥. + ℎ21𝑦. + ℎ22
𝑎𝑦./ = ℎ10𝑥. + ℎ11𝑦. + ℎ12

Solving for Homographies

•Projective mapping between any two projection planes with the same centre of projection
•Let (xi, yi) be a point on the reference (model) image, and (x′i , yi

′) its match in the test image
•A homography H maps (xi, yi) to (x′i , yi

′):

•Expand matrix multiplication

•Divide out scale factor

𝑎𝑥"!
𝑎𝑦"!
𝑎

=
ℎ## ℎ#$ ℎ#%
ℎ$# ℎ$$ ℎ$%
ℎ%# ℎ%$ ℎ%%

𝑥"
𝑦"
1

𝑥./ =
ℎ00𝑥. + ℎ01𝑦. + ℎ02
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑦./ =
ℎ10𝑥. + ℎ11𝑦. + ℎ12
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑎𝑥./ = ℎ00𝑥. + ℎ01𝑦. + ℎ02

𝑎 = ℎ20𝑥. + ℎ21𝑦. + ℎ22
𝑎𝑦./ = ℎ10𝑥. + ℎ11𝑦. + ℎ12

Solving for Homographies

•Projective mapping between any two projection planes with the same centre of projection
•Let (xi, yi) be a point on the reference (model) image, and (x′i , yi

′) its match in the test image
•A homography H maps (xi, yi) to (x′i , yi

′):

•Expand matrix multiplication

•Divide out scale factor

𝑎𝑥"!
𝑎𝑦"!
𝑎

=
ℎ## ℎ#$ ℎ#%
ℎ$# ℎ$$ ℎ$%
ℎ%# ℎ%$ ℎ%%

𝑥"
𝑦"
1

𝑥./ =
ℎ00𝑥. + ℎ01𝑦. + ℎ02
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑦./ =
ℎ10𝑥. + ℎ11𝑦. + ℎ12
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑎𝑥./ = ℎ00𝑥. + ℎ01𝑦. + ℎ02

𝑎 = ℎ20𝑥. + ℎ21𝑦. + ℎ22
𝑎𝑦./ = ℎ10𝑥. + ℎ11𝑦. + ℎ12 Can I rewrite this into

a linear system in h?

Solving for Homographies

•From:

•We can easily get this:

𝑥./ =
ℎ00𝑥. + ℎ01𝑦. + ℎ02
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑦./ =
ℎ10𝑥. + ℎ11𝑦. + ℎ12
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑥./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = ℎ00𝑥. + ℎ01𝑦. + ℎ02
𝑦./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = ℎ10𝑥. + ℎ11𝑦. + ℎ12

Solving for Homographies

•From:

•We can easily get this:

•Rewriting it a little:

𝑥./ =
ℎ00𝑥. + ℎ01𝑦. + ℎ02
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑦./ =
ℎ10𝑥. + ℎ11𝑦. + ℎ12
ℎ20𝑥. + ℎ21𝑦. + ℎ22

𝑥./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = ℎ00𝑥. + ℎ01𝑦. + ℎ02
𝑦./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = ℎ10𝑥. + ℎ11𝑦. + ℎ12

ℎ00𝑥. + ℎ01𝑦. + ℎ02 − 𝑥./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = 0

ℎ10𝑥. + ℎ11𝑦. + ℎ12 − 𝑦./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = 0

Solving for Homographies

•We can re-write these equations:

•As a linear system:

ℎ00𝑥. + ℎ01𝑦. + ℎ02 − 𝑥./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = 0

ℎ10𝑥. + ℎ11𝑦. + ℎ12 − 𝑦./(ℎ20𝑥. + ℎ21𝑦. + ℎ22) = 0

𝑥. 𝑦. 1 0 0 0 −𝑥./𝑥. −𝑥./𝑦. −𝑥./
0 0 0 𝑥. 𝑦. 1 −𝑦./𝑥. −𝑦/𝑦. −𝑦.′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

• If we have exactly 4 matches, this gives 8 equations (how many columns?)

• Are the columns linearly dependent or independent?

𝑥1 𝑦1 1 0 0 0 −𝑥1/𝑥1 −𝑥1/𝑦1 −𝑥1/

0 0 0 𝑥1 𝑦1 1 −𝑦1/𝑥1 −𝑦1/𝑦1 −𝑦1′
⋮

𝑥3 𝑦3 1 0 0 0 −𝑥3/𝑥3 −𝑥3/𝑦3 −𝑥3/
0 0 0 𝑥3 𝑦3 1 −𝑦3/𝑥3 −𝑦3/𝑦3 −𝑦3′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

𝑨
2nx9 𝒉

9

𝟎
2n

Exact case

• If we have exactly 4 matches, this gives 8 equations (how many columns?)

• Are the columns linearly dependent or independent?
• Is there a null space?

𝑨
2nx9 𝒉

9

𝟎
2n

Exact case

𝑥1 𝑦1 1 0 0 0 −𝑥1/𝑥1 −𝑥1/𝑦1 −𝑥1/

0 0 0 𝑥1 𝑦1 1 −𝑦1/𝑥1 −𝑦1/𝑦1 −𝑦1′
⋮

𝑥3 𝑦3 1 0 0 0 −𝑥3/𝑥3 −𝑥3/𝑦3 −𝑥3/
0 0 0 𝑥3 𝑦3 1 −𝑦3/𝑥3 −𝑦3/𝑦3 −𝑦3′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

• If we have exactly 4 matches, this gives 8 equations (how many columns?)

• Are the columns linearly dependent or independent?
• Is there a null space?
• How does this relate to the homography?

𝑨
2nx9 𝒉

9

𝟎
2n

Exact case

𝑥1 𝑦1 1 0 0 0 −𝑥1/𝑥1 −𝑥1/𝑦1 −𝑥1/

0 0 0 𝑥1 𝑦1 1 −𝑦1/𝑥1 −𝑦1/𝑦1 −𝑦1′
⋮

𝑥3 𝑦3 1 0 0 0 −𝑥3/𝑥3 −𝑥3/𝑦3 −𝑥3/
0 0 0 𝑥3 𝑦3 1 −𝑦3/𝑥3 −𝑦3/𝑦3 −𝑦3′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

•Taking all matches into account:

Solving for Homographies

𝑨
2nx9 𝒉

9

𝟎
2n

𝑥1 𝑦1 1 0 0 0 −𝑥1/𝑥1 −𝑥1/𝑦1 −𝑥1/

0 0 0 𝑥1 𝑦1 1 −𝑦1/𝑥1 −𝑦1/𝑦1 −𝑦1′
⋮

𝑥3 𝑦3 1 0 0 0 −𝑥3/𝑥3 −𝑥3/𝑦3 −𝑥3/
0 0 0 𝑥3 𝑦3 1 −𝑦3/𝑥3 −𝑦3/𝑦3 −𝑦3′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

•Taking all matches into account:

• Can be written as a least squares problem

Solving for Homographies

𝑨
2nx9 𝒉

9

𝟎
2n

min
4

𝐴ℎ 2
2

𝑥1 𝑦1 1 0 0 0 −𝑥1/𝑥1 −𝑥1/𝑦1 −𝑥1/

0 0 0 𝑥1 𝑦1 1 −𝑦1/𝑥1 −𝑦1/𝑦1 −𝑦1′
⋮

𝑥3 𝑦3 1 0 0 0 −𝑥3/𝑥3 −𝑥3/𝑦3 −𝑥3/
0 0 0 𝑥3 𝑦3 1 −𝑦3/𝑥3 −𝑦3/𝑦3 −𝑦3′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

•Taking all matches into account:

• Can be written as a least squares problem

• Can we use the Moore-Penrose pseudo inverse here?

Solving for Homographies

min
4

𝐴ℎ 2
2

𝑨
2nx9 𝒉

9

𝟎
2n

𝑥1 𝑦1 1 0 0 0 −𝑥1/𝑥1 −𝑥1/𝑦1 −𝑥1/

0 0 0 𝑥1 𝑦1 1 −𝑦1/𝑥1 −𝑦1/𝑦1 −𝑦1′
⋮

𝑥3 𝑦3 1 0 0 0 −𝑥3/𝑥3 −𝑥3/𝑦3 −𝑥3/
0 0 0 𝑥3 𝑦3 1 −𝑦3/𝑥3 −𝑦3/𝑦3 −𝑦3′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

•Taking all matches into account:

• Can be written as a least squares problem

• But this is underdetermined, (8 degrees of freedom) how do we account for the
unknown scale factor?

Solving for Homographies

min
4

𝐴ℎ 2
2

𝑨
2nx9 𝒉

9

𝟎
2n

𝑥1 𝑦1 1 0 0 0 −𝑥1/𝑥1 −𝑥1/𝑦1 −𝑥1/

0 0 0 𝑥1 𝑦1 1 −𝑦1/𝑥1 −𝑦1/𝑦1 −𝑦1′
⋮

𝑥3 𝑦3 1 0 0 0 −𝑥3/𝑥3 −𝑥3/𝑦3 −𝑥3/
0 0 0 𝑥3 𝑦3 1 −𝑦3/𝑥3 −𝑦3/𝑦3 −𝑦3′

ℎ00
ℎ01
ℎ02
ℎ10
ℎ11
ℎ12
ℎ20
ℎ21
ℎ22

= 0
0

Solving for Homographies pt 2

•we solve the homogeneous least squares
problem

•Solve with eigenvalue decomposition of 𝐴5𝐴 or SVD

𝑨
2nx9 𝒉

9

𝟎
2n

𝑚𝑖𝑛
!

𝐸 = 𝐴ℎ "
"

s.t. ℎ " = 1

Reminder: Least Squares

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

x = A \ b

Note: You almost never want to
compute the inverse of a matrix.

Singular Value Decomposition

diagonal ortho-normal

unit norm constraint

ortho-normal

n x m n x n n x m m x m

n x 1 1 x m

General form of total least squares

(matrix form)

(Warning: change of notation. x is a vector of parameters!)

constraint

minimize

subject to

minimize

Solution is the eigenvector
corresponding to smallest
eigenvalue of

(Rayleigh quotient)

Solution is the column of V
corresponding to smallest singular
value(equivalent)

Solving for H using DLT
(Direct linear transformation: algorithm for solving homographies)

Given solve for H such that

1. For each correspondence, create 2x9 matrix

2. Concatenate into single 2n x 9 matrix

3. Compute SVD of

4. Store singular vector of the smallest singular value

5. Reshape to get

Image Alignment Algorithm: Homography
•Given images I and J

• How can we find the alignment between images?

1. Compute image features for I and J

2. Match features between I and J

3. Compute homography transformation A between I and J

Image Alignment Algorithm: Homography
•Given images I and J

• How can we find the alignment between images?

Panorama Stitching: Example 1

•Compute the matches

[Source: R. Queiroz Feitosa]

Panorama Stitching: Example 1

•Estimate the homography and warp

[Source: R. Queiroz Feitosa]

Panorama Stitching: Example 1

•Stitch

[Source: R. Queiroz Feitosa]

Panorama Stitching: Example 2

[Source: Fernando Flores-Mangas]

Panorama Stitching: Example 2

[Source: Fernando Flores-Mangas]

Panorama Stitching: Example 2

[Source: Fernando Flores-Mangas]

The image correspondence pipeline

1. Feature point detection
• Detect blobs using, e.g., multi-scale LoG

2. Feature point description
• Describe features using the SIFT descriptor.

3. Feature matching

good correspondence

bad correspondence

How do we estimate homographies when we have both good and bad correspondences?

Random Sample Consensus (RANSAC)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines
(with outliers)

How to choose parameters?
• Number of samples N
– Choose N so that, with probability p, at least one random sample is free from outliers

(e.g. p=0.99) (outlier ratio: e)

How to choose parameters?
• Number of samples N
– Choose N so that, with probability p, at least one random sample is free from outliers

(e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s

–Minimum number needed to fit the model

How to choose parameters?
• Number of samples N
– Choose N so that, with probability p, at least one random sample is free from outliers

(e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s

–Minimum number needed to fit the model
• Distance threshold δ

– Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

How to choose parameters?
• Number of samples N
– Choose N so that, with probability p, at least one random sample is free from outliers

(e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s

–Minimum number needed to fit the model
• Distance threshold δ

– Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

p = desired probability that we get a good sample
s = number of points in a sample
N = number of samples (we want to compute this)
e = probability that a point is an outlier

How to choose parameters?
• Number of samples N
– Choose N so that, with probability p, at least one random sample is free from outliers

(e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s

–Minimum number needed to fit the model
• Distance threshold δ

– Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

p = desired probability that we get a good sample
s = number of points in a sample
N = number of samples (we want to compute this)
e = probability that a point is an outlier

can you derive this? Hint: start with writing the probability that you choose one
inlier point, then that you choose ‘s’ inlier points…

Given two images…

find matching features (e.g., SIFT) and a translation transform

Matched points will usually contain bad correspondences

good correspondence

bad correspondence

how should we estimate the transform?

LLS will find the ‘average’ transform

‘average’
transform

solution is corrupted by bad correspondences

Use RANSAC

How many correspondences to compute translation transform?

Need only one correspondence, to find translation model

Pick one correspondence, count inliers

one
correspondence

Pick one correspondence, count inliers

2 inliers

Pick one correspondence, count inliers

one
correspondence

Pick one correspondence, count inliers

5 inliers

Pick one correspondence, count inliers

5 inliers

Pick the model with the highest number of inliers!

Estimating homography using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H (DLT)

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep H if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep H if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC

The image correspondence pipeline

1. Feature point detection
• Detect corners using the Harris corner detector.

2. Feature point description
• Describe features using the Multi-scale oriented patch descriptor.

3. Feature matching and homography estimation
• Do both simultaneously using RANSAC.

Summary – Stuff You Need To Know

•A homography is a mapping between projective planes

•You need at least 4 correspondences (matches) to compute it

•How do we assemble and solve the constrained least squares system?

•What is the RANSAC algorithm and how can I apply it to a model fitting problem?

• OpenCV (Python):
•Affine transformation/warp:

• getAffineTransform(pts_src, pts_dst)
• warpAffine

•Perspective transformation/warp:
• either: getPerspectiveTransform (pts_src, pts_dst) (without RANSAC)
• or: h, status = cv2.findHomography(pts_src, pts_dst) (with RANSAC)
• im_dst = warpPerspective(im_src, h, size)

Birdseye View on What We Learned So Far

Problem Detection Description Matching

Find Planar
Distinctive Objects

Scale Invariant
Interest Points

Local feature:
SIFT

All features to all features
+ Affine / Homography

More than one image

•We’re in 2023...

•Think not (only) what you can do with one image, but what lots and lots of images can
do for you

More than one image

•We’re in 2023...

•Think not (only) what you can do with one image, but what lots and lots of images can
do for you

•Would our current matching method work with lots of data?

Looking forward (object detection)

•So far we matched a known object in a new viewpoint

•What if we have to match an object to LOTS of images? Or LOTS of objects to one image?

•We’ll discuss this in a few weeks (object recognition)

Next Time: Camera Models

