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Logistics

• A4 is out. Due date is March 31

• Final exam April 27th SF 3202 9AM – 12 PM
• multiple choice, short answer, long answer



Overview

• Recap camera matrix and perspective projection

• Two-view geometry
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The camera as a coordinate transformation

A camera is a mapping from:

the 3D world 

to:

a 2D image

3D object

2D image2D image

2D to 2D transform
(image warping)

3D to 2D transform
(camera)



The camera as a coordinate transformation

camera
matrix

3D world 
point

2D image 
point

What are the dimensions of each variable?

A camera is a mapping from:

the 3D world 

to:

a 2D image

homogeneous coordinates



The camera as a coordinate transformation

homogeneous
world coordinates

4 x 1

homogeneous
image coordinates

3 x 1

camera
matrix
3 x 4



World-to-camera coordinate system transformation

World 
coordinate 
system

Camera 
coordinate 

system

Coordinate of the 
camera center in the 

world coordinate frame

!𝑿𝒘

!𝑪



World-to-camera coordinate system transformation

World 
coordinate 
system

Camera 
coordinate 

system

Coordinate of the 
camera center in the 

world coordinate frame

!𝑿𝒘

!𝑪

!𝑿𝒘 − !𝑪

Why aren’t 
the points 
aligned?

translate



World-to-camera coordinate system transformation

World 
coordinate 
system

Camera 
coordinate 

system

points now 
coincide!𝑿𝒘

!𝑪

translate

𝑹 ⋅ !𝑿𝒘 − !𝑪
rotate



Modeling the coordinate system transformation
In heterogeneous coordinates, we have:

In homogeneous coordinates, we have:

!𝐗𝐜 = 𝐑 ⋅ !𝐗𝐰 − *𝐂

𝐗𝐜 = 𝐑 −𝐑 *𝐂
𝟎 1

𝐗𝐰or



Putting it all together
We can write everything into a single projection:

extrinsic parameters (4 x 4): 
correspond to camera externals 

(world-to-camera 
transformation)

𝐱 = 𝐏𝐗𝐰

The camera matrix now looks like:

intrinsic parameters (3 x 3): 
correspond to camera internals 

(image-to-image 
transformation)

𝐈 | 𝟎 𝐑 −𝐑 &𝐂
𝟎 1

perspective projection (3 x 4): 
maps 3D to 2D points

(camera-to-image 
transformation)



Putting it all together
We can write everything into a single projection:

extrinsic parameters (3 x 4): 
correspond to camera externals 
(world-to-image transformation)

𝐱 = 𝐏𝐗𝐰

The camera matrix now looks like:

intrinsic parameters (3 x 3): correspond 
to camera internals



General pinhole camera matrix
We can decompose the camera matrix like this:

Another way to write the mapping:

where

(translate first then rotate)

(rotate first then translate)



General pinhole camera matrix

extrinsic 
parameters

intrinsic 
parameters

3D rotation 3D translation



Recap

What is the size and meaning of each term in the camera matrix? 

? ? ? ?
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Recap

What is the size and meaning of each term in the camera matrix? 

3x3 
intrinsics

3x3 
3D rotation

? ?



Recap

What is the size and meaning of each term in the camera matrix? 

3x3 
intrinsics

3x3 
3D rotation

3x3 
identity

?



Recap

What is the size and meaning of each term in the camera matrix? 

3x3 
intrinsics

3x3 
3D rotation

3x3 
identity

3x1 
3D translation



Quiz

The camera matrix relates what two quantities?
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Quiz

The camera matrix relates what two quantities?

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

intrinsic and extrinsic parameters



Perspective distortion



Forced perspective



The Ames room illusion



The Ames room illusion



Magnification depends on depth

real-world 
object

What happens as we change the focal length?

depth Z

depth 2 Z



Magnification depends on focal length

real-world 
object

focal 
length f

focal length 2 f



What if…

real-world 
object

focal 
length f

focal length 2 f1. Set focal length to half
depth 2 Z



What if…

real-world 
object

1. Set focal length to half
2. Set depth to half

depth Z focal 
length f

Is this the same image as 
the one I had at focal 

length 2f and distance 2Z?



Perspective distortion

long focal length short focal lengthmid focal length



Perspective distortion



Vertigo effect
Named after Alfred Hitchcock’s movie
• also known as “dolly zoom”



Vertigo effect

How would you 
create this effect?



Other camera models



What if…

real-world 
object

depth Z focal 
length f

… we continue increasing Z 
and f while maintaining 

same magnification?

𝑓 → ∞ and
𝑓
𝑍 = constant



camera is close to 
object and has

small focal length

camera is far from 
object and has 

large focal length



Different cameras

perspective camera weak perspective camera



Weak perspective vs perspective camera

image plane

magnification 
changes with depth

• magnification does not 
change with depth

• constant magnification 
depending on f and Zo

𝑍!



When can we assume a weak perspective camera? 
1. When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.



Orthographic camera
Special case of weak perspective camera where:
• constant magnification is equal to 1.
• there is no shift between camera and image origins.
• the world and camera coordinate systems are the same.

image world

What is the camera matrix in this case?



Orthographic camera
Special case of weak perspective camera where:
• constant magnification is equal to 1.
• there is no shift between camera and image origins.
• the world and camera coordinate systems are the same.

image world



Overview

• Recap camera matrix and perspective projection

• Two-view geometry



Homography

•In Lecture 8 we said that a homography is a transformation that maps a projective plane 
to another projective plane.
•Defined by the following:

𝑤
𝑥!
𝑦!
1

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
1



Homography

•Let’s revisit our transformation in the (new) light of perspective projection.



Homography

•Let’s revisit our transformation in the (new) light of perspective projection.

We have our object in two different worlds, in two different poses relative to camera, 
two different photographers, and two different cameras.



Homography

•Let’s revisit our transformation in the (new) light of perspective projection.

Our object is a plane. Each plane is characterized by one point d on the plane  and 
two independent vectors a and b on the plane.



Homography

•Let’s revisit our transformation in the (new) light of perspective projection.

Then any other point X on the plane can be written as: X = d + αa + βb; where
α and β are in the DVD’s coordinate system defined by its basis vectors and origin.



Homography

•Let’s revisit our transformation in the (new) light of perspective projection.

Any two Chicken Run DVDs on our planet are related by some transformation T.  We’ll 
compute it, don’t worry.



Homography

•Let’s revisit our transformation in the (new) light of perspective projection.

Each object is seen by a different camera and thus projects to the corresponding  
image plane with different camera intrinsics.



Homography

•Let’s revisit our transformation in the (new) light of perspective projection.

Given this, the question is what’s the transformation that maps the DVD on the first 
image to the DVD in the second image?



• Each point on a plane can be written as: X = d + α · a + β · b, where d is a point, and a and b 
are two independent directions on the plane.

Homography
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• Let’s have two different planes in 3D:

Homography



• Each point on a plane can be written as: X = d + α · a + β · b, where d is a point, and a and b 
are two independent directions on the plane.

• Let’s have two different planes in 3D:

• Via α and β, the two points X1 and X2 are in the same location relative to each  plane.

Homography



• Each point on a plane can be written as: X = d + α · a + β · b, where d is a point, and a and b 
are two independent directions on the plane.

• Let’s have two different planes in 3D:

• Via α and β, the two points X1 and X2 are in the same location relative to each  plane.

• We can rewrite this using homogeneous coordinates:

• 𝐴1 = 𝑎1 𝑏1 𝑑1 and 𝐴2 = 𝑎2 𝑏2 𝑑2 are 3 x 3 matrices.

Homography



• In 3D, a transformation between the planes is given by:

There is one transformation T between every pair of points X1 and X2.

Homography



• In 3D, a transformation between the planes is given by:

There is one transformation T between every pair of points X1 and X2.

• Expand it:

Homography



• In 3D, a transformation between the planes is given by:

There is one transformation T between every pair of points X1 and X2.

• Expand it:

• Then it follows:

Homography



Homography

• Let’s look at what happens in projective (image) plane. Note that we have each plane in a 
separate image and the two images may not have the same camera intrinsic parameters. 
Denote them with K1 and K2.
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Homography

• Let’s look at what happens in projective (image) plane. Note that we have each plane in a 
separate image and the two images may not have the same camera intrinsic parameters. 
Denote them with K1 and K2.
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Homography

• Let’s look at what happens in projective (image) plane. Note that we have each plane in a 
separate image and the two images may not have the same camera intrinsic parameters. 
Denote them with K1 and K2.

• Insert X2 = T X into the equality on the right

• Finally, divide through by w1



Homography

• Let’s look at what happens in projective (image) plane. Note that we have each plane in a 
separate image and the two images may not have the same camera intrinsic parameters. 
Denote them with K1 and K2.

• Insert X2 = T X into the equality on the right

• Finally, divide through by w1

what is this?



Homography

• If we want to compute correspondences between images and we have the 
homography, what else do we need?
• 3D positions?
• Camera intrinsics?



Homography

• If we want to compute correspondences between images and we have the 
homography, what else do we need?
• 3D positions?
• Camera intrinsics?

• Still one more loose end from lecture 8 to recap…



Remember Panorama Stitching from Lecture 9?

[Source: Fernando Flores-Mangas]



Remember Panorama Stitching from Lecture 9?

[Source: Fernando Flores-Mangas]

• Each pair of images is related by homography. Why?



Rotating the Camera

•Rotating my camera with R is the same as rotating the 3D points with RT (inverse of R):

• where X1 is a 3D point in the coordinate system of the first camera and X2 the 3D point 
in the coordinate system of the rotated camera.



Rotating the Camera

•Rotating my camera with R is the same as rotating the 3D points with RT (inverse of R):

• where X1 is a 3D point in the coordinate system of the first camera and X2 the 3D point 
in the coordinate system of the rotated camera.
• We can use the same trick as before, where we have T =RT:



Rotating the Camera

•Rotating my camera with R is the same as rotating the 3D points with RT (inverse of R):

• where X1 is a 3D point in the coordinate system of the first camera and X2 the 3D point 
in the coordinate system of the rotated camera.
• We can use the same trick as before, where we have T =RT:

what is this?



What If I Move The Camera?

• So if I take a picture, rotate the camera, and take a second picture…

• How are the first and second images related?
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What If I Move The Camera?

• So if I take a picture, rotate the camera, and take a second picture…

• How are the first and second images related?

• by a Homography (assuming the scene didn’t change)

• What if I move the camera?



What If I Move The Camera?

• If I move the camera by t, then: X2 = X1 − t. Let’s try the same trick again:
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What If I Move The Camera?

• If I move the camera by t, then: X2 = X1 − t. Let’s try the same trick again:



What If I Move The Camera?

• If I move the camera by t, then: X2 = X1 − t. Let’s try the same trick again:

• What’s the problem here?



What If I Move The Camera?

• If I move the camera by t, then: X2 = X1 − t. Let’s try the same trick again:

• Now, different values of w1 give different points in the second image!

• So, even if I have K and t I can’t compute where a point from the first image projects to 
in the second image.



What If I Move The Camera?

• If I move the camera by t, then: X2 = X1 − t. Let’s try the same trick again:

• Now, different values of w1 give different points in the second image!

• So, even if I have K and t I can’t compute where a point from the first image projects to 
in the second image.

• From

we know that different w1 map to different points X1 on the projective line
• Where (x1, y1) maps to in the 2nd image depends on the 3D location of X1



What If I Move The Camera?

• Summary: if I move the camera, I can’t easily map one image to the other. The 
mapping depends on the 3D scene behind the image.
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y2) in the second belong to the same 3D point?



What If I Move The Camera?

• Summary: if I move the camera, I can’t easily map one image to the other. The 
mapping depends on the 3D scene behind the image.

• What about the opposite, what if I know that points (x1, y1) in the first image and (x2, 
y2) in the second belong to the same 3D point?



What If I Move The Camera?

• Summary: if I move the camera, I can’t easily map one image to the other. The 
mapping depends on the 3D scene behind the image.

• What about the opposite, what if I know that points (x1, y1) in the first image and (x2, 
y2) in the second belong to the same 3D point?

• This allows triangulating 3D points, leads to stereo vision and two-view geometry 



Summary – Stuff You Need To Know
Perspective Projection

• If point Q is in camera’s coordinate system:

• If Q is in world coordinate system, then the full projection is characterized by a 3x4 matrix P:



Summary – Stuff You Need To Know
Perspective Projection

• All parallel lines in 3D with the same direction meet in one, so-called vanishing  point in the 
image

• All lines that lie on a plane have vanishing points that lie on a line, so-called vanishing lines.

• All parallel planes in 3D have the same vanishing line in the image

Orthographic Projection

• Projections simply drops the Z coordinate:

• Parallel lines in 3D are parallel in the image



Two-view Geometry



Triangulation

image 2image 1

Given

camera 1 with matrix camera 2 with matrix



image 2image 1

camera 1 with matrix camera 2 with matrix

Which 3D points map 
to x?

Triangulation



image 2image 1

camera 1 with matrix camera 2 with matrix

How can you 
compute this ray?

Triangulation



image 2image 1

camera 1 with matrix camera 2 with matrix

+

Why does this 
point map to x?

Create two points on the ray: 
1) find the camera center; and
2) apply the pseudo-inverse of P on 

x.
Then connect the two points.
This procedure is called 
backprojection

Triangulation



image 2image 1

camera 1 with matrix camera 2 with matrix

+
How do we find the 
exact point on the 

ray?

Triangulation



image 2image 1

Find 3D object point
Will the lines intersect?

camera 1 with matrix camera 2 with matrix

Triangulation



image 2image 1

Find 3D object point
(no single solution due to noise)

camera 1 with matrix camera 2 with matrix

Triangulation



Given a set of (noisy) matched points

and camera matrices

Estimate the 3D point 

Triangulation



known known

Can we compute X from a single 
correspondence x?



This is a similarity relation because it involves homogeneous coordinates

Same ray direction but differs by a scale factor

(homorogeneous
coordinate)

(homogeneous 
coordinate)



Vector (cross) product 
takes two vectors and returns a vector perpendicular to both

cross product of two vectors in 
the same direction is zero

vector

remember this!!!

Linear algebra reminder: cross product



Can also be written as a matrix multiplication

Cross product

Skew symmetric

Linear algebra reminder: cross product



Compare with: dot product

dot product of two orthogonal vectors is (scalar) zero



Same direction but differs by a scale factor

How can we rewrite this using vector products?

Back to triangulation



Same direction but differs by a scale factor

Cross product of two vectors of same direction is zero
(this equality removes the scale factor)



Do the same after first 
expanding out the 

camera matrix and points



Using the fact that the cross product should be zero

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations



Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

Using the fact that the cross product should be zero



Now we can make a system of linear equations 
(two lines for each 2D point correspondence)

Remove third row, and 
rearrange as system of 

unknowns



How do we solve homogeneous linear system?

Concatenate the 2D points from both images

sanity check! dimensions?

Two rows from camera 
one

Two rows from camera 
two



How do we solve homogeneous linear system?

Concatenate the 2D points from both images

S   V   D   !



How do we solve homogeneous linear system?

Concatenate the 2D points from both images

S   V   D   !
This is triangulation!



Triangulation recap

• use relationshipGiven a set of (noisy) matched points

and camera matrices

Estimate the 3D point 



Triangulation recap

• use relationship

• formulate system of equations 
(2 for each correspondence)

Given a set of (noisy) matched points

and camera matrices

Estimate the 3D point 



Triangulation recap

• use relationship

• formulate system of equations 
(2 for each correspondence)

• Solve with SVD

Given a set of (noisy) matched points

and camera matrices

Estimate the 3D point 



Epipolar geometry



Epipolar geometry

Image plane



Image plane

Baseline

Epipolar geometry



Image plane

Baseline

Epipole
(projection of o’ on the image plane)

Epipolar geometry



Epipole
(projection of o’ on the image plane)

Baseline

Epipolar plane

Image plane

Baseline

Epipolar geometry



Epipole
(projection of o’ on the image plane)

Baseline

Epipolar plane

Epipolar line
(intersection of Epipolar 
plane and image plane)

Image plane

Epipolar geometry



What is this?

Quiz



Epipolar plane

Quiz



Epipolar plane

What is this?

Quiz



Epipolar plane

Epipolar line
(intersection of Epipolar 
plane and image plane)

Quiz



Epipolar plane

Epipolar line
(intersection of Epipolar 
plane and image plane)

What is this?

Quiz



Epipolar plane

Epipolar line
(intersection of Epipolar 
plane and image plane)
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(projection of o’ on the image plane)
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Epipolar plane

Epipolar line
(intersection of Epipolar 
plane and image plane)

Epipole
(projection of o’ on the image plane)

What is this?

Quiz



Epipolar plane

Epipolar line
(intersection of Epipolar 
plane and image plane)

Epipole
(projection of o’ on the image plane)

Baseline

Quiz



Another way to construct the epipolar plane, this time given

Backproject to a 
ray in 3D

Epipolar line
(intersection of Epipolar 
plane and image plane)

Epipolar Constraint



Potential matches for lie on the epipolar line

Epipolar Constraint



The point x (left image) maps to a ___________ in the right image

The baseline connects the ___________ and ____________

An epipolar line (left image) maps to a __________ in the right image

An epipole e is a projection of the ______________ on the image plane

All epipolar lines in an image intersect at the  ______________



Converging cameras

Where is the epipole in this image? 



Converging cameras

It’s not always in the image Where is the epipole in this image? 

here!



Parallel cameras

Where is the epipole? 



Parallel cameras

epipole at infinity



The epipolar constraint is an important concept for stereo vision

Left image Right image

Task: Match point in left image to point in right image

How would you do it?



Potential matches for lie on the epipolar line

Epipolar Constraint



The epipolar constraint is an important concept for stereo vision

Left image Right image

Task: Match point in left image to point in right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line



The epipolar constraint is an important concept for stereo vision

Left image Right image

Task: Match point in left image to point in right image

How do you compute the epipolar line?

Want to avoid search over entire image
Epipolar constraint reduces search to a single line



The essential matrix



Potential matches for lie on the epipolar line

Recall: Epipolar Constraint



Given a point in one image, 
multiplying by the essential matrix will tell us 

the epipolar line in the second view.



The Essential Matrix is a 3 x 3 matrix that 
encodes epipolar geometry 

Given a point in one image, 
multiplying by the essential matrix will tell us 

the epipolar line in the second image.

Motivation



in vector form

If the point      is on the epipolar line     then

Representing the epipolar line



in vector form

If the point      is on the epipolar line     then

Representing the epipolar line



So if                             and                             then



So if                             and                             then



Essential Matrix vs Homography

What’s the difference between the essential matrix and a homography?



Essential Matrix vs Homography
They are both 3 x 3 matrices but …

Essential matrix maps a 
point to a line

Homography maps a 
point to a point

What’s the difference between the essential matrix and a homography?



Where does the essential matrix come from?





Does this look familiar?



Camera-camera transform just like world-camera transform 



These three vectors are coplanar



If these three vectors are coplanar                  then



If these three vectors are coplanar                  then

cross-product: vector orthogonal to planedot product of orthogonal vectors



If these three vectors are coplanar                  then



If these three vectors are coplanar                  then



coplanarityrigid motion

Putting it together



coplanarityrigid motion

use skew-symmetric 
matrix to represent cross 
product

Putting it together



coplanarityrigid motion

Putting it together



coplanarityrigid motion

Putting it together



coplanarityrigid motion

Essential Matrix
[Longuet-Higgins 1981]

Putting it together



Longuet-Higgins equation

(2D points expressed in camera coordinate system)

properties of the E matrix



properties of the E matrix

Epipolar lines

Longuet-Higgins equation

(2D points expressed in camera coordinate system)



Epipolar lines

Longuet-Higgins equation

Epipoles

(2D points expressed in camera coordinate system)

properties of the E matrix



Given a point in one image, 
multiplying by the essential matrix will tell us 

the epipolar line in the second view.

Assumption: 
2D points expressed in camera coordinate system 

(i.e., intrinsic matrices are identities)



How do you generalize to 
non-identity intrinsic matrices?



The fundamental matrix



The 
fundamental matrix 

is a 
generalization

of the 
essential matrix, 

where the assumption of 
Identity matrices

is removed



The essential matrix operates on image points expressed in 
2D coordinates expressed in the camera coordinate system

image 
point

camera 
point



Writing out the epipolar constraint in terms of image coordinates

image 
point

camera 
point

The essential matrix operates on image points expressed in 
2D coordinates expressed in the camera coordinate system



Same equation works in image coordinates!

it maps pixels to epipolar lines



properties of the E matrix

Epipolar lines

Longuet-Higgins equation

Epipoles

(points in image coordinates)

F

F

F F

F F



Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix



Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

How would you solve for F?



The 8-point algorithm



Assume you have M matched image points

Each correspondence should satisfy

How would you solve for the 3 x 3 F matrix?



Each correspondence should satisfy

How would you solve for the 3 x 3 F matrix?

S    V    D

Assume you have M matched image points



Each correspondence should satisfy

How would you solve for the 3 x 3 F matrix?

Set up a homogeneous linear system with 9 unknowns 

Assume you have M matched image points



How many equation do you get from one correspondence?



ONE correspondence gives you ONE equation



Set up a homogeneous linear system with 9 unknowns 

How many equations do you need?



Each point pair (according to epipolar constraint) 
contributes only one scalar equation

Note: This is different from the Homography estimation 
where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!



How do you solve a homogeneous linear system?



How do you solve a homogeneous linear system?

minimize

subject to

Total Least Squares



How do you solve a homogeneous linear system?

minimize

subject to

Total Least Squares

S V D !



Eight-Point Algorithm

0. (Normalize points)

1. Construct the M x 9 matrix A

2. Find the SVD of A

3. Entries of F are the elements of column of 

V corresponding to the least singular value

4. (Enforce rank 2 constraint on F)

5. (Un-normalize F)



0. (Normalize points)

1. Construct the M x 9 matrix A

2. Find the SVD of A

3. Entries of F are the elements of column of 

V corresponding to the least singular value
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Problem: Given a matrix F, find the matrix F’ of rank k that is closest to F,

Enforcing rank constraints

min
"!

#$%& "! '(

𝐹 − 𝐹) *

Solution: Compute the singular value decomposition of F,

𝐹 = 𝑈Σ𝑉+
Form a matrix Σ’ by replacing all but the k largest singular values in Σ with 
0.

Then the problem solution is the matrix F’ formed as,

𝐹) = 𝑈Σ)𝑉+
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Example



epipolar lines







Where is the epipole?

How would you compute it?



The epipole is in the right null space of F

How would you solve for the epipole?



The epipole is in the right null space of F

How would you solve for the epipole?

S V D !



Next Time:
Stereo depth estimation


