Introduction

Motivation and Image Processing

CSC420
David Lindell
University of Toronto
cs.toronto.edu/~lindell/teaching/420
Slide credit: Babak Taati ←Ahmed Ashraf ←Sanja Fidler

Instructors

David Lindell

Shayan Shekarforoush

Yun-Chun Chen

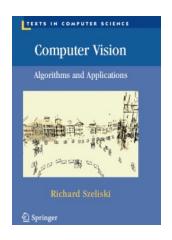
Anagh Malik

Course Email: csc420-2022-09@cs.toronto.edu

Course Info

- Class time: Mondays 2-4 pm GB 248
- Tutorials: Wednesdays 3-4 pm GB 119
- Class Website: https://www.cs.toronto.edu/~lindell/teaching/420/
- Quercus: https://q.utoronto.ca/
- Course material (lecture notes, reading material, assignments, announcements, etc.)
 will be posted on Quercus
- Forum: Ed Discussion (link on Quercus)
- Your grade will not depend on your participation on discussions. It's just a good way
 for asking questions, discussing with your instructor, TAs and your peers

Textbook: We won't directly follow any book, but extra reading in this textbook will be useful:



Rick Szeliski

Computer Vision: Algorithms and Applications

available free online: http://szeliski.org/Book/

Links to other material (papers, code, etc.) will be posted on the class webpage

Course Prerequisites

- Data structures
- Linear Algebra
- Vector calculus
- Without this you'll need some serious catching up to do!

Knowing some basics in these is a plus:

- Python
- Machine Learning
- Neural Networks
- (Solving assignments sooner rather than later)

Grading

- Assignment 1: 12%
- Assignment 2: 20%
- Assignment 3: 16%
- Assignment 4: 16%
- Ethics Module: 1% (2 surveys, 0.5 each)
- Final Exam: 34%
- Assignments: They will consist of problem sets and programming problems with the goal of deepening your understanding of the material covered in class.

Assignments

- Download from Files section on Quercus, Submitted via MarkUs
- Assignments: They will consist of problem sets and programming problems with the goal of deepening your understanding of the material covered in class.
 - Code in python
 - Please comment your code!
- Assignment 1 is out now, due Jan 27 at 11:59 PM

Assignments

Deadline

• The solutions to the assignments / project should be submitted by 11:59 pm on the date they are due.

Lateness

- Each student will be given a total of 3 free late days.
- This means that you can hand in three of the assignments one day late, or one assignment three days late.
- After you have used the 3 day budget, late assignments will not be accepted.

All info on the course website

Schedule and Syllabus

Week	Date	Description	Material	Readings	Event	Deadline
Week 1	Mon 9/1	Lecture 1: Introduction & Linear filters	[slides]	Szeliski 3.2 (optional) Brain mechanisms of early vision (optional) Early vision	Assignment 1 out on Quercus	
	Wed 11/1	Tutorial 1	[code]			
	Thu 12/1	TA Office Hours				
Week 2	Mon 16/1	Lecture 2: Edges	[slides]	Szeliski 4.2 (optional) Fourier Transform (optional) Computer color is broken		
	Wed 18/1	Tutorial 2	[code]			
	Thu 19/1	TA Office Hours				
Week 3	Mon 23/1	Lecture 3: Image pyramids	[slides]	Szeliski 3.5 (optional) Pyramid methods		
	Wed 25/1	Tutorial 3	[code]			
	Thu 26/1	TA Office Hours				
	Fri 27/1					Assignment 1 due at 11:59pm

Let's begin!

Introduction to Intro to Image Understanding

- What is Computer Vision?
- Why study Computer Vision?
- Which cool applications can we do with it? Is vision a hard problem?

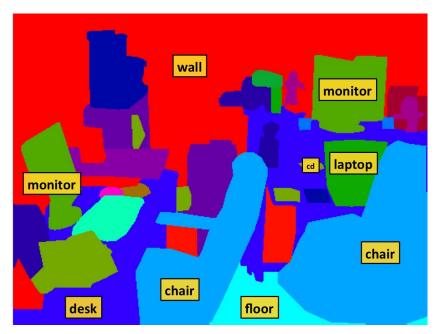
• A field trying to develop automatic algorithms that can "see"

What does it mean to see?

example scene

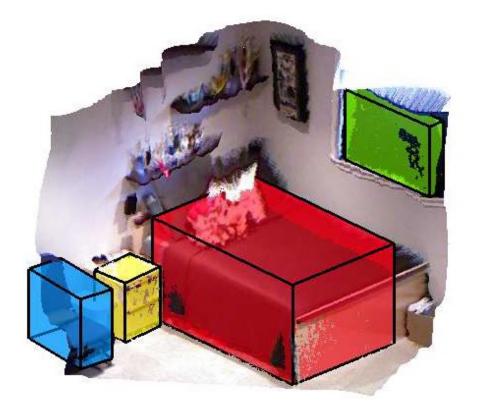
- What does it mean to see?
 - To know what is where by looking Marr, 1982
 - Understand where things are in the world

example scene



segmentation

- What does it mean to see?
 - To know what is where by looking Marr, 1982
 - Understand where things are in the world
 - Understand 3D structure



- What does it mean to see?
 - To know what is where by looking Marr, 1982
 - Understand where things are in the world
 - Understand 3D structure
 - Understand physical properties

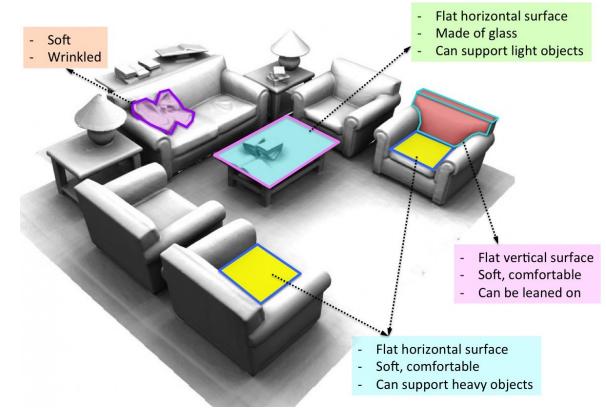


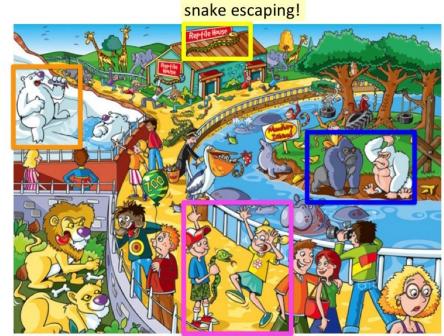
Image: Vladlen Koltun

- What does it mean to see?
 - To know what is where by looking Marr, 1982

polar bear

eating fish

- Understand where things are in the world
- Understand 3D structure
- Understand physical properties
- Understand what actions are taking place



gorillas arguing

boy scaring girl

Full understanding of an image?

- Full understanding of an image?
 - Can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

- Full understanding of an image?
 - Can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

Q: What is the shape of the green chair? A: horse shaped

- Full understanding of an image?
 - Can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

Q: What is the shape of the green chair? A: horse shaped

Q: Where is the oven? A: on the right side of the fridge

- Full understanding of an image?
 - Can answer any question about it

Q: What is behind the table? A: window

Q: What is in front of the toilet? A: door

Q: What is on the counter in the corner? A: microwave

Q: What is the shape of the green chair? A: horse shaped

Q: Where is the oven? A: on the right side of the fridge

Q: What is the largest object? A: bed

- Full understanding of an image?
 - Can answer any question about it

Q: Which object is red? A: toaster

- Full understanding of an image?
 - Can answer any question about it

Q: Which object is red? A: toaster

Q: How many drawers are there? A: 6

Q: How many doors are open A: 1

Q: How many lights are on? A: 6

- Full understanding of an image?
 - Can answer any question about it

Q: Which object is red? A: toaster

Q: How many drawers are there? A: 6

Q: How many doors are open A: 1

Q: How many lights are on? A: 6

Q: Can you make pizza in this room? A: yes

Q: Where can you sit? A: chairs, table, floor

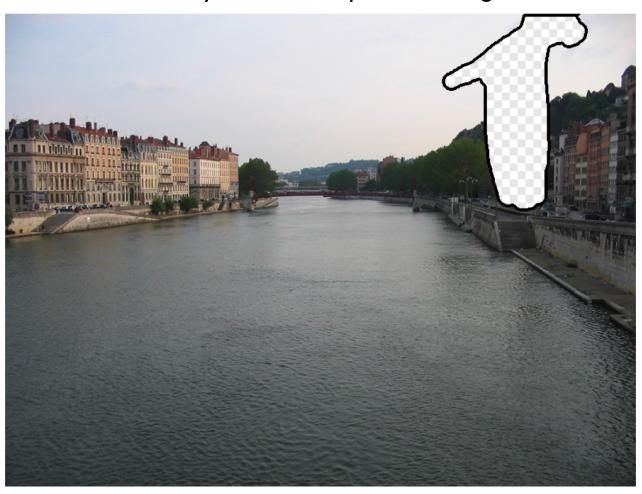
Because you want your robot to fold your laundry

And drive you to work

Allows you to manipulate images

Scene Completion using Millions of Photographs, Hays & Efros, SIGGRAPH 2007

Allows you to manipulate images



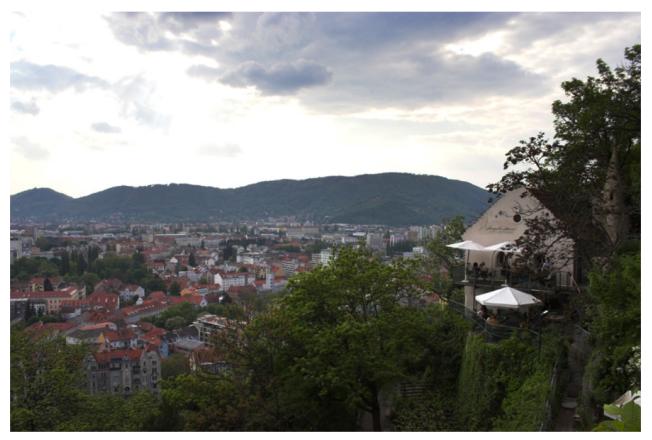
Scene Completion using Millions of Photographs, Hays & Efros, SIGGRAPH 2007

Allows you to manipulate images



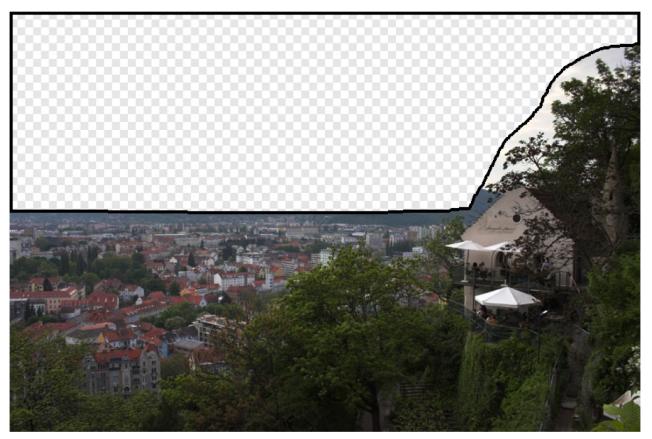
Scene Completion using Millions of Photographs, Hays & Efros, SIGGRAPH 2007

Allows you to manipulate images



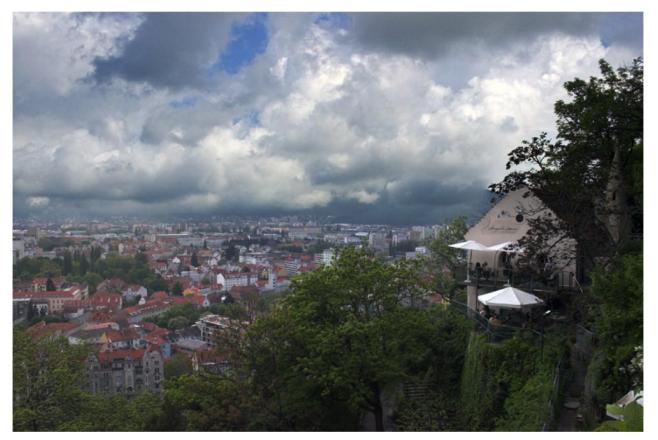
Scene Completion using Millions of Photographs, Hays & Efros, SIGGRAPH 2007

Allows you to manipulate images



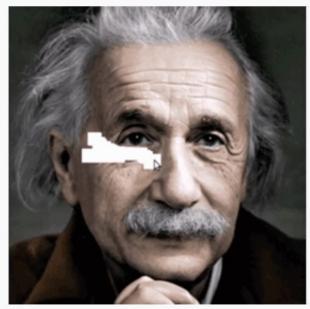
Scene Completion using Millions of Photographs, Hays & Efros, SIGGRAPH 2007

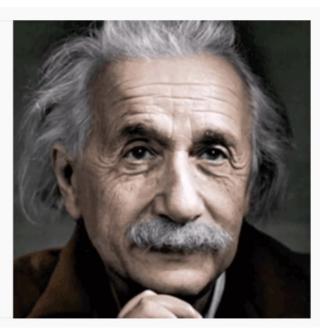
Allows you to manipulate images



Scene Completion using Millions of Photographs, Hays & Efros, SIGGRAPH 2007

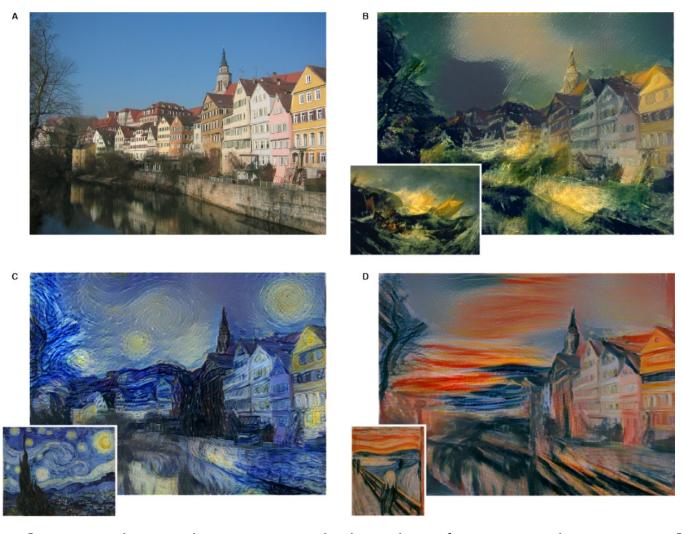
Allows you to manipulate images





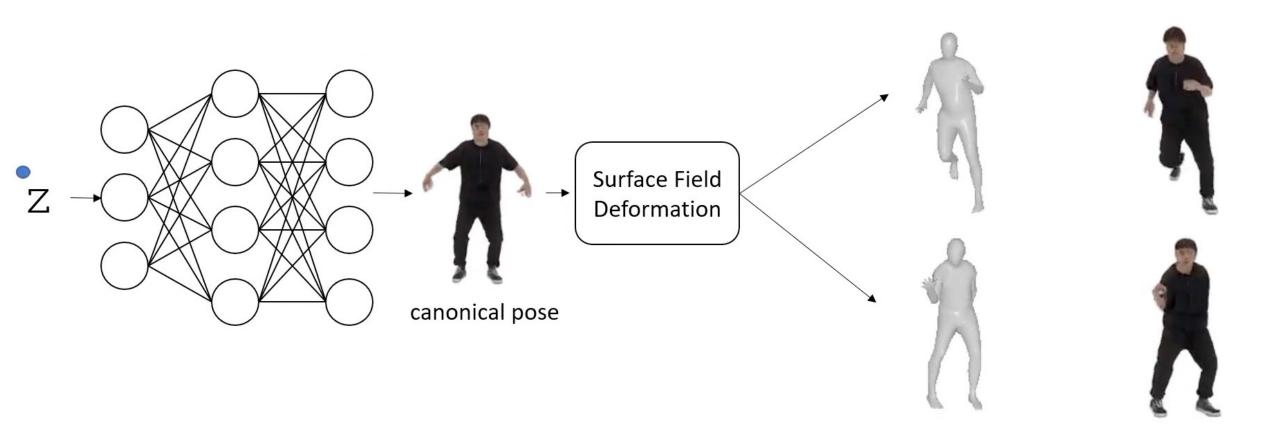
Online demo (NVIDIA inpainting demo)

Change style of images...



[Gatys, Ecker, Bethge. A Neural Algorithm of Artistic Style. Arxiv'15.]

Synthesize and animate digital humans



Synthesize and animate digital humans faces in canonical pose

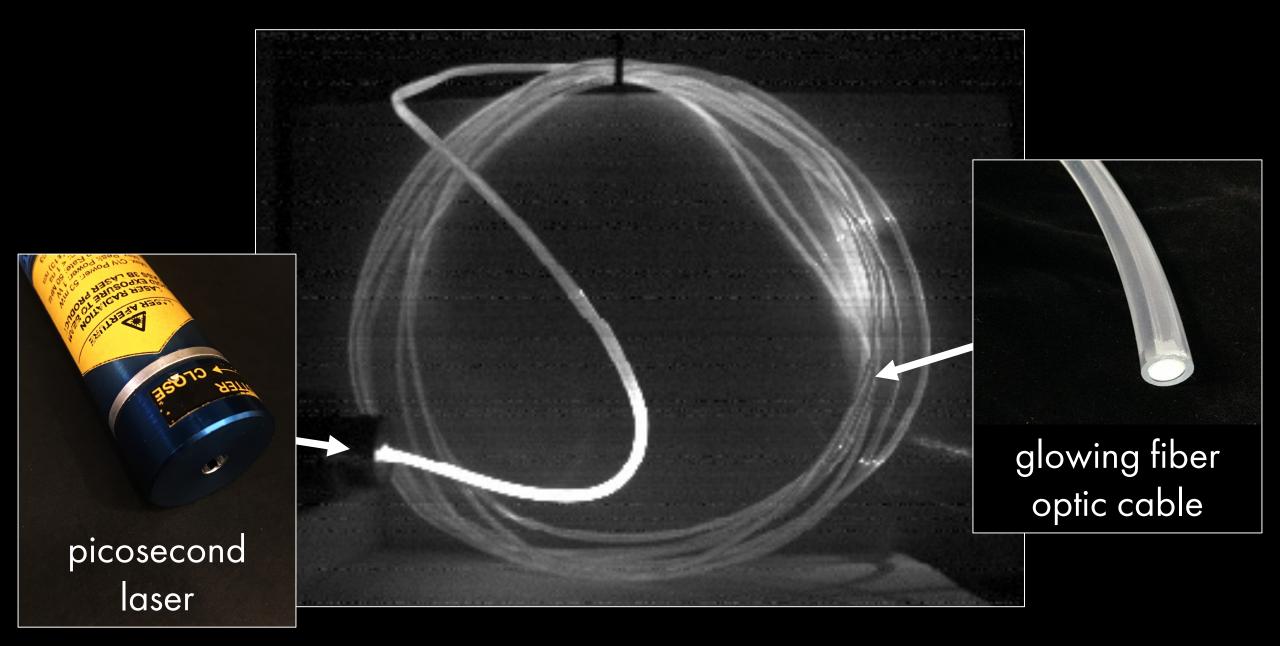
[Bergman et al. '22]

See "invisible" changes in a scene...

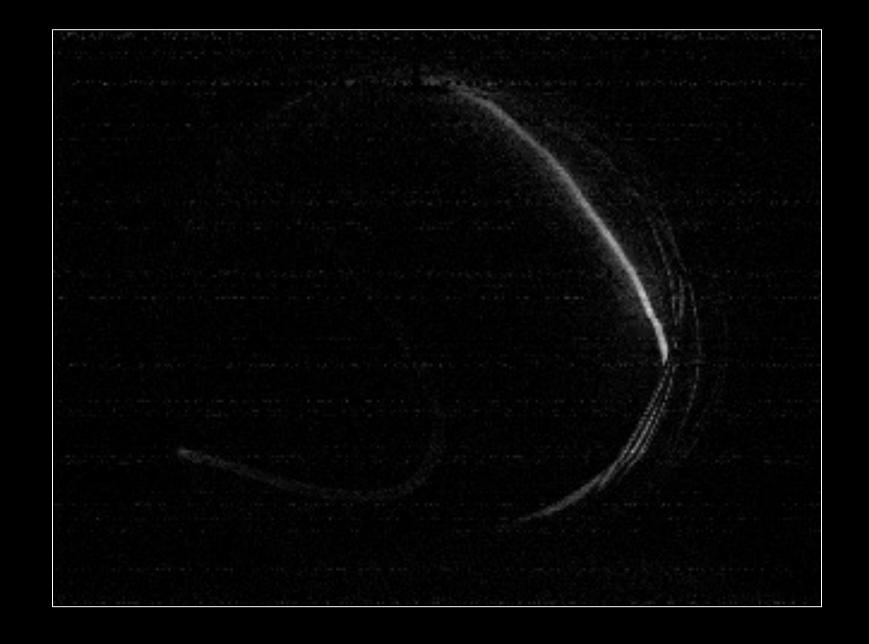
[Wu et al. SIGGRAPH '12]

See "invisible" changes in a scene...

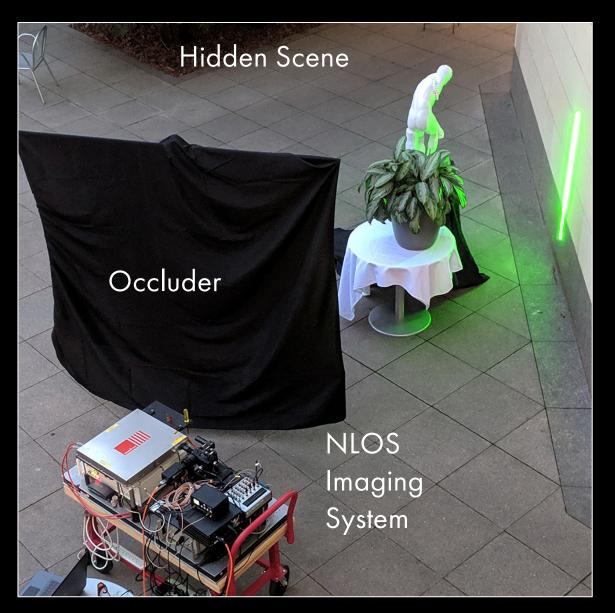
[Wu et al. SIGGRAPH '12]



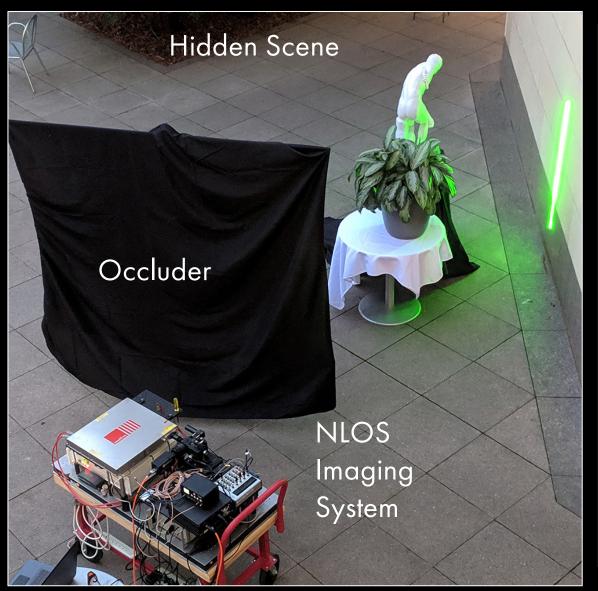
regular image

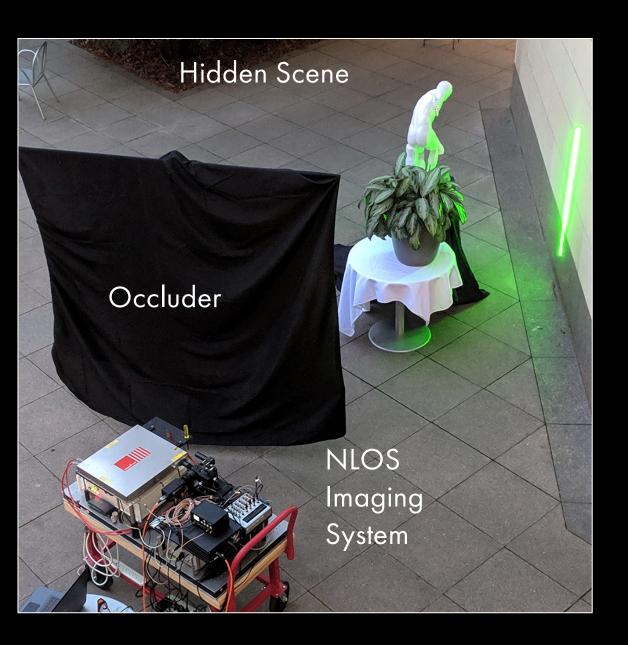


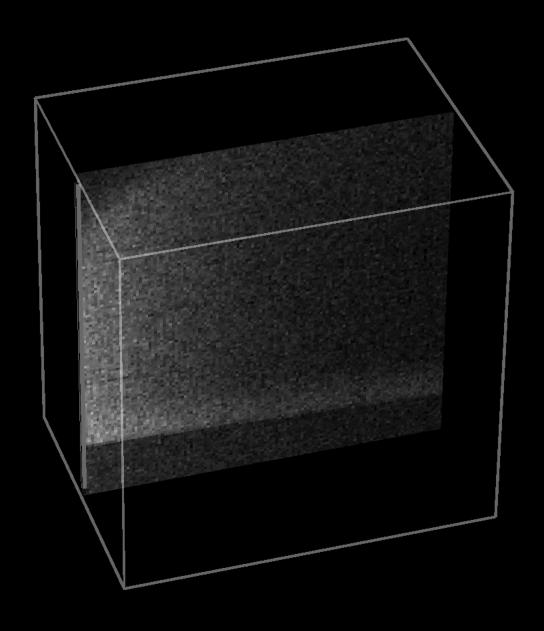
transient image



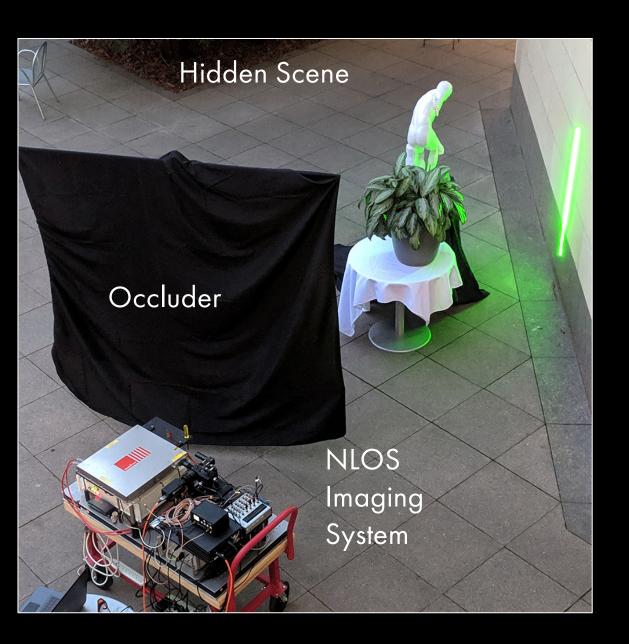


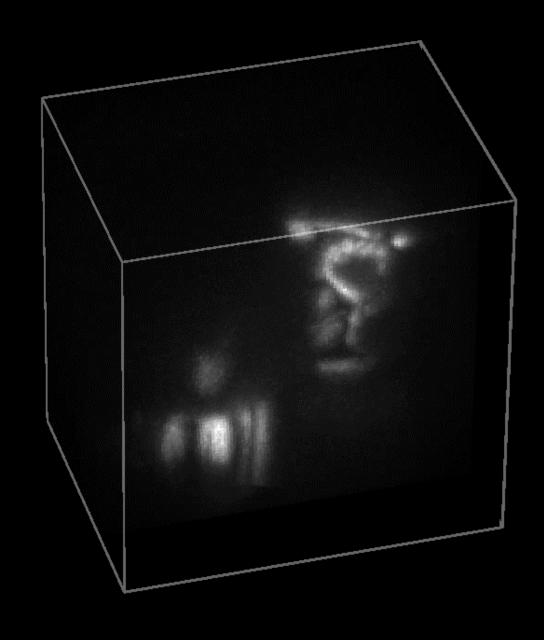






Time-resolved Measurements





3D Reconstruction

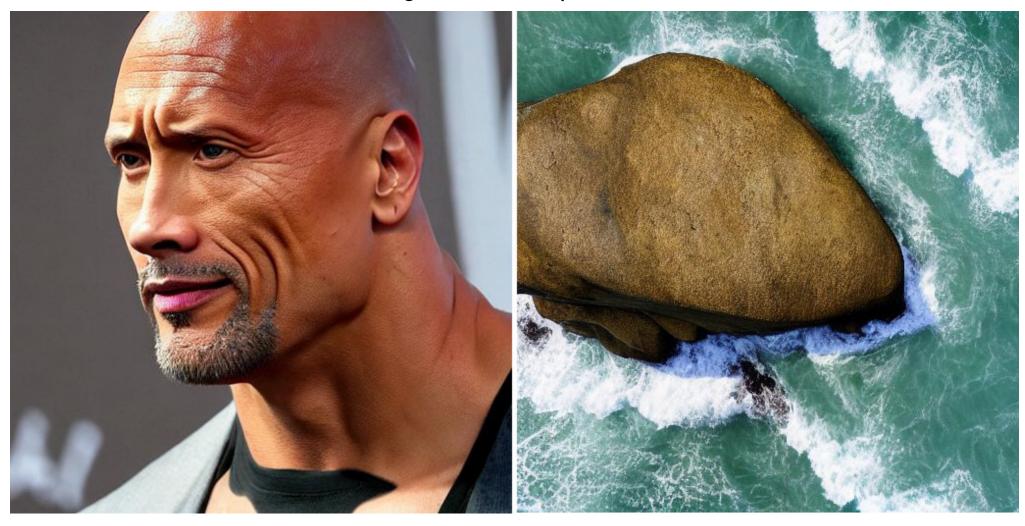
Automatically caption images...

[Source: L. Zitnick, NIPS'14 Workshop on Learning Semantics]

Generate an image from a caption (stable diffusion)

"Dwayne Johnson side view"

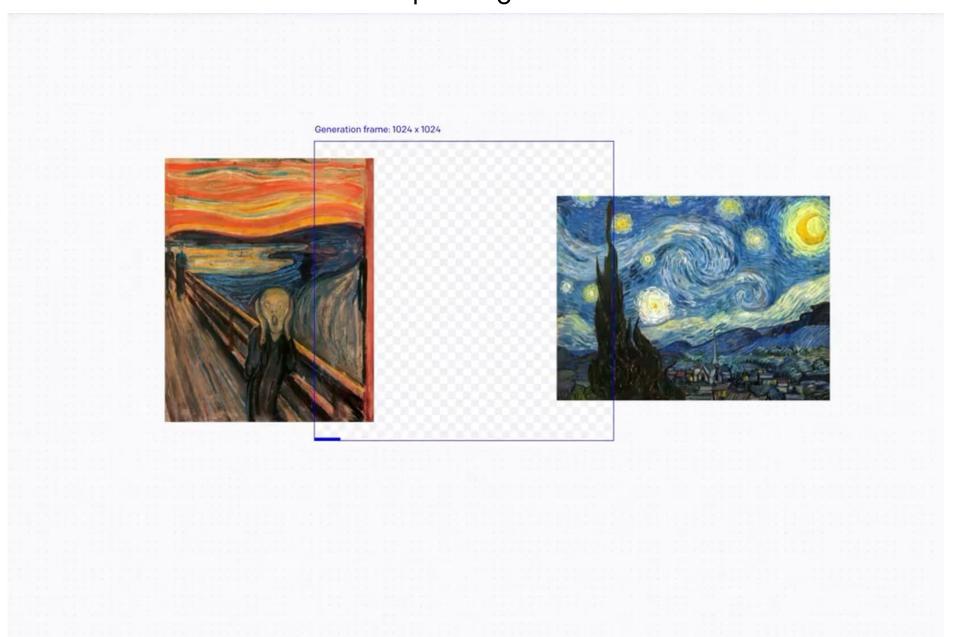
Generate an image from a caption (stable diffusion)



"Dwayne Johnson side view"

"Dwayne Johnson top view"

Inpainting art...



Movie-like image forensics

[Nayar and Nishino, Eyes for Relighting]



[Nayar and Nishino, Eyes for Relighting]

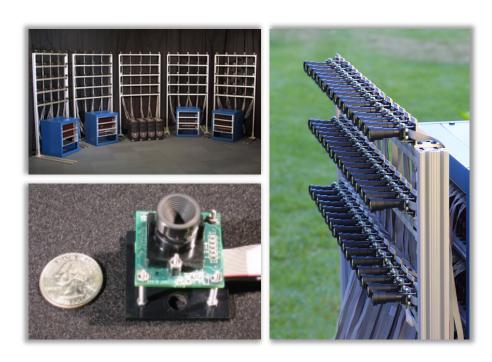
[Slide: N. Snavely]

Movie-like image forensics

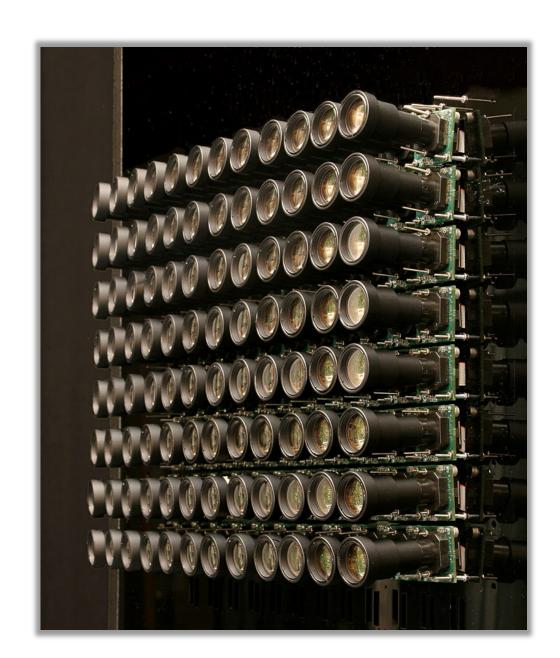
[Nayar and Nishino, Eyes for Relighting]

Capture light fields

Stanford Multi-Camera Array



125 cameras using custom hardware [Wilburn et al. 2002, Wilburn et al. 2005]



How it all began

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

[Slide: A. Torralba]

Popular benchmarks:

http://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

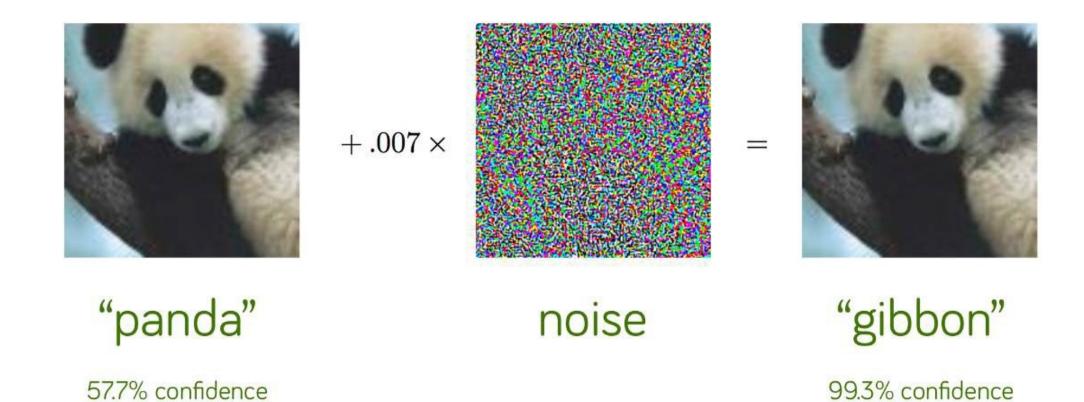
<u>Car</u>

	Method	ethod Setting Code <u>Moderate</u>		<u>Moderate</u>	Easy	Hard	Runtime	Environment	Compare		
1	DenseBox2			89.32 %	93.94 %	79.81 %	5 s	GPU @ 2.5 Ghz (C/C++)			
2	DJML			88.79 %	91.31 %	77.73 %	X S	GPU @ 1.5 Ghz (Matlab + C/C++)	0		
3	3DOP	88		88.64 %	93.04 %	79.10 %	3s	GPU @ 2.5 Ghz (Matlab + C/C++)			

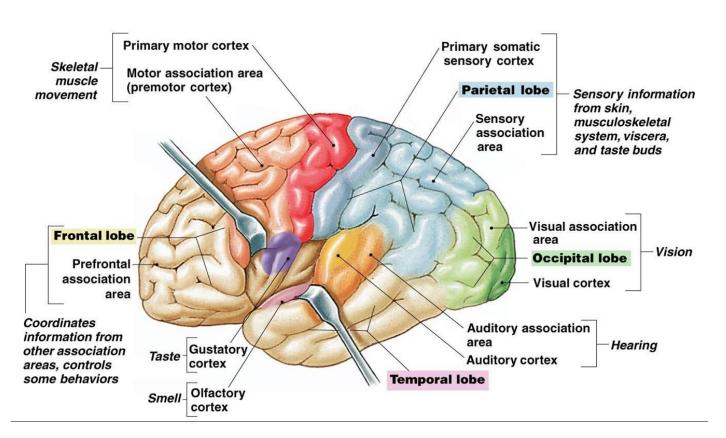
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.

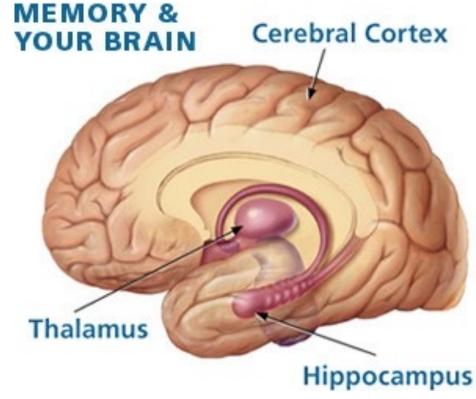
		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor	submission date
			abla	abla	\triangle	\triangleright	\triangleright	abla	\triangle	\triangle	abla	\triangle	\triangle	∇	\triangleright	\triangle	\triangleright	$\overline{}$	\triangleright	abla	\triangleright	\triangleright	\triangleright
>	Fast R-CNN + YOLO [?]	70.8	82.7	77.7	74.3	59.1	47.1	78.0	73.1	89.2	49.6	74.3	55.9	87.4	79.8	82.2	75.3	43.1	71.4	67.8	81.9	65.6	05-Jun-2015
\triangleright	Fast R-CNN VGG16 extra data [?]	68.8	82.0	77.8	71.6	55.3	42.4	77.3	71.7	89.3	44.5	72.1	53.7	87.7	80.0	82.5	72.7	36.6	68.7	65.4	81.1	62.7	18-Apr-2015
\triangleright	segDeepM [?]	67.2	82.3	75.2	67.1	50.7	49.8	71.1	69.6	88.2	42.5	71.2	50.0	85.7	76.6	81.8	69.3	41.5	71.9	62.2	73.2	64.6	29-Jan-2015
\triangleright	BabyLearning [?]	63.8	77.7	73.8	62.3	48.8	45.4	67.3	67.0	80.3	41.3	70.8	49.7	79.5	74.7	78.6	64.5	36.0	69.9	55.7	70.4	61.7	12-Nov-2014

- Algorithms work pretty well
- Still some embarrassing mistakes...
- The general vision problem is not yet solved



Half of the cerebral cortex in primates is devoted to processing visual information. This is a lot. Means that vision has to be pretty hard!





Visual information is complicated and nuanced...

These are all dogs!

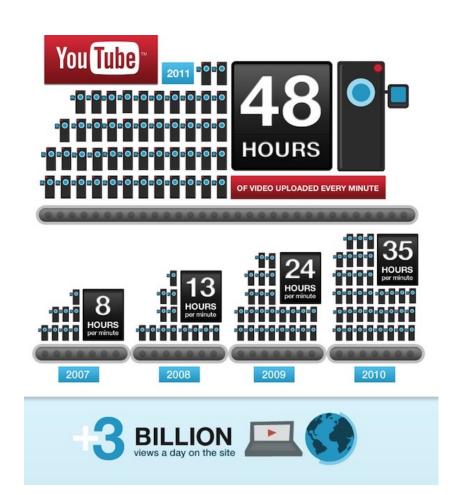
••••○ Verizon ❤ 4:20 PM 76% ■

✓ Albums chihuahua or muffin Select

Biederman, 1987

Lots of data to process:

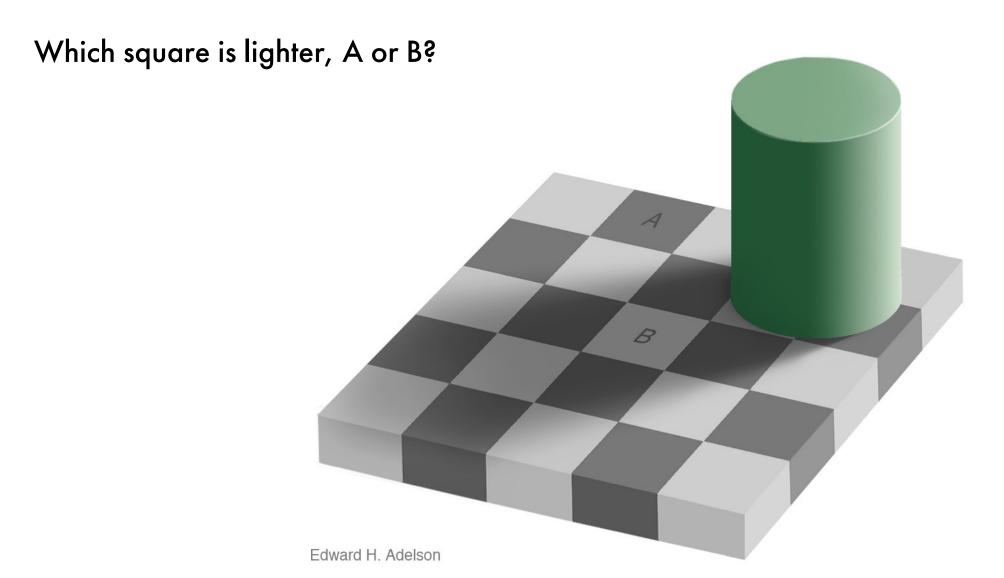
- Thousands to millions of pixels in an image
- 400 hours of video added to YouTube per minute (2022)
- Every day, people watch one billion hours of video on YouTube (2022)
- Much more considering all other platforms

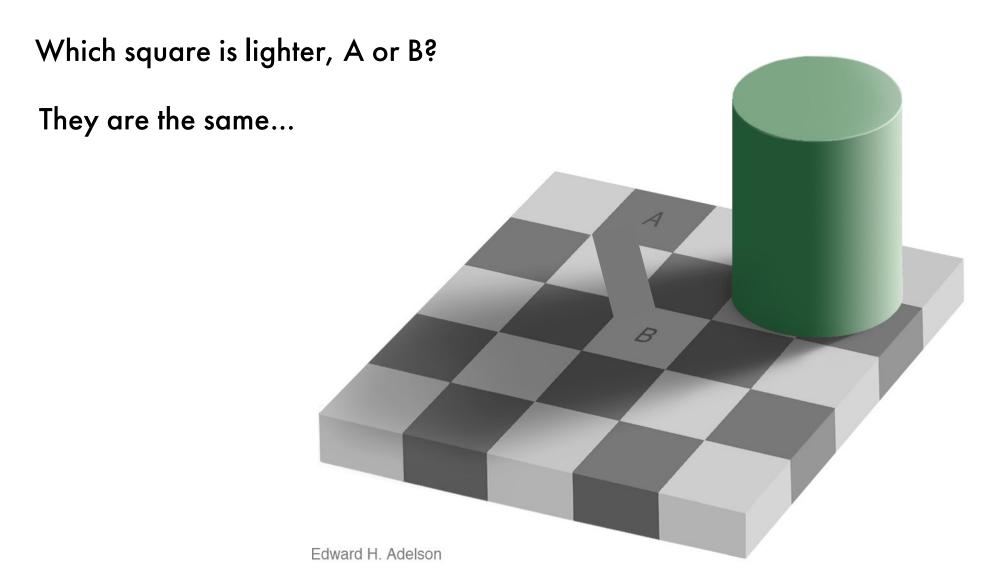


Human vision seems to work quite well.

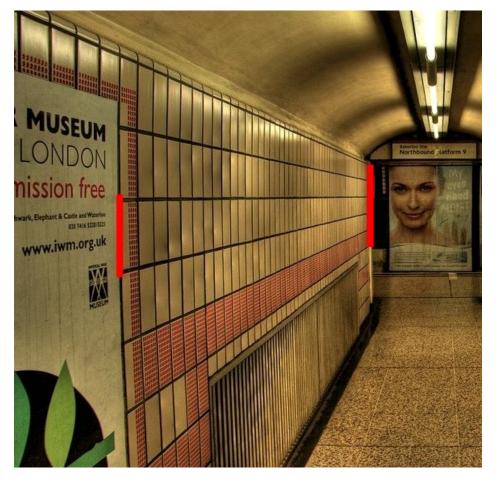
How well does it really work?

Let's play some games!



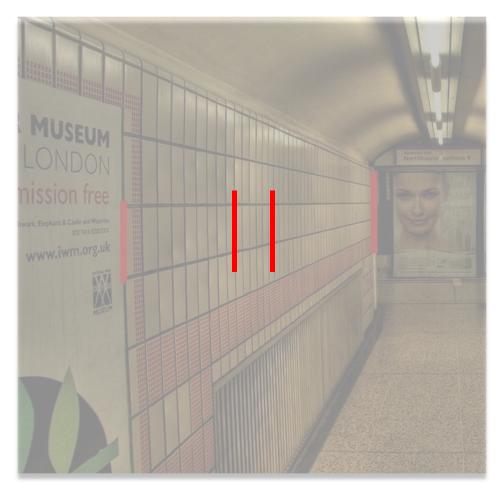


Which red line is longer?



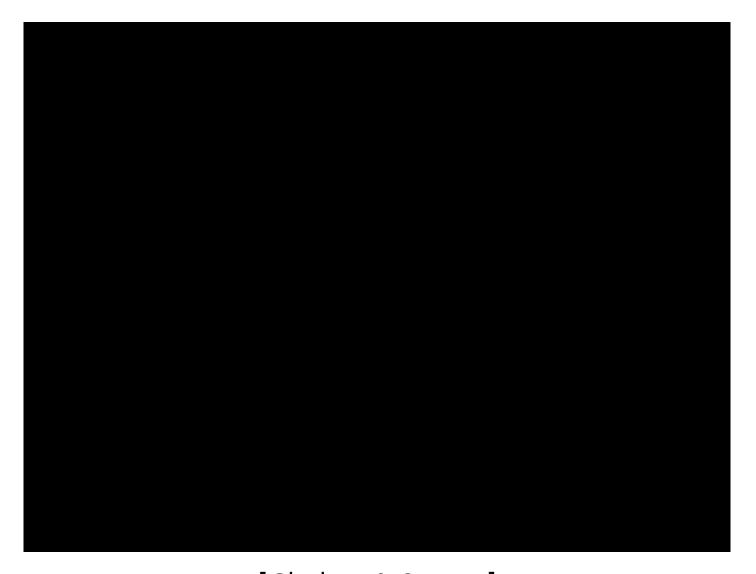
[Walt Anthony 2006]

Which red line is longer?
They are the same...



[Walt Anthony 2006]

- Count the number of times the white team pass the ball
- Concentrate, it's difficult!



[Chabris & Simons]

How good are humans?

Can you describe what this is?

[Torralba et al.]

How good are humans?

Can you describe what this is?

[Torralba et al.]

Humans can tell a lot from a little information... we have prior knowledge that can (usually) fill in the right information

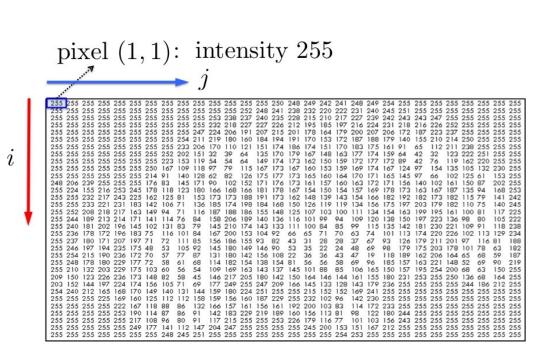
What do I need to become a good Computer Vision researcher?

- Some math knowledge
- Good programming skills
- Imagination
- Even better intuition
- Lots of persistence
- Some luck always helps

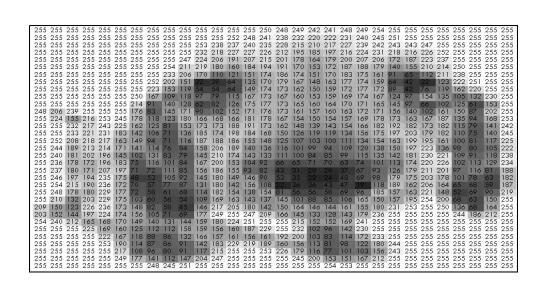
Images

- ullet We will typically denote the image as I
- Pixel values in the image are given by I(i,j), the intensity value at each pixel
- For a grayscale image we have $I \in \mathbb{R}^{m \times n}$, color is $I \in \mathbb{R}^{m \times n \times 3}$

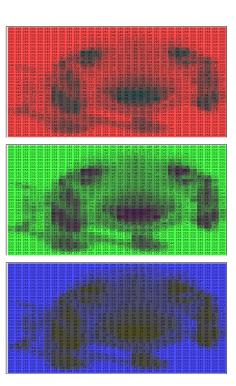
- ullet We will typically denote the image as I
- ullet Pixel values in the image are given by I(i,j), the intensity value at each pixel
- ullet For a grayscale image we have $I \in \mathbb{R}^{m imes n}$, color is $I \in \mathbb{R}^{m imes n imes 3}$

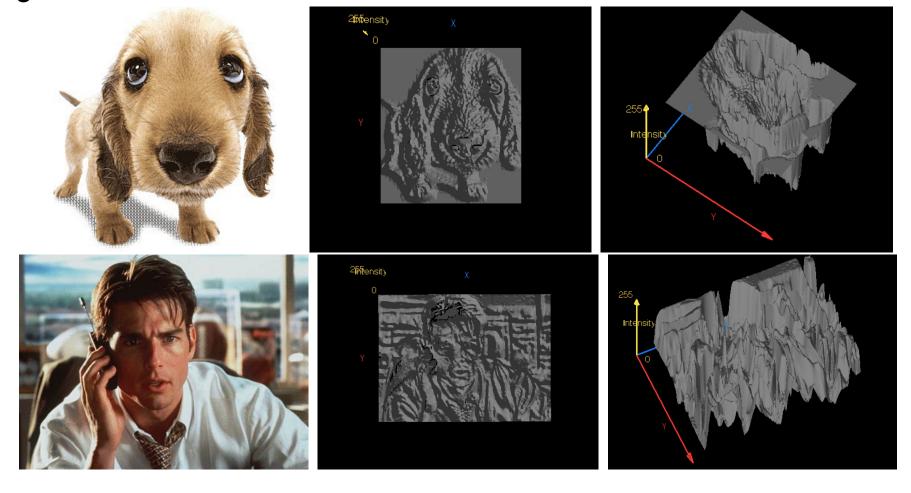


- ullet We will typically denote the image as I
- Pixel values in the image are given by I(i,j), the intensity value at each pixel
- For a grayscale image we have $I \in \mathbb{R}^{m \times n}$, color is $I \in \mathbb{R}^{m \times n \times 3}$



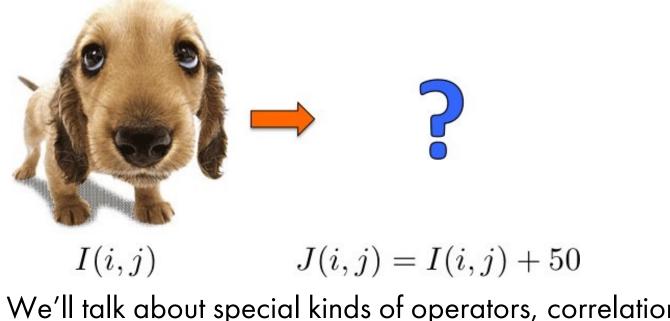
- ullet We will typically denote the image as I
- Pixel values in the image are given by I(i,j), the intensity value at each pixel
- For a grayscale image we have $I \in \mathbb{R}^{m \times n}$, color is $I \in \mathbb{R}^{m \times n \times 3}$





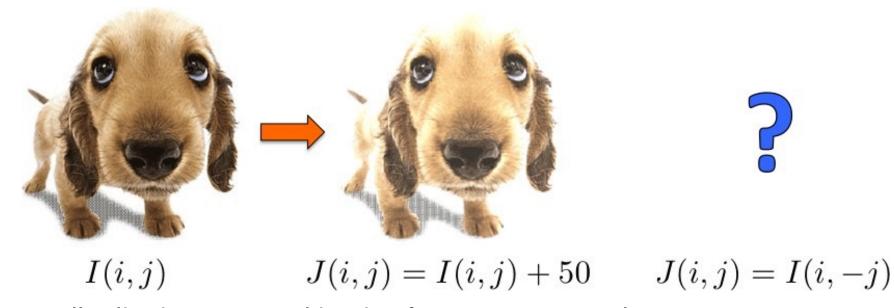
- We can think of a (grayscale) image as a function $f:\mathbb{R}^2\mapsto\mathbb{R}$ giving the intensity at position (i,j)
- Intensity 0 is black and 255 is white

As with any function, we can apply operators to an image, e.g.:



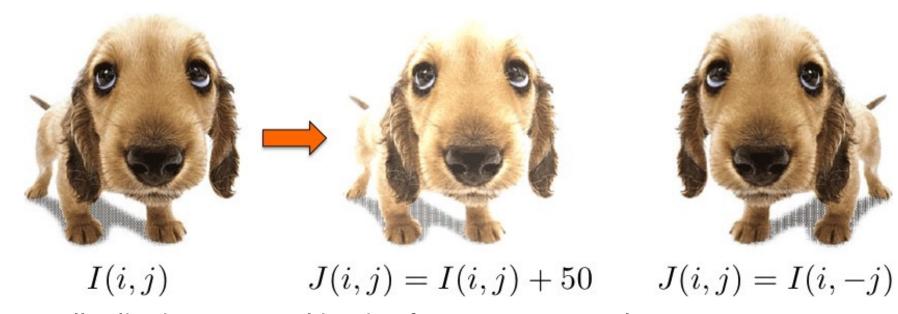
We'll talk about special kinds of operators, correlation and convolution (linear filtering)

As with any function, we can apply operators to an image, e.g.:



We'll talk about special kinds of operators, correlation and convolution (linear filtering)

As with any function, we can apply operators to an image, e.g.:



We'll talk about special kinds of operators, correlation and convolution (linear filtering)

Linear Filters

Reading: Szeliski book, Chapter 3.2

Motivation: Finding Waldo

How can we find Waldo?

[Source: R. Urtasun]

Motivation: Finding Waldo

Slide and compare! In formal language: filtering

Image Filtering

- Modify the pixels in an image based on some function of a local neighborhood of each pixel
- In other words, filtering

10	5	3			
4	5	1	Some function	7	
1	1	7			

Local image data

Modified image data

Applications of Filtering

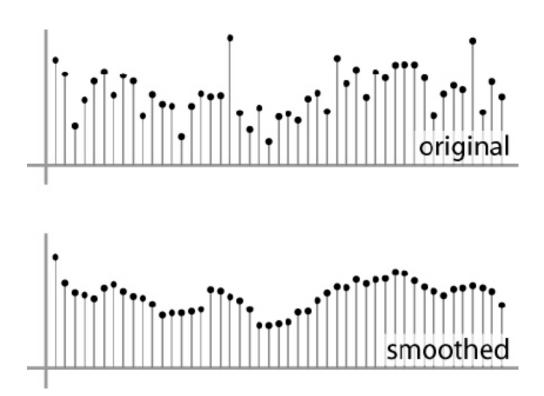
- Enhance an image, e.g., denoise.
- Detect patterns, e.g., template matching.
- Extract information, e.g., texture, edges.

Applications of Filtering

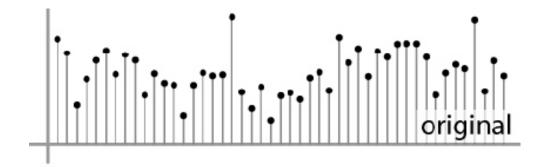
- Enhance an image, e.g., denoise.
- Detect patterns, e.g., template matching.
- Extract information, e.g., texture, edges.

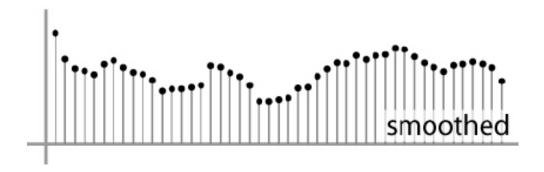
Given a camera and a still scene, how can you reduce noise?

• Simplest thing: replace each pixel by the average of its neighbors.

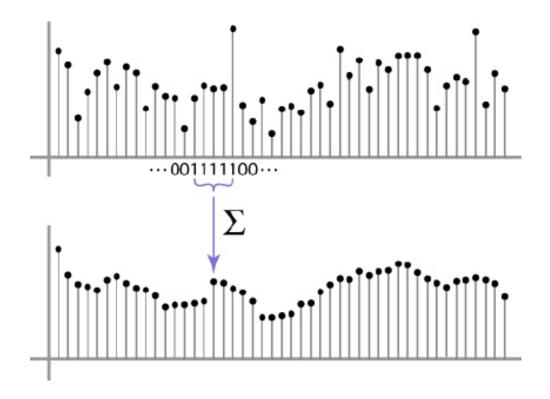


- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.

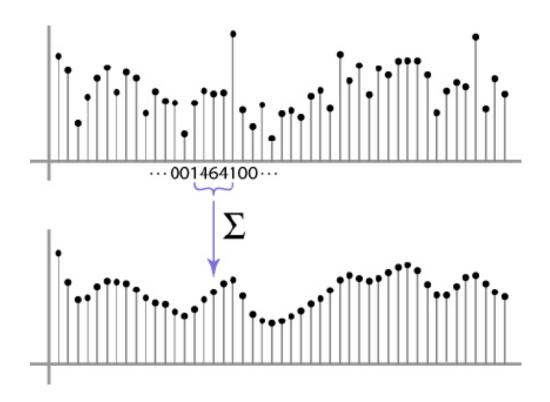


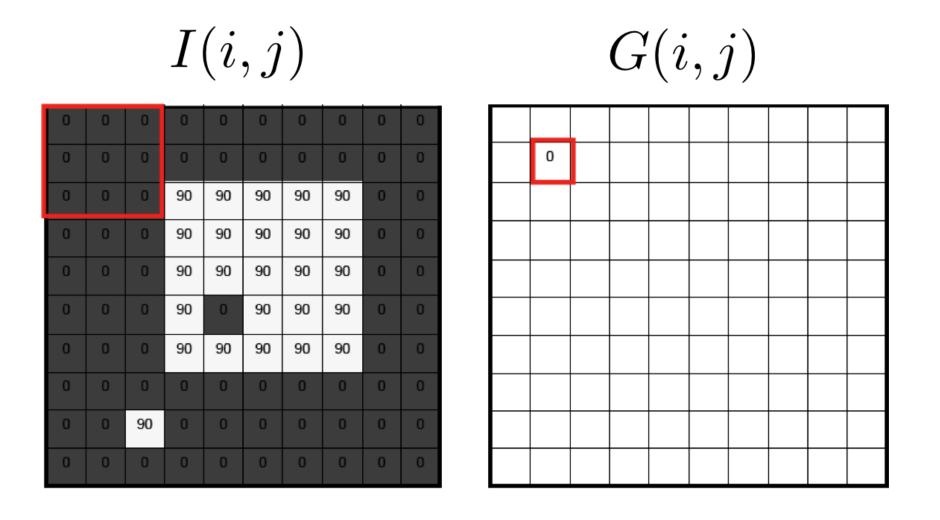


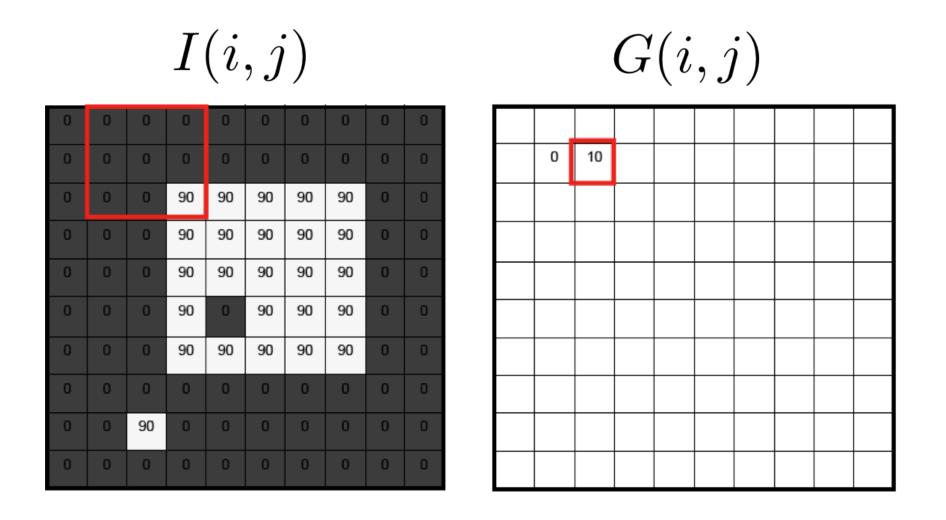
- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Moving average in 1D: [1, 1, 1, 1, 1]/5

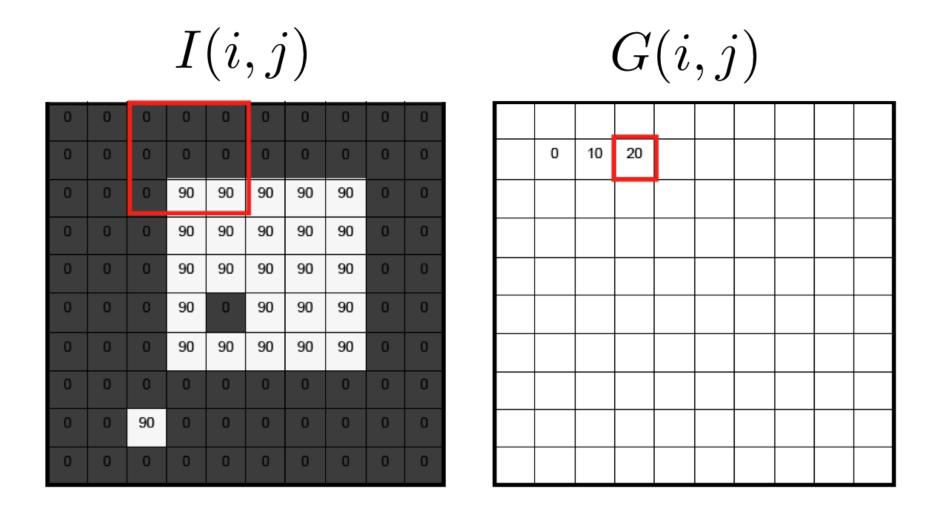


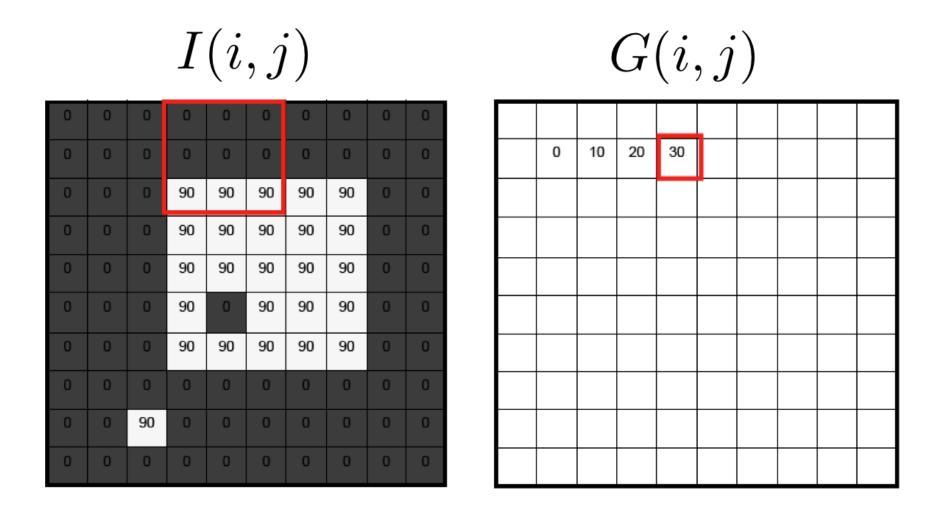
- Simplest thing: replace each pixel by the average of its neighbors.
- This assumes that neighboring pixels are similar, and the noise to be independent from pixel to pixel.
- Non-uniform weights [1, 4, 6, 4, 1] / 16

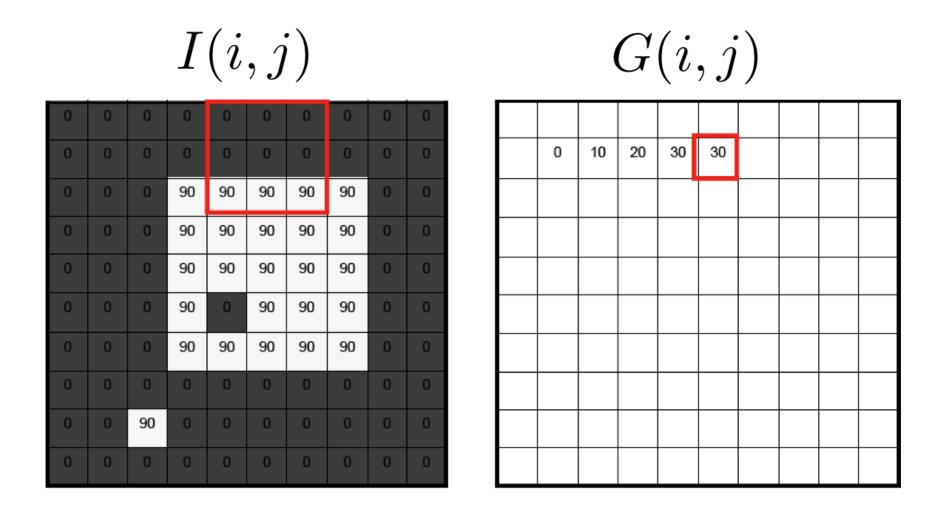


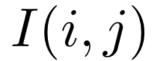


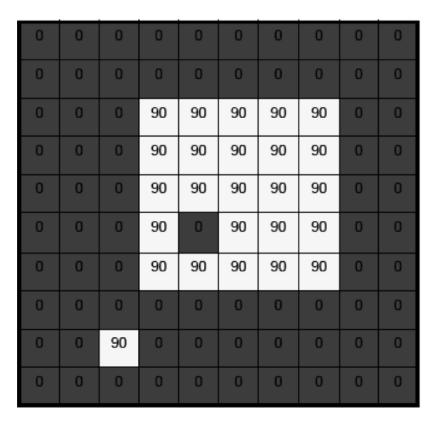












0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Involves weighted combinations of pixels in small neighborhoods (avg. filter):

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

Involves weighted combinations of pixels in small neighborhoods (avg. filter):

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

The output pixels value is determined as a weighted sum of input pixel values

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Involves weighted combinations of pixels in small neighborhoods (avg. filter):

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

The output pixels value is determined as a weighted sum of input pixel values

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

The entries of the weight kernel or mask are often called the filter coefficients

Involves weighted combinations of pixels in small neighborhoods (avg. filter):

$$G(i,j) = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(i+u,j+v)$$

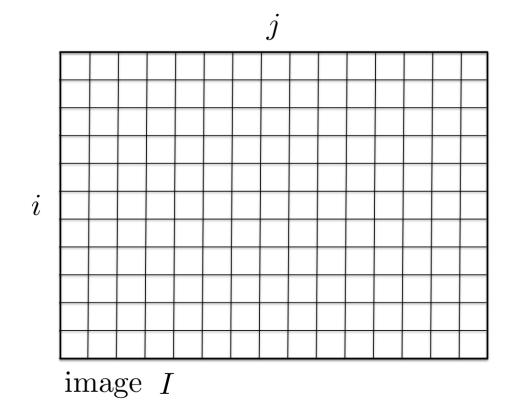
The output pixels value is determined as a weighted sum of input pixel values

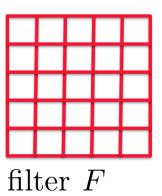
$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

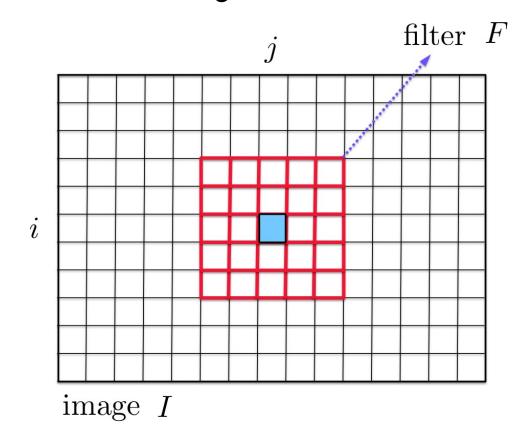
The entries of the weight kernel or mask are often called the filter coefficients

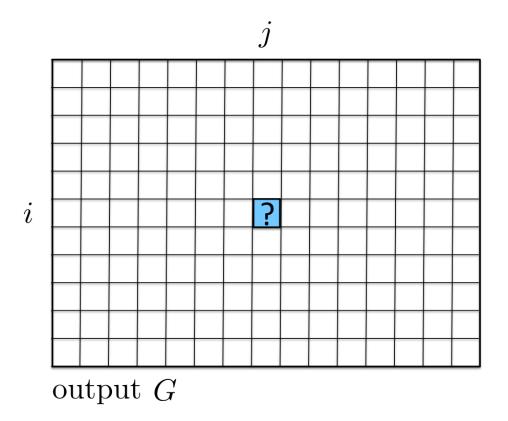
This operator is called the correlation operator

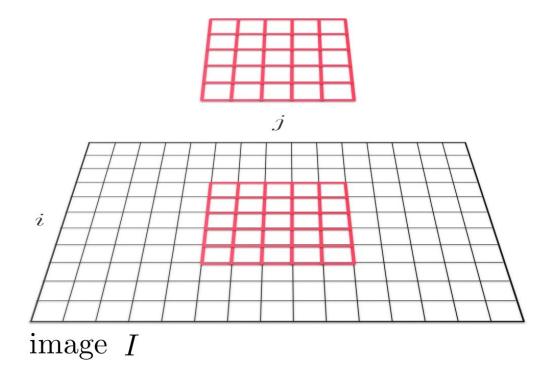
$$G = F \bigotimes I$$

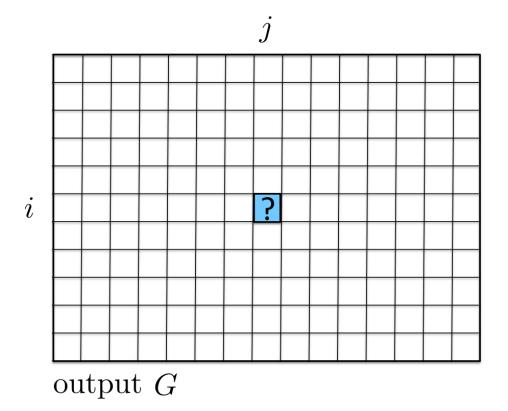




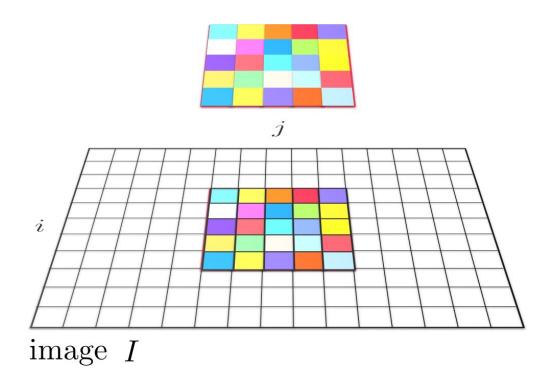


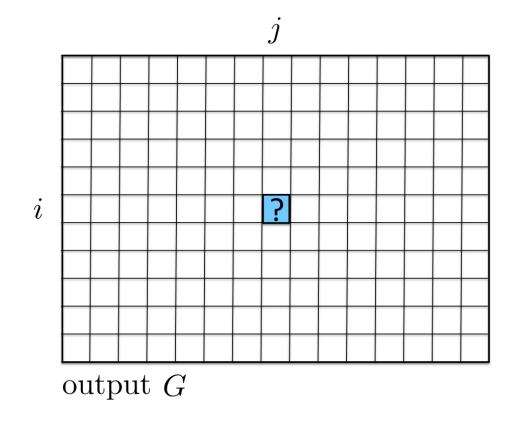






Linear Filtering: Correlation

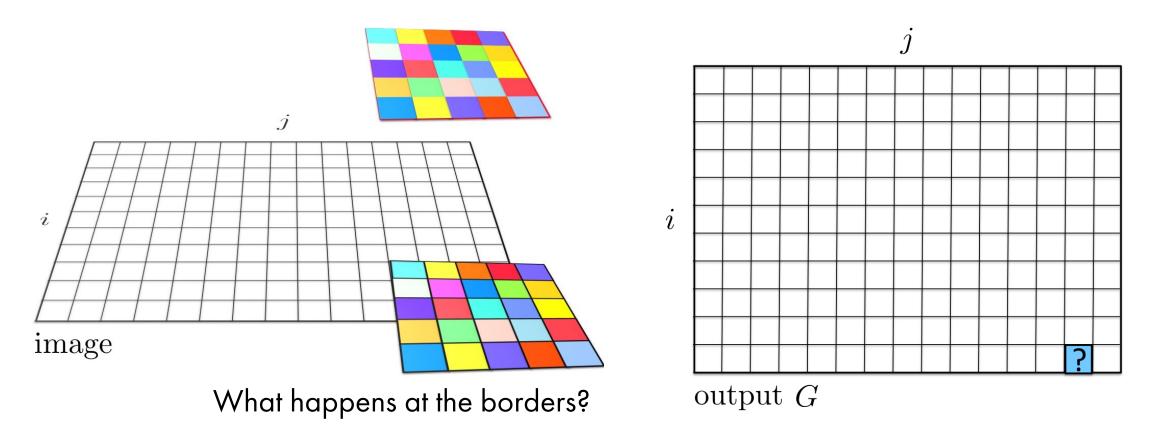




$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

$$G(i,j) = F(\square) \cdot I(\square) + F(\square) \cdot I(\square) + F(\square) \cdot I(\square) + \dots + F(\square) \cdot I(\square)$$

Linear Filtering: Correlation



$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

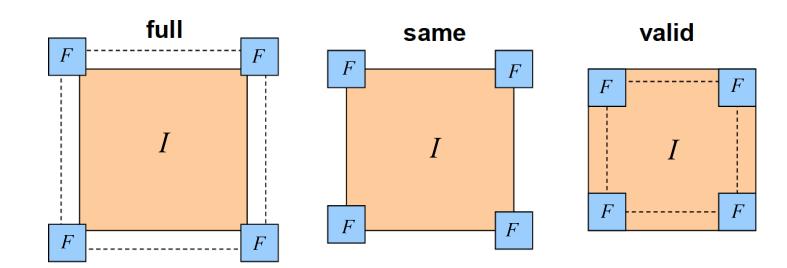
$$G(i,j) = F(\square) \cdot I(\square) + F(\square) \cdot I(\square) + F(\square) \cdot I(\square) + \dots + F(\square) \cdot I(\square)$$

Boundary Effects

- What happens at the border of the image? What's the size of the output matrix?
 - depends on how you implement it
- Scipy: scipy.signal.convolve2d
 - mode = 'full' output size is bigger than the image
 - mode = 'same': output size is same as I
 - mode = 'valid': output size is smaller than the image

Boundary Effects

- What happens at the border of the image? What's the size of the output matrix?
 - depends on how you implement it
- Scipy: scipy.signal.convolve2d
 - mode = 'full' output size is bigger than the image
 - mode = 'same': output size is same as I
 - mode = 'valid': output size is smaller than the image



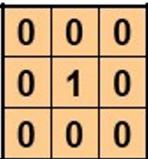
[Source: S. Lazebnik]



Original

0	0	0
0	1	0
0	0	0

Original



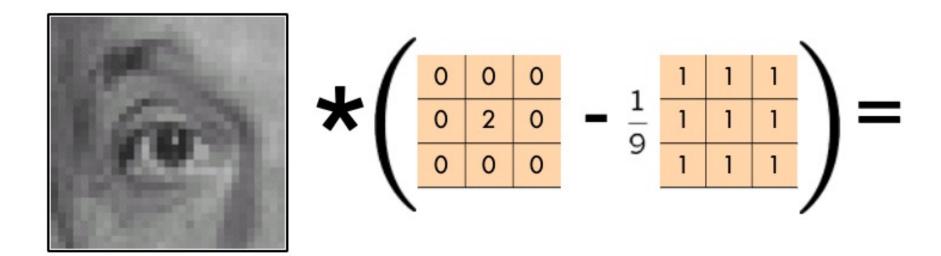
Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

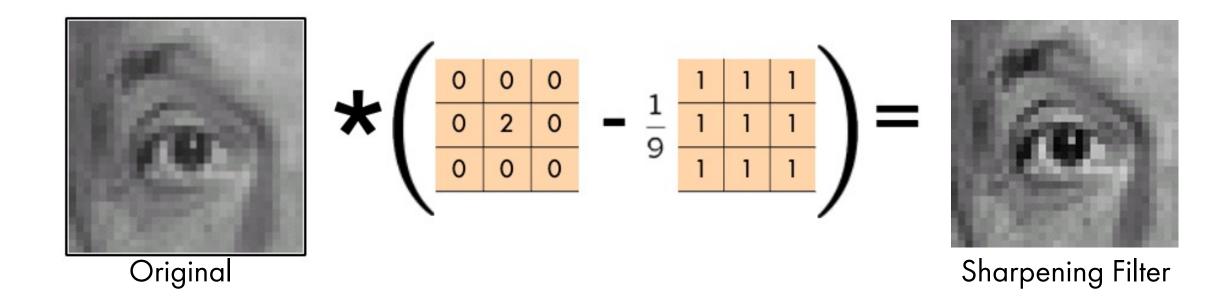
0	0	0
0	0	1
0	0	0

What's the result?



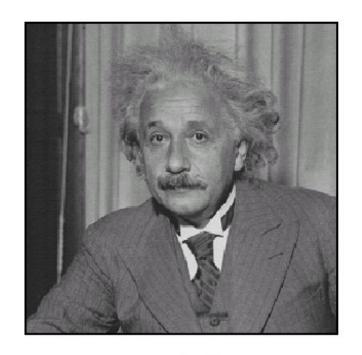
[Source: D. Lowe]

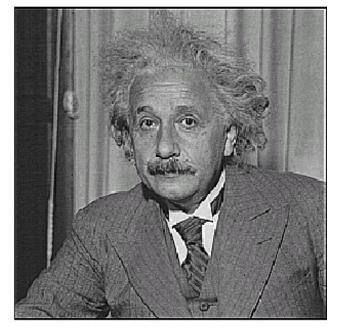
What's the result?



[Source: D. Lowe]

Sharpening





before

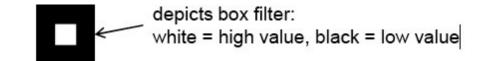
after

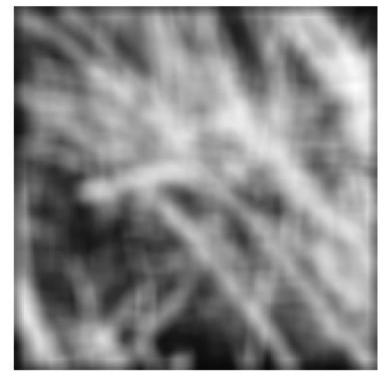
This is a prelude to edge detection (next time)!

[Source: D. Lowe]

Sharpening

Smoothing by averaging





original filtered

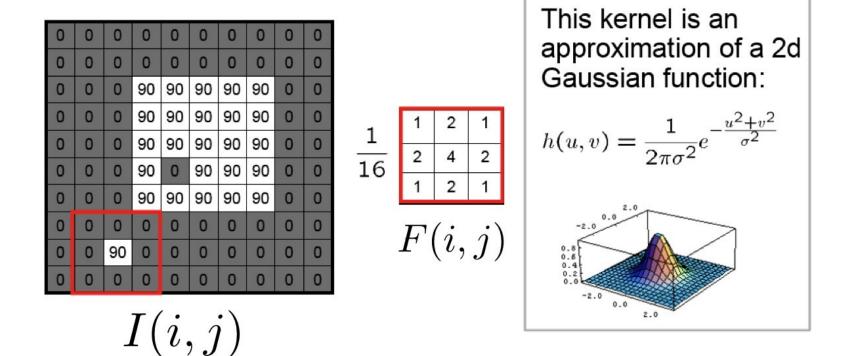
What if the filter size was 5×5 instead of 3×3 ?

[Source: K. Grauman]

Gaussian filter

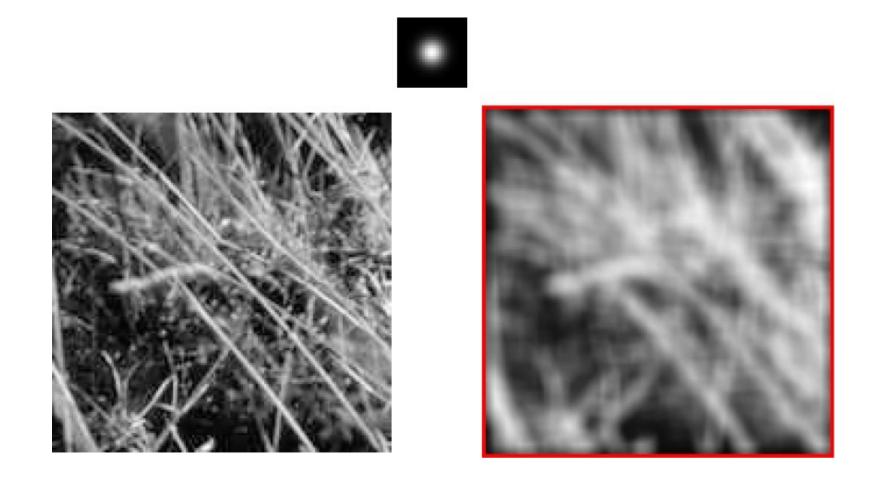
What if we want nearest neighboring pixels to have the most influence on the output?

Removes high-frequency components from the image (low-pass filter).



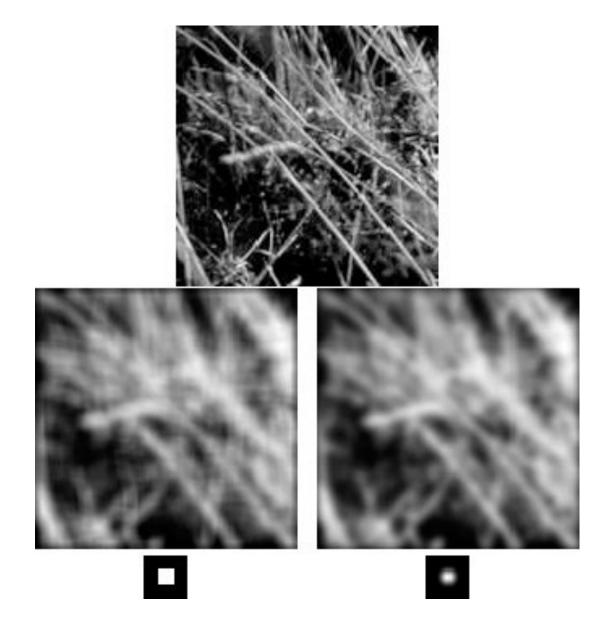
[Source: S. Seitz]

Gaussian filter



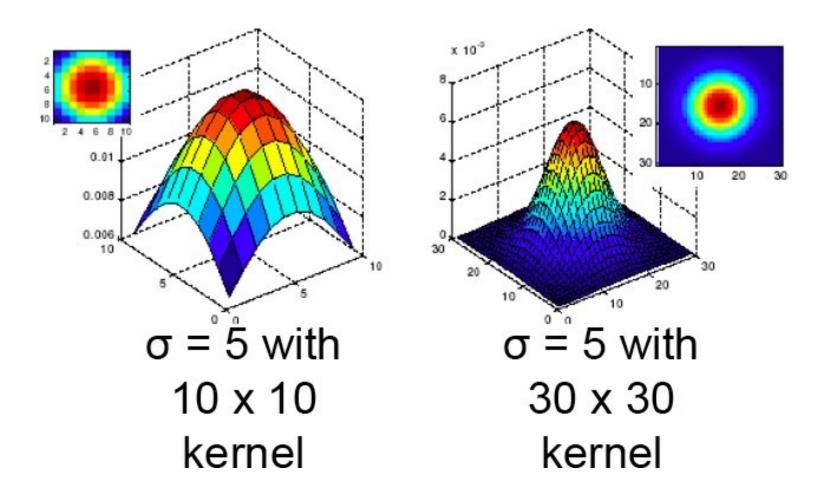
[Source: K. Grauman]

Mean vs. Gaussian filter



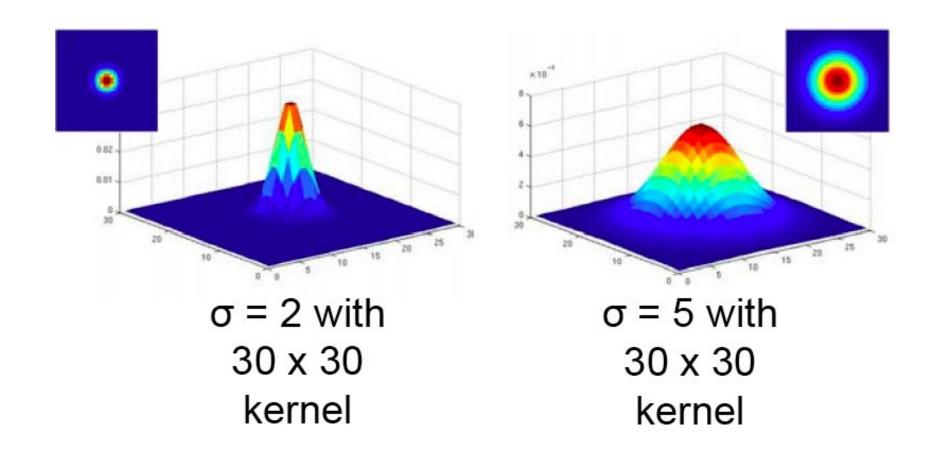
Gaussian filter parameters

Size of filter or mask: Gaussian function has infinite support, but discrete filters use finite kernels.

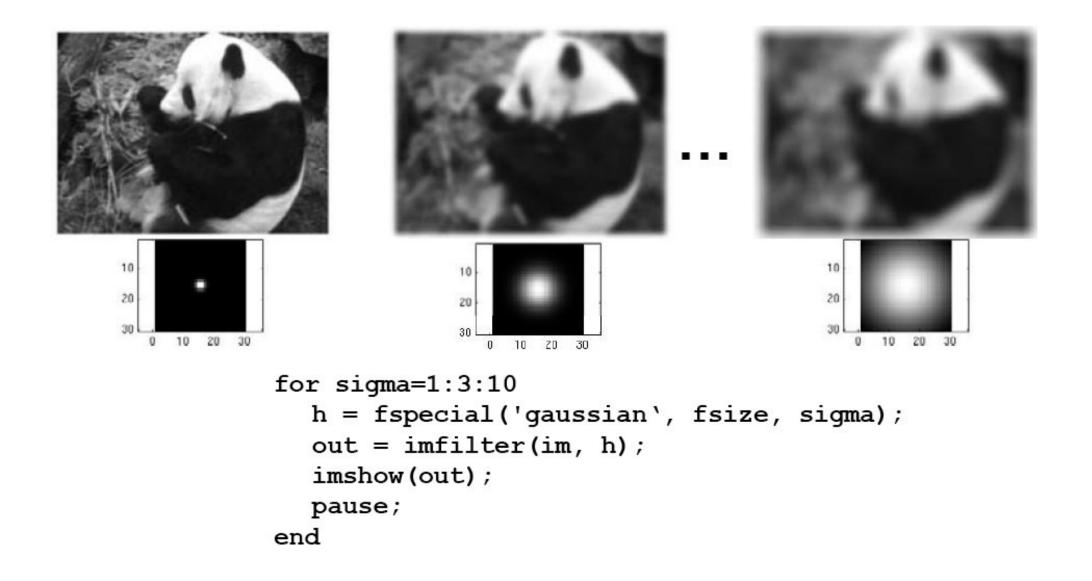


Gaussian filter parameters

Variance of the Gaussian: determines extent of smoothing.



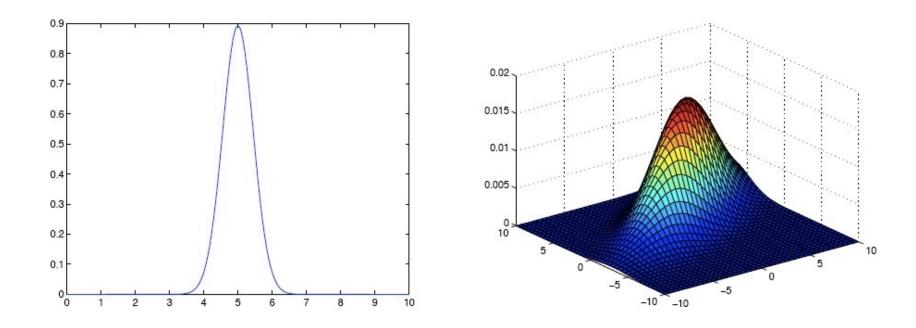
Gaussian filter parameters



Is this the most general Gaussian?

No, the most general form is anisotropic (i.e., not symmetric) $x \in \Re^d$

$$\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$



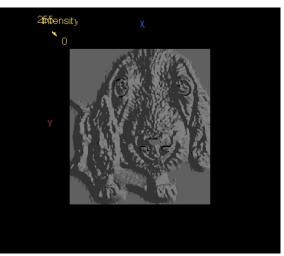
But the simplified version is typically used for filtering.

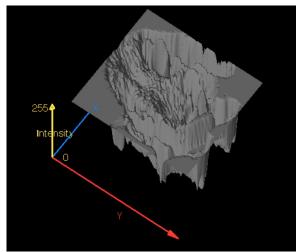
- All values are positive.
- They all sum to 1 to prevent re-scaling of the image.

- All values are positive.
- They all sum to 1 to prevent re-scaling of the image.
- Remove high-frequency components; low-pass filter.

- All values are positive.
- They all sum to 1 to prevent re-scaling of the image.
- Remove high-frequency components; low-pass filter.
- What is frequency in this context?

- All values are positive.
- They all sum to 1 to prevent re-scaling of the image.
- Remove high-frequency components; low-pass filter.
- What is frequency in this context?
- Edges!

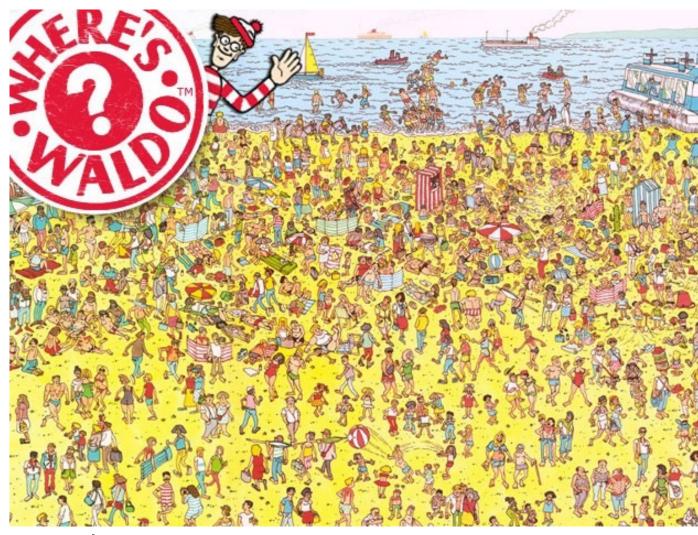




Finding Waldo

How can we use what we just learned to find Waldo?

Finding Waldo



Correlation?

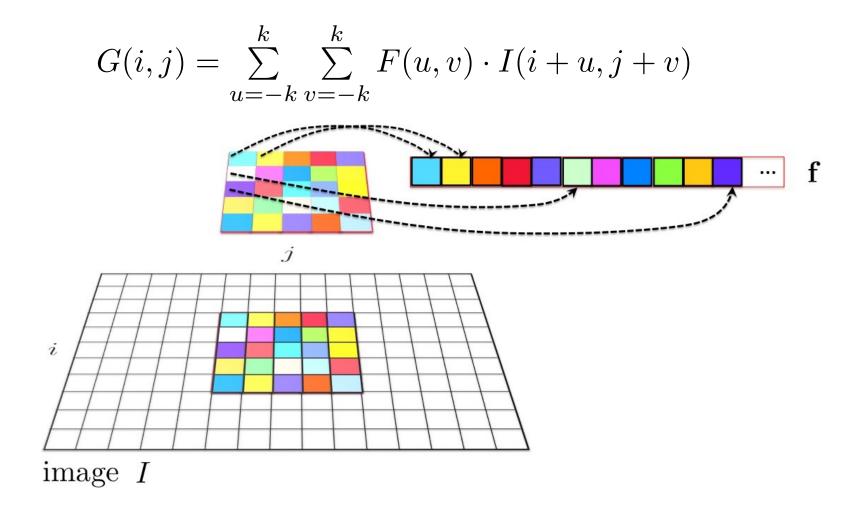
M.

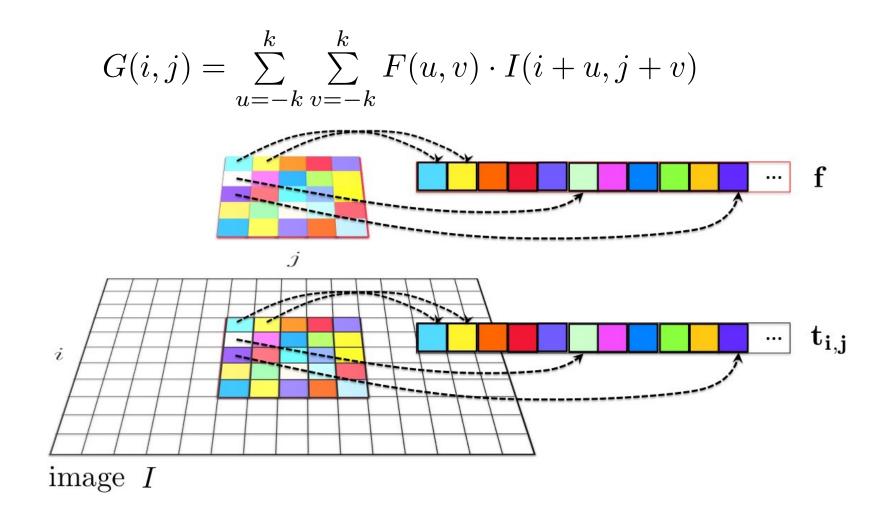
Filter F

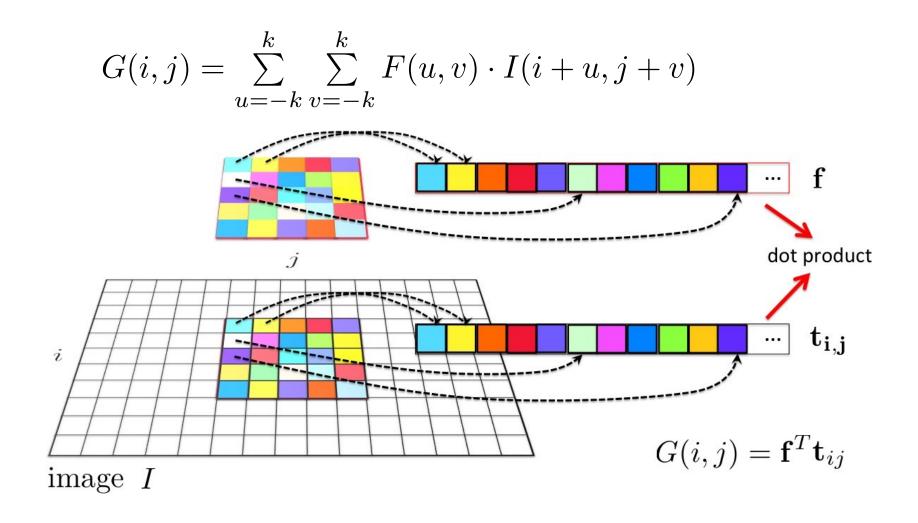
Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Can we write that in a more compact form (with vectors)?







Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Can we write that in a more compact form (with vectors)?

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Can we write that in a more compact form (with vectors)?

Define
$$\mathbf{f} = F(:), \quad T_{ij} = I(i-k:i+k,j-k:j+k), \quad \mathbf{t}_{ij} = T_{ij}(:)$$

$$G(i,j) = \mathbf{f} \cdot \mathbf{t}_{ij}$$

Where · is a dot product

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Can we write that in a more compact form (with vectors)?

Define
$$\mathbf{f} = F(:), \quad T_{ij} = I(i-k:i+k,j-k:j+k), \quad \mathbf{t}_{ij} = T_{ij}(:)$$

$$G(i,j) = \mathbf{f} \cdot \mathbf{t}_{ij}$$

Where · is a dot product

Can we write full correlation $G = F \otimes I$ in matrix form?

Remember correlation:

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i+u,j+v)$$

Can we write that in a more compact form (with vectors)?

Define
$$\mathbf{f} = F(:), \quad T_{ij} = I(i-k:i+k,j-k:j+k), \quad \mathbf{t}_{ij} = T_{ij}(:)$$

$$G(i,j) = \mathbf{f} \cdot \mathbf{t}_{ij}$$

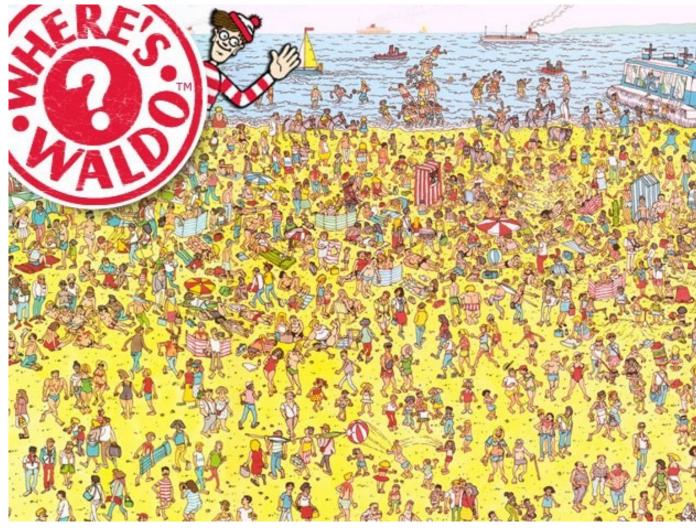
Finding Waldo: How could we ensure to get the best "score" (e.g. 1) for an image crop that looks exactly like our filter?

Finding Waldo: How could we ensure to get the best "score" (e.g. 1) for an image crop that looks exactly like our filter?

Normalized cross-correlation:

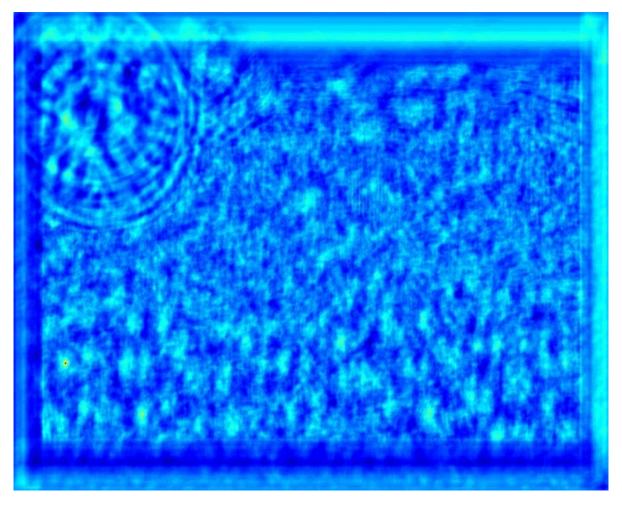
$$G(i,j) = \frac{\mathbf{f}^T \mathbf{t}_{ij}}{\|\mathbf{f}\| \|\mathbf{t}_{ij}\|}$$

Back to Finding Waldo

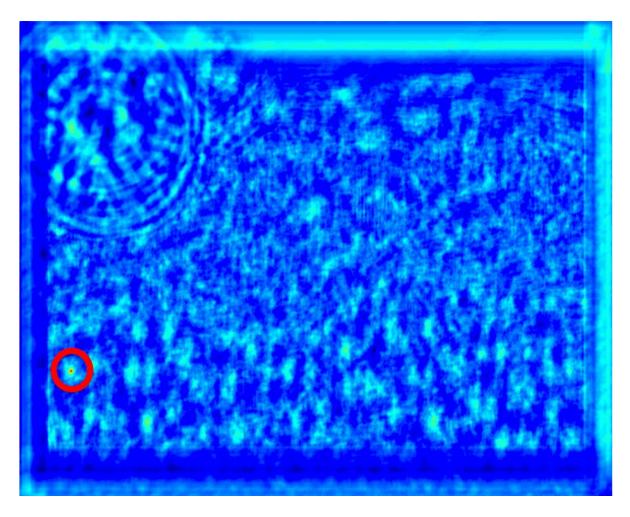


Image

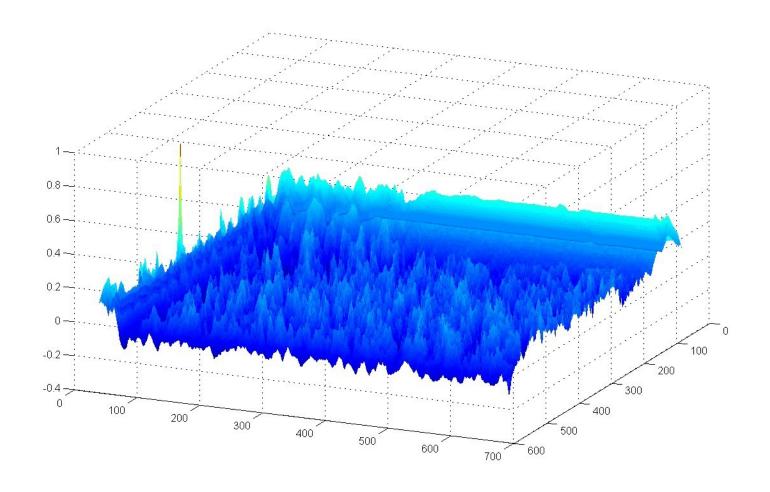
Filter



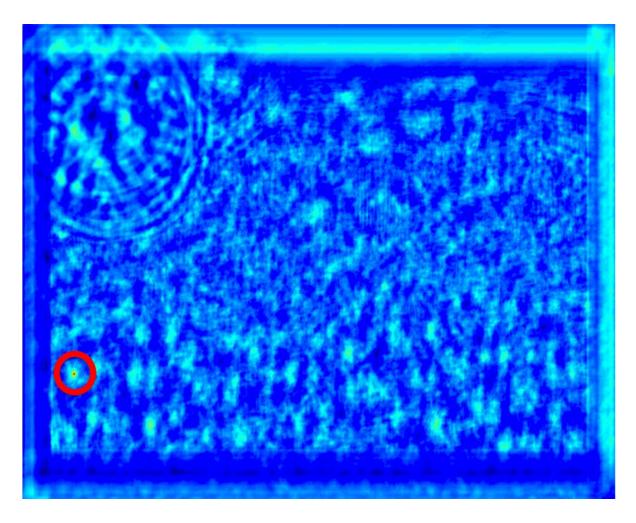
Result of normalized cross-correlation



Result of normalized cross-correlation



Find the highest peak

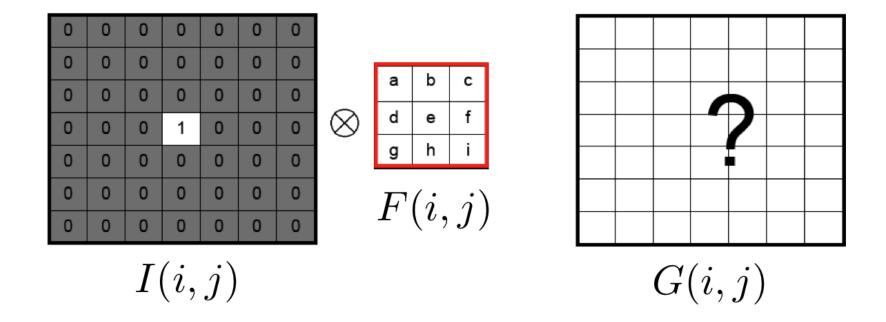


Find the highest peak

With a bounding box (rectangle the size of the template) at the point...

Correlation example

What is the result of filtering the impulse signal (image) I with an arbitrary filter F?



[Source: K. Grauman]

Convolution

Convolution operator

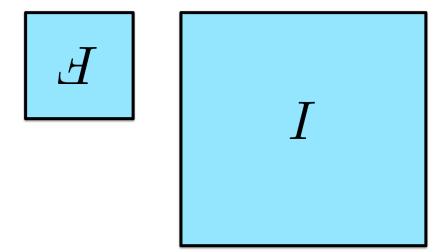
$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i-u,j-v)$$

Convolution

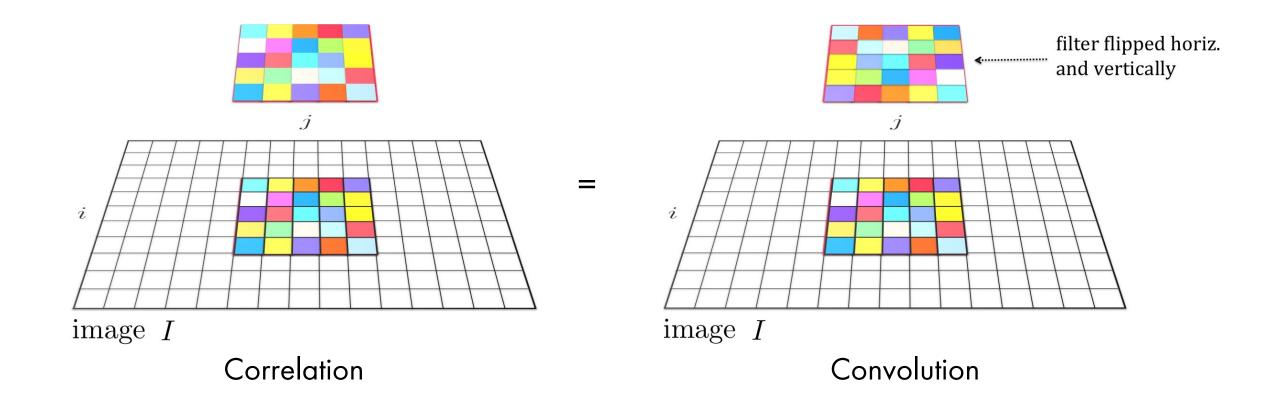
Convolution operator

$$G(i,j) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F(u,v) \cdot I(i-u,j-v)$$

Equivalent to flipping the filter in both dimensions (bottom to top, right to left) and apply correlation.



Correlation vs Convolution



Correlation vs Convolution

For a Gaussian or box filter, how will the outputs F * I and $F \otimes I$ differ?

Correlation vs Convolution

For a Gaussian or box filter, how will the outputs F * I and $F \otimes I$ differ?

How will the outputs differ for: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

"Optical" Convolution

Camera Shake

[Fergus et al., SIGGRAPH 2006]

Blur in out-of-focus regions of an image

Bokeh: http://lullaby.homepage.dk/diy-camera/bokeh.html

[Source: N. Snavely]

Properties of Convolution

Commutative: f * g = g * f

Associative: f * (g * h) = (f * g) * h

Distributive: f * (g + h) = f * g + f * h

Assoc. with scalar multiplier: $\lambda \cdot (f * g) = (\lambda \cdot f) * g$

Properties of Convolution

Commutative:
$$f * g = g * f$$

Associative:
$$f * (g * h) = (f * g) * h$$

Distributive:
$$f * (g + h) = f * g + f * h$$

Assoc. with scalar multiplier:
$$\lambda \cdot (f * g) = (\lambda \cdot f) * g$$

The Fourier transform of two convolved images is the product of their individual Fourier transforms:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

Properties of Convolution

Commutative: f * g = g * f

Associative: f * (g * h) = (f * g) * h

Distributive: f * (g + h) = f * g + f * h

Assoc. with scalar multiplier: $\lambda \cdot (f * g) = (\lambda \cdot f) * g$

The Fourier transform of two convolved images is the product of their individual Fourier transforms:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

Why is this good news?

- Hint: Think of complexity of convolution and Fourier Transform
- What if we wanted to undo the result of convolution?

• The process of performing a convolution requires K² operations per pixel, where K is the size (width or height) of the convolution filter

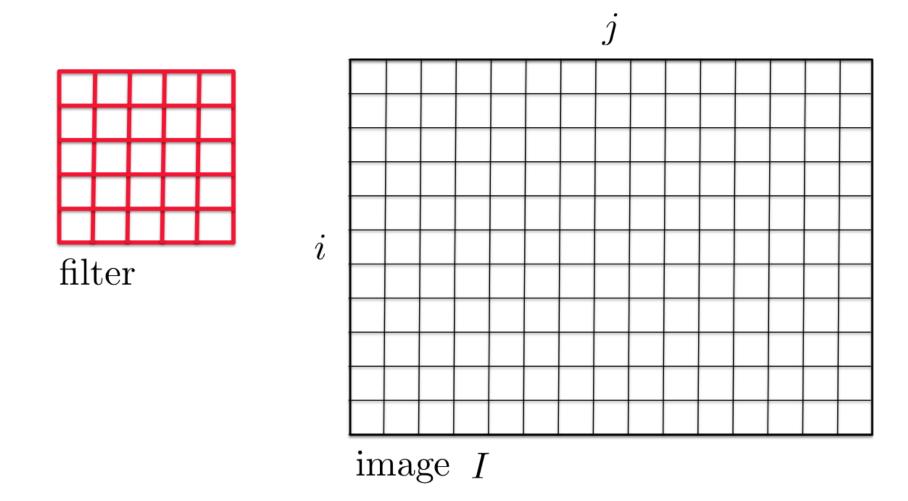
- The process of performing a convolution requires K² operations per pixel, where K is the size (width or height) of the convolution filter
- Can we do faster?

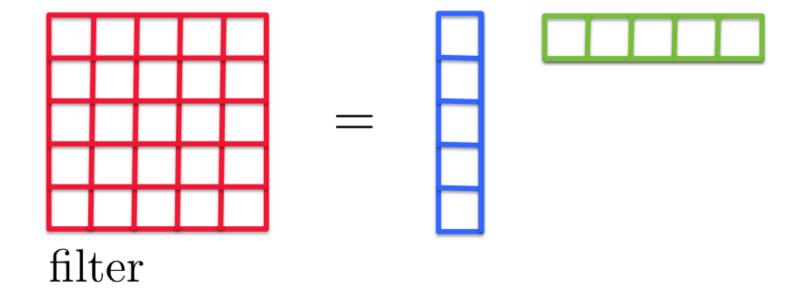
- The process of performing a convolution requires K² operations per pixel, where K is the size (width or height) of the convolution filter
- Can we do faster?
- In many cases (**not all!**), this operation can be sped up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, **requiring only 2K operations**

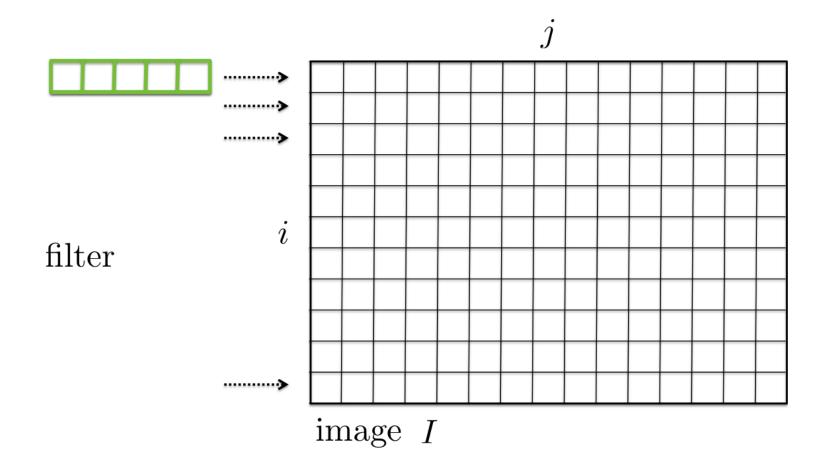
- The process of performing a convolution requires K² operations per pixel, where K is the size (width or height) of the convolution filter
- Can we do faster?
- In many cases (**not all!**), this operation can be sped up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, **requiring only 2K operations**
- If this is possible, then the convolutional filter is called separable

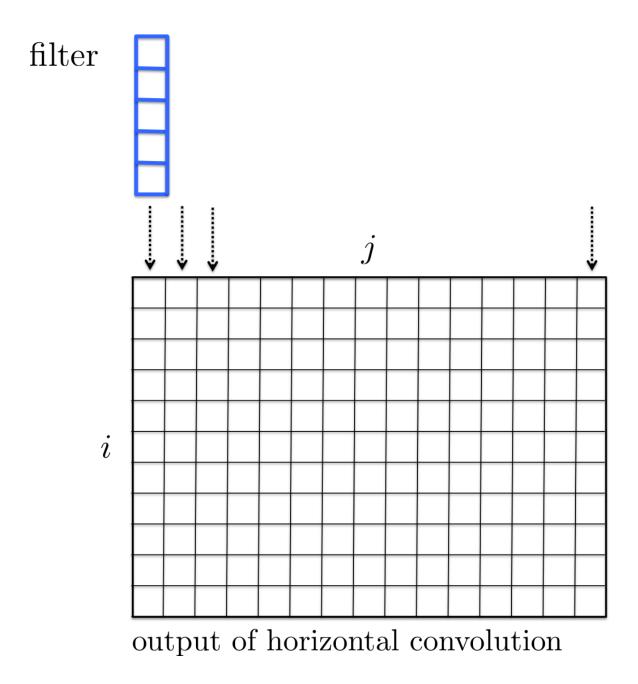
- The process of performing a convolution requires K² operations per pixel, where K is the size (width or height) of the convolution filter
- Can we do faster?
- In many cases (not all!), this operation can be sped up by first performing a 1D horizontal convolution followed by a 1D vertical convolution, requiring only 2K operations
- If this is possible, then the convolutional filter is called **separable**
- And it is the outer product of two filters:

$$\mathbf{F} = \mathbf{v}\mathbf{h}^T$$



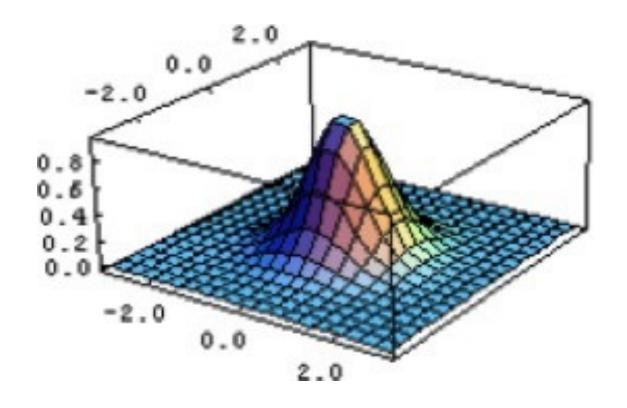






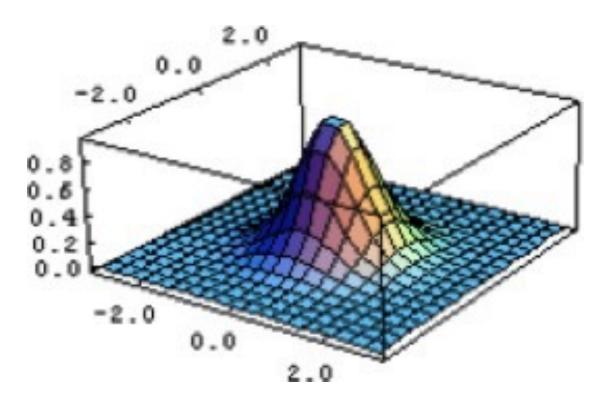
One famous separable filter we already know:

Gaussian:
$$f(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2+y^2}{\sigma^2}\right)$$



One famous separable filter we already know:

Gaussian:
$$f(x,y) = \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{\sigma^2}}\right) \cdot \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{y^2}{\sigma^2}}\right)$$



Is this separable? If yes, what's the separable version?

$\frac{1}{K^2}$	1	1		1
	1	1		1
	::	:	1	:
	1	1		1

Is this separable? If yes, what's the separable version?

$\frac{1}{K^2}$	1	1		1
	1	1		1
	::	:	1	:
	1	1	• • •	1

$$\frac{1}{K}$$
 1 1 \cdots 1

What does this filter do?

Is this separable? If yes, what's the separable version?

	1	2	1
$\frac{1}{16}$	2	4	2
	1	2	1

Is this separable? If yes, what's the separable version?

	1	2	1
$\frac{1}{16}$	2	4	2
	1	2	1

$$\frac{1}{4}$$
 1 2 1

What does this filter do?

Is this separable? If yes, what's the separable version?

	-1	0	1
$\frac{1}{8}$	-2	0	2
	-1	0	1

Is this separable? If yes, what's the separable version?

	-1	0	1
$\frac{1}{8}$	-2	0	2
	-1	0	1

$$\frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

What does this filter do?

Inspection... this is what we were doing.

- Inspection... this is what we were doing
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$F = \mathbf{U}\Sigma\mathbf{V}^T = \sum_i \sigma_i u_i v_i^T$$

with
$$\Sigma = \operatorname{diag}(\sigma_i)$$

- Inspection... this is what we were doing
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$F = \mathbf{U}\Sigma\mathbf{V}^T = \sum_i \sigma_i u_i v_i^T$$

with
$$\Sigma = \operatorname{diag}(\sigma_i)$$

Python: np.linalg.svd

- Inspection... this is what we were doing
- Look at the singular value decomposition (SVD), and if only one singular value is non-zero, then it is separable

$$F = \mathbf{U}\Sigma\mathbf{V}^T = \sum_i \sigma_i u_i v_i^T$$

with
$$\Sigma = \operatorname{diag}(\sigma_i)$$

- Python: np.linalg.svd
- $\sqrt{\sigma_1}\mathbf{u}_1$ and $\sqrt{\sigma_1}\mathbf{u}_1$ are the vertical and horizontal filters

Summary – Stuff You Should Know

- Correlation: Slide a filter across image and compare (via dot product)
- Convolution: Flip the filter to the right and down and do correlation
- Smooth image with a Gaussian kernel: bigger σ means more blurring
- Some filters (like Gaussian) are separable: you can filter faster. First apply 1D convolution to each row, followed by another 1D conv. to each column

OpenCV:

- Filter2D (or sepFilter2D): can do both correlation and convolution
- GaussianBlur: create a Gaussian kernel
- medianBlur, medianBlur, bilateralFilter

Edges

What does blurring take away?

Next time:

Edge Detection