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Raskar et al. [2011]

transient imaging (a.k.a. femtophotography)



• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging 

• Neural rendering for propagating light

overview



echolocation

speed of sound in air: 343 meters / sec
    in water: 1480 meters / sec



Light takes 1.255 seconds to travel from the earth to the moon

speed of light in a vacuum: 299,792,458 meters / sec

(Light travels approximation 1 MILLION times faster than sound!)



transient imaging

speed of light in a vacuum: 299,792,458 meters / sec

(Light travels approximation 1 MILLION times faster than sound!)



direct and indirect time-of-flight sensors 
for transient imaging

Velodyne VLS-128 Microsoft Kinect v2
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direct and indirect time-of-flight sensing

Velodyne VLS-128
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direct and indirect time-of-flight sensing

Microsoft Kinect v2

Indirect time-of-flight sensor
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Seeing through Walls

[Adib et al., 2015]
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Positron Emission Tomography

(PET) Scan

Terahertz Time-gated Imaging 

[Redo-Sanchez et al., 2015]
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• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging 

• neural rendering for propagating light

overview
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Applications

Autonomous Navigation
Image by Wikimedia Commons

Space Station Docking
Image by NASA

3D Mapping
Image by LIDAR-America

Optical Communications
Image by Siasat Daily

Biomedical Imaging
Image by Washington University 

Consumer Electronics (2020 iPad Pro)
Video by Tim Fields 45
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International Laser Ranging Service (ILRS)

Retroreflector

Lunar Laser Ranging (LLR)

      - Location of Lunar Retroreflector



histogram of arrival times
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single-photon avalanche diode (SPAD)

SPAD properties:
• Each photon timestamped with 60 ps 

precision
• Measure up to 10 million photons a second
• No electronic read noise



LinoSPAD from FastTree 3D
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SPAD output regular image
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• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging 

• passive ultra-wideband sensing

overview
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1. Light efficiency / photon sensitivity (determines range)

2. High-speed time stamping (determines accuracy)

3. Computational algorithms (determines range and accuracy)

Challenges

59



1. Light efficiency / photon sensitivity (determines range)

• intensity of returned light falls off with 1/d2, i.e. very quickly!

• emit as much light as possible - fundamentally limited by eye 
safety (in most applications)

• detect as much light as possible, ideally individual photons

Challenges

60



2. High-speed time stamping (determines accuracy)

• speed of light is ~300,000,000 m/s

• 1 m = 3.3 ns; 1 cm = 33 ps; 1 mm = 3.3 ps

• need picosecond-accurate time-stamping → usually high-
end electronics, but also done with ASICs, FPGAs

Challenges

61



3. Computational algorithms (determines range and 
accuracy)

• robust depth estimation from single photon per pixel!

Kirmani et al. “First-photon 
Imaging”, Science 2014

conventional method first-photon imaging

Challenges

62



(Single-photon) Avalanche Photodiodes
Linear mode (i.e., avalanche photodiode or APD): 
acts like a conventional photodiode with extremely high gain or amplification
time resolution >300 ps – 10 ns

Geiger mode (i.e., single-photon avalanche photodiode SPAD):
500x more sensitive, i.e. single-photon sensitive
time resolution ~50 ps

image by Princeton Lightwave
Semiconductor devices 63
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illumination optics

imaging optics

SPAD Array

camera

Lindell et al., SIGGRAPH 2018
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vertical scanline

(note: laser illumination is too weak to observe visually while scanning under ambient light)

scan rate: 20 Hz lights on

68



scan rate: 20 Hz lights off

(captured at 240 FPS)

Lindell et al., SIGGRAPH 2018
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Intensity image

SPAD measurements (20 Hz)
Average per spatial position
0.64 Signal Detections
0.87 Background Detections 

y t

x

Lindell et al., SIGGRAPH 2018
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Intensity image Log-matched filter [Rapp and Goyal 2017]

Denoised (w/o intensity) Denoised (w/ intensity) Denoised + Guided upsampling
71
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CASPI: collaborative photon processing for active single-photon imaging
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CASPI: collaborative photon processing for active single-photon imaging
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CASPI: collaborative photon processing for active single-photon imaging
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CASPI: collaborative photon processing for active single-photon imaging
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CASPI: collaborative photon processing for active single-photon imaging



• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging (part 1) 

• neural rendering for propagating light

overview
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occluder

NLOS 
imaging 
system

hidden 
scene

wall
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laser detector

scanning mirrors
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resolution: 128 x 128
area: 2 m × 2 m

83



x

y

t

measurementsscene photo

Lindell et al., SIGGRAPH 2019
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Dimensions: 2 m x 2 m x 1.5 m

scene photo reconstruction

Lindell et al., SIGGRAPH 2019
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laser and detector 
focus on this point

confocal sampling

histogram

timestamp (nanoseconds)

APJarvis [CC BY-SA 
4.0]

lasers and detectors 
illuminate and image 
same points 88
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wa
ll

hidden 
objectconfocal sampling

- simplified NLOS mathematical model
- enables efficient NLOS 

reconstruction
equivalent to one-way 
propagation at half-speed

90



sensor

light source
occluder

histogram

timestamp (nanoseconds)

p
ho

to
n

s 
de

te
ct

e
d



sensor

light source
occluder

imaging areahistogram

timestamp (nanoseconds)

p
ho

to
n

s 
de

te
ct

e
d



sensor

light source
occluder

imaging area

3D measurements



3D measurements

3D measurements hidden 3D volumegeometric termradiometric term
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3D measurements

3D measurements hidden 3D volumegeometric termradiometric term

Assumptions

1. no occlusions in hidden volume
2. light scatters isotropically
3. wall geometry is planar



3D measurements

Assumptions

1. no occlusions in hidden volume
2. light scatters isotropically
3. wall geometry is planar



NLOS image formation mode:

measurements unknown volumetransport matrix

PROBLEM:   extremely large in practice 
(e.g., for      = 100,       has 1 trillion elements)

Backpropagation [Velten 12, Buttafava 15]

Flops: 

Memory: 

Runtime:  Approx. 10 min.

Iterative Inversion [Gupta 12, Heide 13]

Flops: 

Memory: 

per iter.

Runtime:  > 1 hour



3D measurements

Our approach

express image formation model as a 
3D convolution, by:

1. confocalizing measurements
2. performing a change of variables

(set                  ,                         )
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3D measurements

Our approach

express image formation model as a 
3D convolution, by:

1. confocalizing measurements
2. performing a change of variables

(set                  ,                         )



measurements unknown volumeblur kernel

Confocal NLOS image formation mode:NLOS image formation mode:

measurements unknown volumetransport matrix

Backpropagation [Velten 12, Buttafava 15]

Flops: 

Memory: 

Iterative Inversion [Gupta 12, Heide 13]

Flops: 

Memory: 

per iter.

Runtime:  Approx. 10 min.

Runtime:  > 1 hour



measurements unknown volumeblur kernel

Confocal NLOS image formation mode:

3D Deconvolution (with Light Cone Transform)

[O’Toole et al. 2018]

Flops: 

Memory: 

NLOS image formation mode:

measurements unknown volumetransport matrix

Backpropagation [Velten 12, Buttafava 15]

Flops: 

Memory: 

Iterative Inversion [Gupta 12, Heide 13]

Flops: 

Memory: 

per iter.

Runtime:  Approx. 10 min.

Runtime:  > 1 hour

Runtime:  < 1 second



measurements

O’Toole et al., Nature 2018



measurements

Step 1: resample
and attenuate

along    -axis

O’Toole et al., Nature 2018



measurements

Step 2: 3D 
convolution

Step 1: resample
and attenuate

along    -axis

*

convolution kernel

inverse filter

O’Toole et al., Nature 2018



measurements

Step 2: 3D 
convolution

Step 1: resample
and attenuate

along    -axis

*

convolution kernel

inverse filter

O’Toole et al., Nature 2018

recovered 

volume

Step 3: resample
and attenuate

along    -axis



laser spot
confocal NLOS system

hidden object

occluder



1.25 meters



laser spot





NLOS image formation model:

measurements unknown volumetransport matrix

Backprojection [Velten 12, Buttafava 15]

Flops: 

Memory: 

Runtime:  Approx. 10 min.

Iterative Inversion [Gupta 12, Wu 12, Heide 
13]

Flops: 

Memory: 

per iter.

Runtime:  > 1 hour

3D Deconvolution (with Light-Cone Transform)
[O’Toole et al. 2018]

Flops: 

Memory: 

Runtime:  < 1 second

measurements unknown volumeblur kernel

Confocal scanning and Light-Cone Transform:

Assumption:
• Isotropic scattering (only diffuse or 

retroreflective objects)

117



• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging (part 2) 

• neural rendering for propagating light

overview
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confocal measurements

x

wavefield

wall (z = 0)

hidden object

t

image formation model
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t

general solution (time reversal)

wall (z = 0)

hidden object

wavefield confocal measurements
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general solution (time reversal)

1. approximate wave equation 
with finite differences

2. solve for previous timestep

3. repeatedly update     at all grid 
cells 

finite-difference time-
domain method

123



general solution (time reversal)

1. approximate wave equation 
with finite differences

2. solve for previous timestep

3. repeatedly update       at all grid 
cells 

finite-difference time-
domain method
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z
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t

frequency–wavenumber (f–k) Migration

wall (z = 0)

hidden object

wavefield confocal measurements

FLOPS: O(𝒏𝟑 log 𝒏)
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Hardware Prototype
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Captured 

Measurements
Lindell et al., SIGGRAPH 2019
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Lindell et al., SIGGRAPH 2019



f-k Migration

Measurements (z=0) Spectrum Hidden Volume (t=0)

Resample

Interpolated Spectrum

131



f-k Migration
Express wavefield as function of measurement spectrum (plane wave decomposition)

wavefield Fourier 
transform of 
measurements

Set t=0 to get migrated solution

Almost an inverse Fourier Transform!
132



f-k Migration
Set t=0 to get migrated solution

Almost an inverse Fourier Transform!

Use dispersion relation1 to perform substitution of variables 

1Georgi, Howard. The physics of waves. Englewood Cliffs, NJ: Prentice Hall, 1993.
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Use dispersion relation1 to perform substitution of variables 
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Use dispersion relation1 to perform substitution of variables 
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Use dispersion relation1 to perform substitution of variables 

The migrated solution is an inverse Fourier Transform!

Resample
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f–k Migration

x

y

z

Dimensions: 2 x 2 m

Exposure: 180 min

Reconstruction time: ~90 sec 

(CPU)
Lindell et al., SIGGRAPH 2019



Reconstruction Comparison



hardware prototype
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hardware prototype
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Hardware Prototype
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real-time scanning

Framerate: 4 Hz
Resolution: 32 x 32
Dimensions: 2 m x 2 m x 2 m
Reconstruction time: ~1 s per frame

Lindell et al., SIGGRAPH 2019



Outlook

hidden scene Recovered surface

Directional Light-Cone Transform

[Young et al., CVPR 2020]
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Outlook
Keyhole NLOS Imaging

[Metzler et al., IEEE TCI 2021] 145



• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging 

• neural rendering for propagating light

overview
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relativity of simultaneity
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wavefront to the right closes faster—right event 

happens first!



relativity of simultaneity

• Can we capture and visualize light 
propagation from moving viewpoints? 

• Can we observe viewpoint-dependent 
changes in light propagation as Einstein 
predicted?



[Malik et al. ‘24]

“transient” videography at 250 billion frames per 

second
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pulsed 

laser

“transient” videography at 250 billion frames per 

second



[Malik et al. ‘24]

pulsed 

laser single-photon avalanche 

diode (SPAD)

“transient” videography at 250 billion frames per 

second



[Malik et al. ‘24]

will we observe light 
reach this corner first?

or this corner?

“transient” videography at 250 billion frames per 

second



[Malik et al. ‘24]

light pulse

refracted light



[Malik et al. ‘24]

light focused at cap



[Malik et al. ‘24]

light reaches 

this corner first



[Malik et al. ‘24]

wavefront propagates

away from camera



[Malik et al. ‘24]

light reaches the

back of the bottle



[Malik et al. ‘24]



[Malik et al. ‘24]



[Malik et al. ‘24]

shortest path length 
from bottle to 

camera



relativity of simultaneity

• Can we capture and visualize light 
propagation from moving viewpoints? 

• Can we observe viewpoint-dependent 
changes in light propagation as Einstein 
predicted?



relativity of simultaneity

Yes! (and no)

• we can’t move at relativistic speeds



relativity of simultaneity
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relativity of simultaneity
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ont
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c

No! space contracts so that the speed of light is 

maintained

(Lorentz contraction)



relativity of simultaneity

Yes! (and no)

• we can’t move at relativistic speeds

• we can capture and visualize propagation of 
light, including viewpoint-dependent effects



related work



transient imaging

streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

related work



streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

transient imaging



streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

NeRFs & video novel view synthesis

[Li ’22]
[Cao & Johnson ’23]
[Fridovich-Keil ’23]
[Wang ‘23]

transient imaging



streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

NeRFs & video novel view synthesis

[Li ’22]
[Cao & Johnson ’23]
[Fridovich-Keil ’23]
[Wang ‘23]

• do not account for finite speed 

of light

transient imaging



streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

NeRFs & video novel view synthesis

[Li ’22]
[Cao & Johnson ’23]
[Fridovich-Keil ’23]
[Wang ‘23]

• do not account for speed 

of light

Transient NeRF

[Malik 
’23]

transient imaging



streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

NeRFs & video novel view synthesis

[Li ’22]
[Cao & Johnson ’23]
[Fridovich-Keil ’23]
[Wang ‘23]

• do not account for speed 

of light

Transient NeRF

[Malik 
’23]

• only models direct 

reflections

transient imaging



transient imaging

streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

video novel view synthesis

[Li ’22]
[Cao & Johnson ’23]
[Fridovich-Keil ’23]
[Wang ‘23]

• do not account for speed 

of light

Transient-based NeRF

[Malik 
’23]

• only models direct 

reflections

contributions



transient imaging

streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

video novel view synthesis

[Li ’22]
[Cao & Johnson ’23]
[Fridovich-Keil ’23]
[Wang ‘23]

• do not account for speed 

of light

Transient-based NeRF

[Malik 
’23]

• only models direct 

reflections

contributions

• new method for novel view synthesis of light 

propagation videos



transient imaging

streak 
cameras
[Velten ’13, Gao ’14, 
…]

interferome
try
[Gkioulekas ‘15, 
…]

time-of-flight cameras
[Heide ‘13, O’Toole ’14, …]

SPADs
[O’Toole ‘17, Lindell, ‘18, 
…] 

• limited to single-viewpoint 

capture

related work

video novel view synthesis

[Li ’22]
[Cao & Johnson ’23]
[Fridovich-Keil ’23]
[Wang ‘23]

• do not account for speed 

of light

Transient-based NeRF

[Malik 
’23]

• only models direct 

reflections

contributions

• new method for novel view synthesis of light 

propagation videos

• introduce a new neural field parameterization to make 

this possible



transient imaging

streak 
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…]

time-of-flight cameras
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capture

related work

video novel view synthesis
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of light

Transient-based NeRF

[Malik 
’23]

• only models direct 

reflections

contributions

• new method for novel view synthesis of light 

propagation videos

• introduce a new neural field parameterization to make 

this possible

• demonstrate on a new multi-viewpoint transient 

dataset
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method transient light transport is viewpoint dependent!

viewpoint 1 viewpoint 2



method

viewpoint 1 viewpoint 2

• every camera viewpoint has its own temporal reference frame!
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method

• render from given 

viewpoint

• linearly increase time
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color image transient video (proposed)

moving camera (novel viewpoints —captured 

data)

mirror statue

[Malik et al. ‘24]



color image transient video (proposed)

moving camera (novel viewpoints —captured 

data)

mirror statue

[Malik et al. ‘24]

wavefront appears frozen

light reaches statue



color image transient video (proposed)

moving camera (novel viewpoints —captured 

data)

mirror statue

[Malik et al. ‘24]

reflection appears



color image transient video (proposed)

moving camera (novel viewpoints—captured 

data)

mirror statue

[Malik et al. ‘24]



color image transient video (proposed)

moving camera (novel viewpoints—captured 

data)

mirror

diffuse 

reflector

[Malik et al. ‘24]



color image transient video (proposed)

moving camera (novel viewpoints—captured 

data)

[Malik et al. ‘24]

pulse is dimmer—why?



color image transient video (proposed)

moving camera (novel viewpoints—captured 

data)

[Malik et al. ‘24]



color image transient video (proposed)

moving camera (novel viewpoints—captured 

data)

diffraction 

grating

[Malik et al. ‘24]



color image transient video (proposed)

moving camera (novel viewpoints—captured 

scene)

[Malik et al. ‘24]

0th order

1st & 2nd 

order



color image transient video (proposed)

moving camera (novel viewpoints—captured 

scene)

[Malik et al. ‘24]



color image transient video

captured scene (novel viewpoints)

[Malik et al. ‘24]

candles



color image transient video

captured scene (novel viewpoints)

[Malik et al. ‘24]

subsurface scattering



color image transient video

captured scene (novel viewpoints)

[Malik et al. ‘24]



no warping depth-based warping

time-warping (Velten et al. 2012)



no warping depth-based warping

time-warping (Velten et al. 2012)
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future work

• Can we render & incorporate relativistic effects?



future work

• Can we render & incorporate relativistic effects?

• this work focuses primarily on visualization, but…

• can we use multiply-scattered light to recover 3D 

geometry?

• what about material or reflectance properties?

• imaging through scattering media?



future work

• 3D visualization of light transport

• artistic, educational, and scientific visualizations

• visualize non-linear or quantum optical effects?

• imaging fast & slow



[Wei et al. ‘23]



• Many applications for time-of-flight imaging

• Lidar

• Non-line-of-sight

• Transient imaging

• Imaging through scatter

• New capabilities through combining emerging sensors with 

computation!

concluding remarks
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