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Announcements

* HW5 due Friday 10/18
* HW6 is out (last one) & problem session tomorrow
* Project proposals due Friday!



Announcements

Final Project (50%)

The final project grade takes into account your poster presentation (organization of poster, clarify of
presentation, ability to answer question), your source code submission (code organization and
documentation), and your final project report (appropriate format and length, abstract, introduction,
related work, description of your method, quantitative and qualitative evaluation of your method, results,
discussion & conclusion, bibliography).

You can work in teams of up to 3 students for the project. Submit only one proposal and final report for
each team. The expected amount of work is relative to the number of team members, so if two teams work
on asimilar project, we'd expect less work from a smaller team. Before you start to work on the proposal or
the report, take a look at some of the past project proposals and reports to give you sense for what's
expected (see link at the bottom of this page).

The project proposal is a 1-2 page document that should contain the following elements: clear motivation
of your idea, a discussion of related work along at least 3 scientific references (i.e., scientific papers not blog
articles or websites), an overview of what exactly your project is about and what the final goals are,
milestones for your team with a timeline and intermediate goals. Once you send us your proposal, we may
ask you to revise it and we will assign a project mentor to your team.

The final project report should look like a short (~6 pages) conference paper. We expect the following

sections, which are standard practice for conference papers: abstract, introduction, related work, theory

(i.e., your approach), analysis and evaluation, results, discussion and conclusion, references. To make your

life easier, we provide an LaTex template that you can use to get started on your report (see schedule for

link).
The project proposal is a 1-2 page document that should contain the following elements: clear motivation
of your idea, a discussion of related work along at least 3 scientific references (i.e., scientific papers not blog
articles or websites), an overview of what exactly your project is about and what the final goals are,
milestones for your team with a timeline and intermediate goals. Once you send us your proposal, we may

ask you torevise it and we will assign a project mentor to your team.



Overview

* Brief review of deconvolution with inverse/Wiener filtering
* A Bayesian perspective of inverse problems

* Image priors/regularization and total variation

* The ADMM method

* Image deconvolution with ADMM

« Compressive imaging

Must read: course notes on Deconvolution and Compressive Imaging!



Overview

* Brief review of deconvolution with inverse/Wiener filtering



Image Deconvolution — Brief Review

Given: blurry & noisy image Desired: sharp & noise-free image



Image Deconvolution — Brief Review

« Image formation model: b=cxx+n

2D measurements / \ additive noise

known 2D convolution kernel 2D target image
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« Image formation model: b=cxx+n

 (Convolution theorem:
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* Inverse filtering:
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« Image formation model: b=cxx+n

« Convolution theorem: b=F Y F(c} Fix}} +n

L F b
* Inverse filtering: ?cif=3‘7‘1{ { }}




Image Deconvolution — Brief Review

Image formation model: b=cxx+n
Convolution theorem: b=F HF{c} - F{x}}+n
L F{b
Inverse filtering: Xip=F ! tb)
F{c}

Wiener filtering:



Image Deconvolution — Brief Review

Image formation model: b=cxx+n
Convolution theorem: b=F HF{c} - F{x}}+n
L F{b
Inverse filtering: Xip=F ! tb)
F{c}
e ) 3
Wiener filtering: - o1 |‘G/7{C}| ~F b}
Xwf = F° 74 >
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Image Deconvolution — Brief Review

Image formation model: b=cxx+n
Convolution theorem: b=F HF{c} - F{x}}+n
Inverse filtering: Xif = F ! 716}

| ' F{c}

( 2
Wiener filtering: - o1 |*9?{C}| F{b}
Xwf = F 9 . >
| F{c) 1 F{c}

Duality of “signal processing” and “algebraic’ mte‘?gretatlon /
b=cxx & b=Cx Ce RNN b xeRN



Image Deconvolution — Inverse Filtering

Ground Truth No Noise 0=0.1 c=1.0

Measurements

=
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Image Deconvolution — Wiener Filtering

Ground Truth No Noise 0=0.1

Measurements

3 £ = -1 |‘/'{C}|2 .J{b}
‘wf = 7
|F ey P+ Tl

Reconstructions




Image Deconvolution

Problem: this is an ill-posed inverse problem, i.e., there are

infinitely many solutions that satisfy the measurements

Need some way to determine how “desirable” any one of

these feasible solutions is = need an image prior



Overview

* A Bayesian perspective of inverse problems



A Bayesian Perspective of Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

p(x|b)=?



A Bayesian Perspective of Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

Bayes' rule: p(xlb) - p(b|x)p(x) x p(b|x)p(x)
A

posterior image formation model  prior




A Bayesian Perspective of Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

, b
Bayes'’ rule: p(x|b) _ P( leP(x) ocp(b|x)p(x)
posterior image formation model  prior

n ~ N (0,0%) b| x~?



A Bayesian Perspective of Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

: b
BayeS rule: p(xlb) _ p( |x)p(x) ocp(blx)p(x)
A
posterior image formation model  prior
n, ~ /V(O,az) bl x ~ ¥ (Ax,c?)

2
o ax?

p(blx) = Hilp(b,.lxi) xe 27




A Bayesian Perspective of Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

, b
 Bayes' rule: p(x|b) _ P( leP(x) ocp(b|x)p(x)
posterior image formation model  prior

*  Maximum-a-posterior (MAP) solution:

Xpap = arg min_ — 10g<p(x | b))



A Bayesian Perspective of Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

, b
 Bayes' rule: p(x|b) _ P( leP(x) ocp(b|x)p(x)
posterior image formation model  prior

*  Maximum-a-posterior (MAP) solution:
Xpap = arg min_ — 10g<p(x | b))

=arg min_ — log(p(b | x)) — log(p(x))



A Bayesian Perspective of Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

, b
 Bayes' rule: p(x|b) _ P( leP(x) ocp(b|x)p(x)
posterior image formation model  prior

*  Maximum-a-posterior (MAP) solution:
Xpap = arg min_ — 10g<p(x | b))
=arg min_ — log(p(b | x)) - log(p(x))

= arg min_ ——||b — Ax|[’ + ¥(x)
= arg min_ = x||, X



A Bayesian Perspective of Inverse Problems

regularizer prior
! !
« Terminology: W(x) = —log(p(x))
data fidelity term regularization term
] I
v

1

7‘2”” - Ax”; + P(x)

XMAP = arg min
X



Overview

* Image priors/regularization and total variation



Examples of Image Priors / Regularizers
blurry stuff

Promote smoothness!



Examples of Image Priors / Regularizers
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Promote smoothness!

P(x) = | Ax||2
s

Laplace operator



Examples of Image Priors / Regularizers

blurry stuff stars

Promote smoothness! Promote sparsity!
P(x) = || A x|,

A
]

Laplace operator



Examples of Image Priors / Regularizers

blurry stuff stars

Promote smoothness! Promote sparsity!
Px) = || Axl, Y(x) = [|x]|,

A
]

Laplace operator



Examples of Image Priors / Regularizers

blurry stuff stars “natural” image

Promote smoothness! Promote sparsity!  Promote sparse gradients!

Px) = || Ax], F(x) = [[x]],

A
]

Laplace operator



Examples of Image Priors / Regularizers

blurry stuff stars “natural” image

Promote smoothness! Promote sparsity!  Promote sparse gradients!
Px) = || Ax], Y(x) = [|x]|, ¥(x) =TV(x)

A
]

Laplace operator



Total Variation (TV)

express (forward finite difference)
gradient as convolution

0O 0 O 0O 0 O
Dx=d. xx,d =10 -1 1 Dyx =d,xx,d,=]0 -1 0

X

0 0 O 0 1 O




Total Variation (TV)

better: isotropic easier: anisotropic

x \/<Dxx>f+ (bx) 00+ (2




Total Variation (TV)

 Examples are mostly black, indicating that gradient magnitudes

are close to O = natural images have sparse gradients!
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This intuition is well-captured by the TV pseudo-norm, either

anisotropic or isotropic:



Total Variation (TV)

 Examples are mostly black, indicating that gradient magnitudes

are close to O = natural images have sparse gradients!

* This intuition is well-captured by the TV pseudo-norm, either

anisotropic or isotropic:

TVanisotropic(x) =

P =2 (o), | +

D, x

<Dyx>i



Total Variation (TV)

 Examples are mostly black, indicating that gradient magnitudes

are close to O = natural images have sparse gradients!

* This intuition is well-captured by the TV pseudo-norm, either

anisotropic or isotropic:

WVanisnopic) = | Dex| + | Dyx| = T | (Do) | +

D, x

<Dyx>i

(Dxx)i N 5 2
R e

N
TVisotropic(%) = ||Dx||2’1 - Zi:l




Total Variation (TV)

The TV pseudo-norm is one of the most popular regularization

schemes for natural images!

Extensions to make it more general or applicable for other data:
* Hyper-Laplacian: Levin et al. 2009, Krishnan & Fergus 2009
» Total generalized variation: Bredies et al. 2009

* Frobenius norm of Hessian: Lefkimmiatis et al. 2003



How to solve inverse problem that

use these regularizers?



Solving Regularized Inverse Problem

* Objective or “loss” function minimize, %Hb _ Ax”j + AP (x)

of general inverse problem: 4
weight of regularizer



Solving Regularized Inverse Problem

Objective or “loss” function minimize, %Hb _ Ax||§ + AP (x)

of general inverse problem: 4

]
weight of regularizer

Practical #1 go-to solution: Adam solver implemented in PyTorch

3 simple steps, will explore in problem session & homework:

1. Implement evaluation of loss function
2. Set hyperparameters, including learning rate
3. Run



Solving Regularized Inverse Problem

Objective or “loss” function minimize, %Hb _ Ax||§ + AP (x)

of general inverse problem: 4
weight of regularizer

Practical #1 go-to solution: Adam solver implemented in PyTorch

3 simple steps, will explore in problem session & homework:

1. Implement evaluation of loss function
2. Set hyperparameters, including learning rate
3. Run

The “fine print”: convenient but doesn't always converge well



Overview

* The Alternating Direction Method of Multipliers (ADMM)



Regularized Image Reconstruction

minimize %\ b— Ax[ + AT (x)

T 1

data fidelity some image prior, such as
term L1 norm or others



Regularized Image Reconstruction

minimize %\ b— Ax{[ + AT (x)

{x}

t t
» minimize l| b — Ax[, + AT (z)
=} 2 .
£(x) 8
subject to Kx—2z=0

* gplitinto two parts = mathematically equivalent



Regularized Image Reconstruction

minimize l\ b — Ax[; + AT (z)
2 .

{x}

V 8(z2)
f(x)

subject to Kx—2z=0

* Lagrangian

L(z,z,y) = f(z) + g(z) + y" (Kz — 2)



Regularized Image Reconstruction

* Lagrangian

L(z,z,y) = f(z) + g(2) + ¥y (Kz - 2)

Optimal if all partial derivatives are zero!

Vezyl =20



Regularized Image Reconstruction

* Lagrangian

L(z,z,y) = f(z) + g(2) + ¥y (Kz - 2)

Also implies:

Veewl =0V, . f(x)+9(z2)=y" V. (Kz — 2)
Kr—2=0




Regularized Image Reconstruction

* Lagrangian

L(z,z,y) = f(z) + g(2) + ¥y (Kz - 2)

Also implies:
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Regularized Image Reconstruction

* Lagrangian

L(z,z,y) = f(z) + g(2) + ¥y (Kz - 2)

Also implies:

Vezyl =0V, f(x)+ g(2)

1V, S Kx — 2)

)

Kr—2=0




Regularized Image Reconstruction
Vm,z,yL :ZO < vx,zf(x) T g(Z) — yTvaz,z(Kx — Z)

S kx-z=c

................

' \ ' '
v
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S . e
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\ . .~ 4 . '
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A L -"”f(x) + g(z) = ds

X




Regularized Image Reconstruction

* Augmented Lagrangian

L (x,2,y)= f(x)+8(x)+ yT(Kx-z)+§||Kx-z|\j

We add quadratic penalty: improves convergence
properties compared to standard Lagrangian

p is called the “penalty parameter” (see Boyd 2011)



Regularized Image Reconstruction

« Scaled dual form of the augmented Lagrangian

* Given by some algebraic manipulation (easier form to work
with)

P
Lo(@, 2,y) = f(@) + 9(2) + Sl1Kw — 2+ ul® + S Jul]?

Where u = y/p is the scaled dual variable



Regularized Image Reconstruction

* Recap
« Split the objective function and enforce consistency with
constraint
* handle constraints using Lagrangian

* Lagrangian -> Augmented Lagrangian -> scaled dual form

P
Ly(@,2,y) = f(z) + 9(z) + S| Ko — 2 + ul” + £ ull



Regularized Image Reconstruction

* Recap
« Split the objective function and enforce consistency with
constraint
* handle constraints using Lagrangian

* Lagrangian -> Augmented Lagrangian -> scaled dual form

* optimize using ADMM!

P
Ly(@,2,y) = f(z) + 9(z) + S| Ko — 2 + ul” + £ ull



Regularized Image Reconstruction
p p
Lo(@,2,y) = f(@) + 9(z) + SlIKe — 2+ ul® + S Jull?

repeat until converged

X prox . (v)= arg{r?in L,(x,z,y)

7 proxr‘p(v)z argmian (x,Z,)’)
{z}
ue— u+Kx—z

* terative updates - ADMM



Regularized Image Reconstruction

proxy (1) = argmin (£(x) + (1/23) 2 — o]} .

gives proximal point of v with respect to f

* finds a value of that is close to v and
minimum of f, or moves to the domain of f

Figure 1.1: Evaluating a proximal operator at various points.



Regularized Image Reconstruction
p p
Ly(@,2,y) = f(@) + 9(2) + Gl Ke — 2+ ul® + S ul]?

repeat until converged

X ¢ prox, p(v)=argmian(x,z,y)zargmin%HAx—sz+§HKx—v||,v=z—u
N {x} {x}

z¢ prox;,(v)=argminL (x,z,y)=argmin AI'(z)+ gHv— Z|,v=Kx+u
{z} {z}

U— u+Kx-—z

* terative updates - ADMM



Overview

* Image deconvolution with ADMM



ADMM for Image Deconvolution with TV

Generic:  Ly(x.z,u) = f(x)+g(z)+—||Kx—Z+u|| +— ]

/N \

Deconv: L(x,z,u) = —IICx—bII + Azl + —IIDx—z+u|| +— (s

N 0
xR unknown sharp image
NXN . . .
CekRr circulant convolution matrix for known kernel ¢
2N
z, UER slack/dual variable, twice the size of x!

D
D = [ x] e RNV finite difference gradients, horizontal & vertical

Dy



ADMM for Image Deconvolution with TV

1 2 p 2 P
L, (x,z,u) =5||Cx - b||2+ Allz][, +5||Dx —z+u||2+5 ||u||§

while not converged:

1 2 P 2
X < prox (v) = arg min_ EHCX — b||2+5||Dx — v||2, v=2zZ-—U

- 1l,.0

Z < prox (v) = arg min_ /1||z||1+§||v—z||§, v=Dx+u

-l



ADMM for Image Deconvolution with TV

x — update:
X < prox,

| 2 P 2
|2’p(v) = arg min_ EHCx — b||2 + EHDx — v||2



ADMM for Image Deconvolution with TV

x — update: 1 ) )
X < prox,. ||2’p(v) = arg min_ EHCx — b||2 + EHDx — v||2
1 - / reformulate

= (Cx-b)"(Cx-b) + g(Dx — v)'(Dx - v)



ADMM for Image Deconvolution with TV

x — update: 1 5
: p 2
X < prox,. ||2’p(v) = arg min_ EHCx — b||2 + EHDx — v||2
1 - P / reformulate
= E(Cx —b) (Cx—b) + 5(Dx - v)' (Dx — v)
1 p

— E(xTCTCx —2x"C"b + b"b) + E(xTDTDx —2x"DTv + v'v)



ADMM for Image Deconvolution with TV

x — update: 1 5
: p 2
X < prox,. ||2’p(v) = arg min_ EHCx — b||2 + EHDx — v||2
1 - / reformulate
= (Cx-b)"(Cx-b) + g(Dx — v)'(Dx - v)
1 p

— E(xTCTCx —2x"C"b + b"b) + E(xTDTDx —2x"DTv + v'v)

;find solution by setting gradient to O

0=V, _f(x)=CI'Cx-C"'b + pD"Dx — pD'v



ADMM for Image Deconvolution with TV

x — update: 1 ) )
X < prox,. ||2’p(v) = arg min_ EHCx — b||2 + —||Dx — v||2
1 - / reformulate
=E(Cx—b) (Cx—b) + (Dx—v) (Dx —v)

!
= > (x"CTCx —2x"CTh + bTb) +2(x"D"Dx — 2x"DTv + vT)

;find solution by setting gradient to O
0=V, _f(x)=CI'Cx-C"'b + pD"Dx — pD'v

C| sed-form solution

X « (CTC+ pDTD) (CTb + pDTv)



ADMM for Image Deconvolution with TV

x — update:
X « prox,

| 2 P 2
|2’p(v) = arg min_ EHCx — b||2 + EHDx — v||2

x « (CTC+ pDTD) ™ (CTb + pDv)



ADMM for Image Deconvolution with TV

x — update:
X < prox

1 2 P 2
- ||2’p(v) = arg min_ EHCx - b||2 + EHDx - v||2

-1
X « (CTC+ pDTD) (CTb + pDTv)
Exploit duality of algebraic & signal processing interpretation

CTC & FHF(c}" Flcl} D7z =Dlv,+ Dv, & F | Fd )« F o)+ F{d, | Fa
D & 9-'{97{@* . F{d.) +97{dy}* . g{dy}} CTb & F {F(c) - F{b})



ADMM for Image Deconvolution with TV

x — update:
X « prOX” N

X « (CTC+ pDTD)_l(CTb + pDTv)

1
(v) = arg min_ EHCx — b||§ + §||Dx — v||§

Exploit duality of algebraic & signal processing interpretation
C'C & 7 H{F(e)" Flel} D"z = DIv;+ DIv, & 97‘1{97{dx} «- Flo) + 9/7{dy} - 9}{1}2}}

D™D @9‘1{9{%}*-9{%“9{%} 'g{dy}} CTh & F ' {F(c}x- F(b})

CTC+pDTD & F18 Fle) - Fle) + p F{d,} - F{d} + F{d, }*'g{d }>}

y

CTb+pDTv & F~{ Flc} - F{by + o Fld,} 9{01}+J'{ }*'T{Uz}>}




ADMM for Image Deconvolution with TV

x — update:
X < prox

- l,.0

1
(v) = arg min_ EHCx — b||§ + §||Dx — v||§

X « (CTC+ pDTD)_l(CTb + pDTv)

« Efficient x—update operates purely on 2D images with FFTs
and element-wise multiplications and divisions:

F eV Fb)+ p<°~{d Vo F o)+ Jf{ } . m{uz}>

prox . (z) =

F1

Fley - Fle)+o(Fld) - Fld) +F{d,}" F{d,)

|

~ can pre-compute mostparts ) = p(1: N),v, = v(N + 1:2N)~




ADMM for Image Deconvolution with TV

z — update:
Z < prox

: P 2
I ||1’p(v) = arg min_ A||z|, + E||v - z|[;

« Efficient z—update uses element-wise soft thresholding
operator (- ):



z — update:

ADMM for Image Deconvolution with TV

Z < prox

: P 2
I ||1’p(v) = arg min_ A||z|, + E||v - z|[;

Efficient z—update uses element-wise soft thresholding
operator & (- ):
vV — K U>K
) =8 (v) = 0 V| L k=W - K, -(-v - K,
V+Kk UV <-—K 1

1TOX
PIOX, 1 p

This element-wise soft thresholding is the proximal operator for anisotropic TV,
see course notes on block soft thresholding for isotropic TV.



ADMM for Image Deconvolution with Denoiser

L,(x,z,u) = f(x)+g(z)+—||Kx—z+u||+ ||u||

x — update:
X < prox

_ - 2.p 2 N
Il - ||2,p(v) = arg min E”Cx — b||2 + E”x - U||2 veER



ADMM for Image Deconvolution with Denoiser

x — update:
X « prox,

, 1
|2’p(v) = arg min_ Elle — b||§ + g”x — v||§ ve RN

x « (CTC+ pI) ™' (CTb + pv) no matrix D!



ADMM for Image Deconvolution with Denoiser

x — update: 1 ) p ,
— : N
X « prox ||2’p(v) = arg min_ EHCx — b||2 + 5||x - |3 vER
x « (CTC+ pI) ™' (CTb + pv) no matrix D!

« Efficient x—update operates purely on 2D images with FFTs
and element-wise multiplications and divisions:

FleV: - FbY + pF{v) }

— g -1
PrO% 1, P = { Flc) Flel +p



ADMM for Image Deconvolution with Denoiser

z — Update:
Z < prox,, (v)=arg min  A¥(z) +—||v - z|| v=x+u




ADMM for Image Deconvolution with Denoiser

z — update: p
Z < prox,, (v)=arg min  A¥(z) + E||v - z||§ v=x+u

= arg min_ ¥(z) + %Hv — z||§

/

This is a denoising problem with a regularizer
that imposes a prior!



ADMM for Image Deconvolution with Denoiser

z — Update:
Z < prox,, (v)=arg min  A¥(z) +—||v - z|| v=x+u

= arg min_ ¥(z) + ﬂ”v — z||2

« Efficient z—update uses arbitrary denoiser 2( - ), such as
DnCNN and non-local means, using noise variance g2 =

A
proxg’p(x) =9 (x, o2 = ;)
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Image Deconvolution with ADMM
ADMM for deconvolution with TV

—_ =
- o

R A A o b

: initialize p and A
: x = zeros (W, H);
: z=zeros (W, H);

u = zeros (W, H);

: for k = 1 to mazx_iters do

vV=2Z—U

_ _ =1 [ Fc} - F{o}+p(F{da} - F{v1 }+F{dy}*-F{va2})
z = prox, ,(v) =F {.F{cc}*»]-‘{c}+5(]-'{dm}*-.F{Zi}ﬂ—]—‘{di}*‘]-‘{gz})}
v=Dx+u
2= proxy , (v) = Sx/p (v)
u=u+Dx—2z

: end for

ADMM for deconvolution with denoiser

_ =
= Qo

R A S e

: initialize p and A
: x = zeros (W, H);
: z=zeros (W, H);

u = zeros (W, H);
for k = 1 to max_iters do

vV=zZ—U
- 1 [ Fi}y - F{b}+oF{v}
z = prox, ,(v) =F {W{Cﬁ-pv}
v=r+u

y = PI'OXD,p (’U) =D (’U, 0'2 = %)
U=u+r—2

: end for




ADMM - Convergence Criterion

* Run or “unroll” ADMM for K iterations
* Run until change in residual between iterations is < threshold

V=2zZ—U

= _ -1 [ F{} - F{oy+pF{v}
T = Prox| . » (U) =F! {W}
v=x+u
z =proxp, (v) =D (”702 = %)
u=u+r—=z2

V=2Z—U
— — -1 [ A" F{bt+pF{v}
T = pI'OX”,HZ’p (’U) =F { ;{C}*']"{cf+pv }

v=x+u
z = proxp , (v) zD(v,c72 = %)
u=u+x—2

v=zZ—U
_ _ 1 [ F T ()
2= prox)., , (v) = F 1 { T 0pr el |

v=T+ U
z = proxp , (v) :D(v,a2 = %)
v u=u+z—2




Outlook on Unrolled Optimization

Run or “unroll” ADMM for K iterations

Interpret as unrolled feedforward network:

V=2zZ—U

= _ -1 [ F{} - F{oy+pF{v}
T = Prox| . » (U) =F! {W}
v=x+u
z =proxp, (v) =D (”702 = %)
u=u+r—=z2

v=Z—U
_ _ 1 [ F F 0T ()
z = prox)., , (v) = F 1 { 7 0er el |

v=x+u
z = proxp , (v) zD(v,c72 = %)
Uu=u+x—2

v=zZ—U
_ _ 1 [ F T ()
2= prox)., , (v) = F 1 { T 0pr el |

v=x+u
z = proxp , (v) :D(v,a2 = %)
u=u+r—=2

b

1
v

PTOX|.|15,p
| S —
I
\
.

Proxp ,
| S —

1
v

.
PTOX|.|15,p

¢

1
v

Proxp ,

1
b A
X

[Diamond et al. 2017]



Outlook on Unrolled Optimization

* Run or “unroll” ADMM for K iterations II’

* Interpret as unrolled feedforward network: pro:“.nw,
J 11 I

Benefits over unrolled optimization :I_rl_(f(_”i’:

« Learnable parameters: A%, p®), denoiser 2® pm;:”%p

«  DenseNet-like skip connections ;: v ;:

« Denoiser/regularizer can adapt to matrix C H %

Proxp ,

« (Can train with advanced loss functions (perceptual,

>«‘-I

adversarial, other network, ...)

[Diamond et al. 2017]



Overview

« Compressive imaging



Compressive Imaging



Single-pixel Imaging

photodiode quantizer

PD

Duarte et al. 2008



Single-pixel Imaging

DMD+ALP Board

origina

Photodiode circuit

N\

Duarte et al. 2008



Single-pixel Imaging

measurements




Under-determined Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

* What makes it under-determined (or a

compressive imaging problem):



Under-determined Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

* What makes it under-determined (or a
M< N

compressive imaging problem):



Under-determined Inverse Problems

Image formation model:b = Ax+n, be RM, x € RN, A € RM*]

What makes it under-determined (or a
M< N

compressive imaging problem):

Problem: infinitely many solutions satisfy the observations!

Same problem as ill-posed problems! - need image priors



Under-determined Inverse Problems

« Image formation model:b = Ax+mn, be R, x € RN, A € RM*N

» Standard approach — the least-norm solution: %, = AT(AAT)b

minimize, ||x||,

« Thisisth lution of imization problem
IS IS the solution of optimization p subject to  Ax = b

Note: among the infinitely many solutions satisfying the observations,
the least-norm solution is the one with the smallest L2 norm, thus

equivalent to || - ||, regularizer



Under-determined Inverse Problems

« Image formation model:b = Ax+n, beRM, x e RN, A € RM*D

Standard approach — the least-norm solution: %, = AT(AAT)b

* Results (not great):

) N
Compression Factor —
2X 4x M 8x

"\ .fr)‘f;g» ,'.: ) '.
\ ‘..;"f-}g- ; :E‘r-« <, ¥

PSNR 10.4

L)

PSNR 12.3 PSNR 9.7



Images: Wikipedia

Other Inverse Problems in Imaging

primal domain

Fourier domain

' i |
| /ﬁ '
I
e
n n
[, s

Computed Tomography (C Magnetic Resonance Imaging (MRI)

. B '
Hyperspectral Imaging Interferometry




Other Inverse Problems in Imaging

* All these inverse problems have important applications and

are very different

* Yet, they all boil down to the same inverse problem, each with

. . 1
a different matrix A: minimize, 5||b - Ax||§ + AP(x)

* The methods derived here also apply to all those problems
and applications; single-pixel imaging is a great example

problem -  “if you can solve this, you can solve anything”



Review of ADMM for General Inverse Problems

L « , : 1
- Objective or “loss” function  minimize, 5||b - Ax||§ + AP(x)

of general inverse problem: 4
weight of regularizer



Review of ADMM for General Inverse Problems

o ‘] e - 1 2
* Objective or “loss” function minimize, 5”}, _ Ax||2 + AP(x)
of general inverse problem: 4

weight of regularizer

. | 2
 Reformulate as: TINTMIZE (. 7} 5”” — Axl[,+ 2¥(2)

. o d@
subjectto Dx —z =0



Review of ADMM for General Inverse Problems

L « , : 1
- Objective or “loss” function  minimize, E||b - Ax||§ + AP(x)

of general inverse problem: 4
weight of regularizer

. | 2
 Reformulate as: TINTMIZE (. 7} 5”” — Axl[,+ 2¥(2)

. o
subjectto Dx —z =0

* Remove constraints using Lp(x,z,u)=f(x)+g(z)+§||,)x_z+u||§+

augmented Lagrangian ||u||§



Review of ADMM for General Inverse Problems

p 2
L,(x,z,u)= f(x)+g(z) + EHDX - z+ u||2+ ||u||§
* Alternating gradient descent approach to solving penalty

formulation leads to following iterative algorithm:

while not converged:

2
X proxf,p(v) = arg min_ L (x, z,u) = arg min_ f(x) + g”Dx — v||2

) . P 2
Z « proxg,p(v) = arg min_ L (x, z,u) = arg min_ g(z) + 5||v - z||2



Review of ADMM for General Inverse Problems

x — update:

X < prox (v) = arg minx%||Ax—b||j+§||Dx—v||§

- l,.0

X < (ATA + pDTD)_l(ATb + pDTv)

~A ! \ 1 9
A b

* For general inverse problems, we don't necessarily have an
efficient closed-form solution for this problem, like we did for the
deconvolution problem

« Use matrix-free iterative solver, such as the conjugate gradient
method, to solve Ax = b (e.g., scipy.sparse.linalg.cq)



Review of ADMM for General Inverse Problems

z — update for TV regularizer in closed form:

Z < prox (v) = argmin_ 4|z]|, + %Hv - z||§= S (V)

-1l

z — update for denoising-based regularizer in closed form:

A
zZ « proxg’p(v) = arg min_ A¥(z) + §||v — z||§ =9 (v, o’ = ;)



N
M

Compression Factor

Least Norm

PSNR 9.7

ADMM - Results

HQS+TV

PSNR 33.7

PSNR 18.6

PSNR 15.4

HQS+DnCNN

)} §'§ 'S

PSNR 32.0

PSNR 26.0

PSNR 16.3

ADMM+TV

PSNR 44.0

PSNR 19.6

PSNR 15.2

ADMM+DnCNN

Y] Ry} Ry
2] wn %2}
=z =z =z
ny) By} By)
W -— w — ~ —
o A n
o ~ N



Short tangent on Half Quadratic Splitting (HQS)
(Another solver for constrained optimization problems)



The Half-quadratic Splitting (HQS) Method

* Objective or “loss” function minimize, %Hb _ Ax”j + AP (x)

of general inverse problem: 4
weight of regularizer



The Half-quadratic Splitting (HQS) Method

o ‘] e - 1 2
* Objective or “loss” function minimize, 5”}, _ Ax||2 + AP(x)
of general inverse problem: 4

weight of regularizer

. | 2
 Reformulate as: TINTMIZE (. 7} 5”” — Axl[,+ 2¥(2)

. o d@
subjectto Dx —z =0



The Half-quadratic Splitting (HQS) Method

Objective or “loss” function minimize, %Hb _ Ax||§ + AP (x)

of general inverse problem: 4
weight of regularizer

. | 2
Reformulate as: TINTMIZE (. 7} 5”” — Axl[,+ 2¥(2)

. @
subjectto Dx —z =0

Remove constraints using L(x.2) = f(x) + g(2) + g”l)x _ z”;

penalty term (equivalent for large p): L

penalty term



The Half-quadratic Splitting (HQS) Method

p 2
L(x,z) = f(x)+g(z) + 5||1)x - z|;
* Alternating gradient descent approach to solving penalty

formulation leads to following iterative algorithm:

while not converged:

2
X « proxf’p(z) =argmin_ L (x,z) = arg min_ f(x) + g”Dx — z”2

. 2
Z proxg,p(Dx) =arg min_ L (x,z) = arg min_g(z) + g”Dx — z||2



Steps not tied together with dual variable

Can be very sensitive to the penalty parameter,
requiring more tuning than ADMM (technically,
penalty needs to go to infinity)



Applications of Compressive Imaging



Compressive Medical Imaging

* reduce acquisition time, radiation exposure, or allow for more

patients in same time, ...

* examples: x-ray computed tomography and MRI



Image: Wikipedia

Computed Tomography (CT)
4
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Cpmputed Tomography — Fourier Slice Theorem

measurements = Fourier slices

compressive CT: e.g. fewer slices

frequency domain primal domain



Magnetic Resonance Imaging

* measurements = (random) Fourier coefficients

« compressive MRI: fewer Fourier coefficients

wikipedia

frequency domain



Compressive Imaging: CT & MRAI

* people in bio-medical imaging often hesitant about priors:
« few guarantees for success
« if reconstruction breaks, not clear how exactly
* s that feature a reconstruction artifact or the thing I'm looking

for?



Compressive Hyperspectral Imaging

motivation: 1‘

conventional: either scan over xy or over lambda!

idea: capture hyperspectral datacube with a single, coded image
— use compressive sensing to reconstruct

first approach: CASSI (coded aperture snapshot spectral imager),
Wagadarikar 2008



Compressive Hyperspectral Imaging

Focal Plane Dispersive Relay Bandpass Ap tre Object Object Data
Array Element Filter Cube
B(x, v, A) f(x Y. /1> folx, v, /1)T
' :| |:|) HHHJJ |
% ]
X

Arce et al. 2014



Compressive Hyperspectral Imaging

Data Cube & Coded Aperture

Dispersive Effect

Detector

ﬁgw 1
First Sllce

QS%‘ \( \( / VeN+L-1

Spatial

Arce et al. 2014



Compressive Hyperspectral Imaging

* moderate quality for snapshot, but good quality for coded multi-shot

* applications: remote sensing, cultural heritage, ...

APPLIED ® __=
IMAGE =
Inc

542.9 nm |558. 5 nm 5%2 nm

Arce et al. 2014



Compressive Imaging Everywhere

metamaterials

THz imaging

X-ray imaging

thermal IR

ultra-fast imaging

not as much on compressive coherent imaging (could be interesting

for course projects: OCT, holography, ...)



Notes

compressive imaging is an exploding area: check COSI, ICCP,

CVPR, ICCV conferences, other optics journals and conferences

most variants of compressive imaging problems can be
implemented with ADMM

check lecture notes online to help with homework

Increasingly we want to learn the sensing matrices, reconstruction

using neural networks and datasets...
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