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Announcements

• HW5 is out due Friday 11/10 
• Problem session for HW5 tomorrow 
• Start pairing up and thinking about projects (see course webpage 

for past projects).
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Announcements

• •
There is no registration for this event. However, seating is limited, so arriving early is recommended.

“Trustworthy and adaptive extreme low light
imaging”

Abstract:

Imaging in low light settings is challenging due to low photon counts. In
photography, imaging under low light, high gain settings often results in highly
structured, non-Gaussian noise that’s hard to characterize or denoise. In
scanning microscopy, the push to image faster, deeper, with less damage, and
for longer durations, can result in noisy measurements and less signal
acquired. In this talk, we'll address three problems in denoising that are
important for real applications: 1) What can you do when your noise is sensor-
specific and non-Gaussian? 2) How can you trust the output of a denoiser
enough for critical scientific and medical applications? and 3) If you can sample
a noisy scene multiple times, which parts should you resample? For the first
problem, I'll introduce a sensor-specific, data-driven, physics-inspired noise
model for simulating camera noise at the lowest light and highest gain settings.
I'll then use this noise model as a building block for demonstrating photorealistic
videography by the light of only the stars (submillilux levels of illumination).
Next, I'll introduce an uncertainty quantification technique based on conformal
prediction to simultaneously denoise and predict the pixel-wise uncertainty in
microscopy images. Then, I'll use uncertainty-in-the-loop to drive adaptive
acquisition for scanning microscopy, reducing the total scan time and light dose
to the sample, while minimizing uncertainty.

Biography:

Kristina Monakhova is an Assistant Professor in the Department of Computer
Science at Cornell University, where she leads the Computational Imaging Lab
at Cornell. She received her Ph.D. from UC Berkeley in Electrical Engineering
and Computer Sciences and was a postdoctoral fellow at MIT, supported by the
MIT Postdoctoral Fellowship for Engineering Excellence. Her research group
focuses on co-designing optics and algorithms to create better, smaller, and
more capable cameras and microscopes.

Kristina Monakhova

Assistant Professor Department of
Computer Science, Cornell

University

Wednesday, Oct 16th, 2024
3 PM – 4 PM (ET)

BA 5187

Reception to follow

Toronto Vision Seminar

Scan for Zoom link



Neural Networks in Computational Imaging
• Now: learned pipelines for computational imaging

Learning CFAs

Learning ISPs

Learning coded apertures



Neural Networks in Computational Imaging
• Now: learned pipelines for computational imaging

Learned denoising Learned deblurring HDR Imaging



Today
• What is a neural network? 

• Training/optimizing neural nets 

• Why “neural”? 

• Convolutional neural networks  

• Applications & inverse problems



What is a neural network?
• Image classification example



Image Classification
• Image classification example

Images

MNIST  Dataset



• Image classification example

Images Class

“zero” 
“one” 

… 

“nine”

Image Classification



• Image classification example

Images

What the computer  “sees”

Image Classification



• Image classification example

Images Challenges

Intra-class variation 
• stroke widths 
• alignment 
• writing styles

Image Classification



• Image classification example

Images Challenges

Intra-class variation 
• stroke widths 
• alignment 
• writing styles 

Inter-class similarities 
• “four” or “nine”?

Image Classification



• Image classification example

Images

Can’t hardcode solution!

Implementation?

Image Classification



• Data-driven approach 

• Collect training images 
and labels 

• Train a classifier using 
machine learning 

• Evaluate the classifier on 
unseen images

Image Classification

Implementation?



Image Classification
• Linear Model	

vectorize



Image Classification
• Linear Model	

vectorize



Image Classification
• Linear Model	

vectorize



Image Classification
• Linear Model	

vectorize

Length of this vector is the “dimensionality” of our problem!



Image Classification
• Linear Model	

vectorize



Image Classification
• Linear Model	

vectorize
10 numbers 
with class 
scores



Image Classification
• Linear model: geometric intrepretation

Each image is a point in an 
N-dimensional space  

- N is the number of pixels 



Image Classification
• Linear model: geometric interpretation

“8” classifier

“4” classifier

“2” classifier

“0” classifier

Computes inner product 
between rows of W and x! 
  
- Each row of W is a hyperplane 
- Sign of inner product tells you 

which side of the hyperplane 
- “separates” the digits



Image Classification
• Linear model (visual interpretation)

Learned filters (rows of W)



Image Classification
• Limits of linear classifiers

Linear classifiers learn linear 
decision planes 

What if dataset is not linearly 
separable?



Multilayer Perceptrons (MLPs)
• Linear Model	

• 2-layer MLP



Multilayer Perceptrons (MLPs)
• Linear Model	

• 2-layer MLP

• 3-layer MLP



Multilayer Perceptrons (MLPs)
• Linear Model	

• 2-layer MLP

• 3-layer MLP

Non-linearity/activation function between linear layers



Multilayer Perceptrons (MLPs)
• Linear Model	

• 2-layer MLP

• 3-layer MLP

Otherwise we have:



Activation Functions
…many to choose from

… ReLU is a good general-purpose choice: ReLU(x) = max(0, x)

softplus

ReLU

leaky ReLU

tanh sigmoid

ELU



Multilayer Perceptrons (MLPs)
• Linear Model	

• 2-layer MLP

vectorize

Back to our classification example…

784 100 10
class scores

28x28



Multilayer Perceptrons (MLPs)
• Linear Model	

• 2-layer MLP

vectorize

Back to our classification example…

784 100 10
class scores

Hidden layer

28x28



Multilayer Perceptrons (MLPs)
• Linear Model	

• 2-layer MLP

vectorize

Back to our classification example…

784 100 10
class scores

Now we have 100 shape templates, shared between classes
28x28



• Overcomes limits of linear classifiers

• Can learn non-linear decision 
boundaries 

• Complexity scales with the 
number of neurons/hidden 
layers

Multilayer Perceptrons (MLPs)



• More parameters is not always 
better! 
• Can lead to overfitting the 

training data 
• Performance on test data is 

worse 

Multilayer Perceptrons (MLPs)
train

test



• More on classification…

• https://cs231n.github.io/linear-
classify/ 

• https://csc413-uoft.github.io/

Multilayer Perceptrons (MLPs)



Today
• What is a neural network? 

• Training/optimizing neural nets 

• Why “neural”? 

• Convolutional neural networks  

• Applications & inverse problems



Image Inpainting

vectorize

784 100 784

reshape

predicted 
output

masked 
input



Training the MLP

Image inpainting example

Training dataset: 
• masked and complete image 

pairs 

• train network to predict the 
complete image

masked images

ground truth



Training the MLP

Train the network to minimize the loss function

network 
parameters



Training the MLP

Train the network to minimize the loss function

ground truth image network prediction

network 
parameters

input



Training the MLP

How do we figure out     ?

ground truth image network prediction

network 
parameters

input



Training the MLP

Gradient-based optimization

[Li et al. ‘18]
Loss Landscape



Training the MLP

Need to calculate the partial derivative with respect to each 
parameter



Training the MLP

Generally there are 3 options 

1. Numerical differentiation 

2. Symbolic differentiation 

3. “Automatic” differentiation



Numerical Differentiation

Not very accurate, computationally expensive 

Easy to implement! Can be used to check your analytical answers..



Symbolic Differentiation

chain rule, product rule…

Accurate, but must be manually calculated for each term 
Tedious!



Automatic Differentiation

Think about the problem as a  “computational  graph” 

Divide and conquer using the chain rule 

Enables “backpropagation” – an efficient way to take 
derivatives of all parameters in a computational graph



Automatic Differentiation

Think about the problem as a  “computational  graph” 

Divide and conquer using the chain rule
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Automatic Differentiation

Think about the problem as a  “computational  graph” 

Divide and conquer using the chain rule



Automatic Differentiation

Think about the problem as a  “computational  graph” 

Divide and conquer using the chain rule

We can calculate analytical 
expressions for each of these terms 
and then plug in our values



Autodiff Example

(assume scalar values for now)
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(assume scalar values for now)



Autodiff Example

(assume scalar values for now)



Autodiff Example

Let’s plug in the values now…

5

3 2 22
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22



Autodiff Example

Let’s plug in the values now…

5

3 2

15 15

22



Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30



Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32



Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32



Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

8



Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

82



Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

821



Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

8215



Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

Save these intermediate values during forward computation



Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

Then we perform a “backward pass”



Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215
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What is backpropagation?

5

3 2 22

15 15 30 32

8215

16



Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

16



Autodiff Example

What is backpropagation?
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Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

1616



Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

161680



Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

215

161680

What about          ?

8



Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

215

161680

What about          ?

We can re-use computation!



Autodiff Example

PyTorch Code:



Image Inpainting Training Loop
1. Sample batch of images from dataset 



Image Inpainting Training Loop
1. Sample batch of images from dataset 

2. Run forward pass to calculate network output for each image



Image Inpainting Training Loop
1. Sample batch of images from dataset 

2. Run forward pass to calculate network output for each image

3. Run backward pass to calculate gradients with backpropagation



Image Inpainting Training Loop
1. Sample batch of images from dataset 

2. Run forward pass to calculate network output for each image

3. Run backward pass to calculate gradients with backpropagation

4. Update parameters with stochastic gradient descent



4. Update parameters with stochastic gradient descent



Vector Differentiation

But wait, aren’t these vectors?



Vector Differentiation

Recap: vector differentiation

Scalar by Scalar

?



Vector Differentiation

Recap: vector differentiation

Scalar by Scalar
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Recap: vector differentiation

Scalar by Scalar Scalar by Vector

?



Vector Differentiation

Recap: vector differentiation

Scalar by Scalar Scalar by Vector



Vector Differentiation

Recap: vector differentiation

Scalar by Scalar Scalar by Vector Vector by Vector

?



Vector Differentiation

Recap: vector differentiation

Scalar by Scalar Scalar by Vector Vector by Vector



Vector Differentiation



Vector Differentiation



Vector Differentiation

sometimes the Jacobian is defined as the transpose of this, 
depending on whether you left or right multiply 
(I like to left multiply because it aligns with the direction of the computational graph)



Recap: vector differentiation

Example 1: matrix multiply



Recap: vector differentiation

Example 1: matrix multiply



Recap: vector differentiation

Example 1: matrix multiply



Recap: vector differentiation

Example 1: matrix multiply



Recap: vector differentiation

Example 1: matrix multiply



Recap: vector differentiation
Example 2: elementwise functions



Recap: vector differentiation
Example 2: elementwise functions



Recap: vector differentiation
Final hint: dimensions should always match up!

You should be able to calculate derivatives of each of these 
terms and then perform matrix multiplications without issues



Today
• What is a neural network? 

• Training/optimizing neural nets 

• Why “neural”? 

• Convolutional neural networks  

• Applications & inverse problems



Why “neural” network?



Why “neural” network?



Why “neural” network?

Input Layer Output Layer

Hidden Layer



Why “neural” network?

Input Layer Output Layer

Hidden Layer“Neuron”



Why “neural” network?

Input Layer Output Layer

Hidden Layer“Activations”

0.1 

0.0 

0.0 

0.2 

0.1



Why “neural” network?

Input Layer Output Layer

Hidden Layer



Image: CC BY-SA Jennifer Walinga



Loose analogy! 

- Neurons have activation potentials, 
all-or-none firing behavior 

- Interconnectivity between actual 
neurons is dense and complicated 

- Connection between neurons is 
complex non-linear dynamical 
system 



Today
• What is a neural network? 

• Training/optimizing neural nets 

• Why “neural”? 

• Convolutional neural networks  

• Applications & inverse problems



Drawbacks of fully-connected networks

• spatial structure is destroyed 

• fully-connected weights do not scale



Convolutional Neural Networks

Image: CC Aphex34

• Exploit spatial structure 
• Scale to large inputs with fewer parameters 
• Remarkable  performance for processing visual data 



AlexNet & surge in popularity

AlexNet [Krizhevsky ‘12]

First convolutional 
network for image 
classification

2010: ImageNet Large Scale Visual Recognition Challenge 
• 10 million labeled images



AlexNet & surge in popularity

AlexNet [Krizhevsky ‘12]

First convolutional 
network for image 
classification

2010: ImageNet Large Scale Visual Recognition Challenge 
• 10 million labeled images

CNNs
[Russakovsky ’15]



AlexNet & surge in popularity

2010: ImageNet Large Scale Visual Recognition Challenge 
• 10 million labeled images

Deep networks
[Russakovsky ’15]

VGG GoogLeNet ResNet
[Simonyan ‘14] [Szegedy ‘14] [He ‘15]



Image Classification Object Detection

Segmentation Pose estimation
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Imaging & Image processing

Image Denoising Image Deblurring

Learned ISPs End-to-End Optimization
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Imaging & Image processing

Monocular Depth Estimation

Synthetic Depth-of-FieldImage Super-resolution

Image Relighting

[E
ig

en
 ‘1

4]

[S
un

 ‘1
9]

[L
im

 ‘1
7]

ai.googleblog.com



Fully-Connected Layer

Vectorized Image

1
3072

Weight Matrix Output Activation

1
100weights 100 x 3072



Convolutional Layer

32

32

Filter

3 5
5

3
weights 5x5x3

Input Image



Convolutional Layer

32

32

Filter

3 5
5

3
weights 5x5x3

Input Image

“Channel” dimension



Convolutional Layer

32

32

3

Input Image



Convolutional Layer

32

32

3

Output of inner product

Input Image



Convolutional Layer

Input Image

32

32

3

28

28

1

Activations

Convolution = sliding window + inner product



Convolutional Layer

Input Image

32

32

3

28

28

1

Activations Input

Output

https://github.com/vdumoulin/conv_arithmetic



Convolutional Layer

32

32

3

Input Image Activations

28

28

4

Multiple output channels 
using multiple filters



Fully-Connected Layer

Vectorized Image

1
3072

Weight Matrix Output Activation

1
100weights 100 x 3072

Special case of convolutional layer when filter size = input size!



Convolutional Neural Network

32

32

3

Input Image

28

28

4

4 filters of 
5x5x3 
+ ReLU

6 filters of 
5x5x4 
+ ReLU 24

24

6

Layer 1 
Activations

Layer 2 
Activations

…



Case Study: AlexNet

First-layer FiltersInput Image



Case Study: AlexNet

Activations



Case Study: AlexNet

First-layer Filters

Similar to simple cells 
in visual cortex!  
- Edge detectors

Image: CC BY-SA Selket



Case Study: AlexNet

[Hubel & Wiesel 1959]
Simple cells in visual cortex  
detect edges, complex cells 
compose earlier responses 



CNN higher layer filters

[Olah ‘17]
Dataset examples that maximize neuron outputs



CNN Building Blocks

Design choices: 
• filter size 
• number of filters  
• padding 
• stride 

Layer types: 
• pooling 
• transpose convolutions 
• upsampling layers



CNN Building Blocks

Filter size

1x1
3x3

5x5



CNN Building Blocks

Number of channels

N_out x N_in x 1 x 1

N_out x N_in x 5 x 5
N_out x N_in x 3 x 3



CNN Building Blocks

padding

No padding padding=1
https://github.com/vdumoulin/conv_arithmetic



CNN Building Blocks

padding

No padding padding=1
https://github.com/vdumoulin/conv_arithmetic

output = input – filtersize + 2 * padding + 1



CNN Building Blocks

stride

stride = 1 stride = 2
https://github.com/vdumoulin/conv_arithmetic

output = (input – filtersize + 2 * padding) / stride + 1



Convolutional Neural Network

32

32

3

Input Image

28

28

4

4 filters of 
5x5x3 
+ ReLU

6 filters of 
5x5x4 
+ ReLU 24

24

6

Layer 1 
Activations

Layer 2 
Activations

…



Layer types: Pooling

e.g., max pool size=2, stride=2



Transpose Convolution

stride=1 stride=2
https://github.com/vdumoulin/conv_arithmetic



Transpose Convolution (checkerboard artifacts)

[Odena ‘16]



Upsampling layers

e.g., bilinear upsampling, nearest neighbor upsampling



Common Network Architectures

VGG: one of the first “deep” CNNs

downsampling with max pooling
Image: Davi Frossard



Common Network Architectures

VGG: one of the first “deep” CNNs

Classification scores output with fully-connected layers
Image: Davi Frossard



Common Network Architectures

VGG: one of the first “deep” CNNs

Not suitable for image processing…
Image: Davi Frossard



Today
• What is a neural network? 

• Training/optimizing neural nets 

• Why “neural”? 

• Convolutional neural networks  

• Applications & inverse problems



Image denoising with DnCNN

[Zhang ‘16]

Key ideas: residual learning & batch normalization



Residual Learning

[Zhang ‘16]

Clean image    = 	    noisy image         -       estimated noise



Residual Learning

[He ‘15]

Popularized by residual nets “ResNets” for image classification 

- Usually easier to optimize 
- Better classification accuracy, good for many tasks!



Batch Normalization

Normalizes layer activations to zero mean, unit variance,  
preventing distribution shifts during training 
• can speed up and stabilize training 
• seems to smooth out loss landscape

https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html



Image denoising with DnCNN

[Zhang ‘16]

(Remember to disable the bias in your conv layer)



Image denoising with DnCNN

[Zhang ‘16]

No fully connected layers – can be applied to any input size



[Zhang ‘16]



[Zhang ‘16]



Multi-Scale Architectures

Uses image pyramid to process & deblur[Nah ‘18]



Multi-Scale Architectures

[N
ah

 ‘1
8]



U-Net: General-purpose architecture

[Ronneberger ‘15]



Introduced for biomedical image segmentation 

• Uses residual connections 

• Multi-scale processing (captures details at 
different scales) 

• Large receptive field!

U-Net: General-purpose architecture



U-Net: General-purpose architecture

Receptive field: size of the input 
that contributes to the activation/
output value

[Lin ‘17] 



U-Net: General-purpose architecture

Large receptive field is important 
for high-level vision tasks and 
semantic understanding

[Araujo ‘19]



Learned ISP

[Chen ‘18]



Learned ISP

[Chen ‘18]



Learned ISP

Trained on short-exposure (noisy) / long-exposure image pairs
[Chen ‘18]



Learned ISP

[Chen ‘18]



Deep optics for HDR imaging

What kind of PSF would be good for HDR imaging? 
- Should preserve fine details 
- Should help to avoid saturation 



Deep optics for HDR imaging

[Metzler ‘20]



[Metzler ‘20]

Deep optics for HDR imaging

U-Net again



[Metzler ‘20]

Deep optics for HDR imaging

Minimize difference between 
reconstruction and tone-mapped 
GT images



[Metzler ‘20]

Deep optics for HDR imaging



[Metzler ‘20]



Image Relighting

U-Net
[Sun ‘19]



Image Relighting

[Sun ‘19]



Image Relighting

[Sun ‘19]
How would you train this network?



Image Relighting

[Sun ‘19]

Light-stage dataset capture (Google)



Image Relighting

[Sun ‘19]

Re-rendered 
image

Environment 
map

OLAT photos 
(columns)



Image Relighting

[Sun ‘19]



Image Relighting

[Sun ‘19]

Now a feature in pixel phones



Image Generation



Do we always need training datasets?



Deep image prior

Idea: Overfit a U-Net to a noisy image, but stop training early

[Ulyanov ‘20]



Deep image prior

The CNN itself is a good prior for natural images

[Ulyanov ‘20]



Deep image prior

During training, the network fits the image before noise [Ulyanov ‘20]



Deep image prior

CorruptedGT Trained CNN DIP

[Ulyanov ‘20]



Summary

• “Neural” Networks & CNNs 

• Building blocks of CNNs and deep networks 

• Applications & inverse problems 

• Just scratches the surface! 

• GANs, diffusion models, neural fields, neural rendering, 

text-to-image models, autoregressive models, transformers…



Next Time

• Optimization using alternating direction method of multipliers 

• Hybrid techniques!



References and Further Reading
slides adapted from Stanford CS231N: http://cs231n.stanford.edu/slides/ 

CS229/CS231n notes on linear classifiers 

https://cs231n.github.io/linear-classify/ 

https://cs229.stanford.edu/notes2021fall/cs229-notes1.pdf 

CS231n Notes on backprop 

http://cs231n.stanford.edu/handouts/linear-backprop.pdf 

https://cs231n.github.io/optimization-2/ 

Intro to pytorch autograd 

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html 

Extending pytorch autograd functions 

https://pytorch.org/docs/stable/notes/extending.html 
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Extra backpropagation example (from Stanford CS231n)



Extra backpropagation example
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Extra backpropagation example



Extra backpropagation example



Extra backpropagation example



Extra backpropagation example



Extra backpropagation example


