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Announcements

• HW 2 due Friday 9/27

• HW 3 is out, due 10/4

• Problem session for HW 3 tomorrow

• See website for all office hours/problem session dates

• Next week both Aviad and I unavailable—lecture recording will be 
posted on Quercus.



Outline

• Fourier transform review

• Fourier transforms in imaging

• Image filtering, anti-aliasing, and deconvolution

• Linear systems review



Fourier Transform

• What is this?
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Fourier Transform

• What is this?



Fourier Transform

• What is this?



Fourier Transform

• any continuous, integrable function can be represented as an infinite sum 

of sines and cosines:

f (x) = f̂ (x)e2pixx dx
-¥

¥

ò f̂ (x) = f (x)e-2pixx dx
-¥

¥

ò



Fourier Transform



Fourier Transform



Fourier Transform



Fourier Transform



Fourier Transform

Fourier coefficients of real signals are

conjugate symmetric



Fourier Transform

Images are sums of 

cosines at different 

amplitudes, phases, 

spatial frequencies



Magnitude vs Phase

mag.

mag.

phase

phase



Magnitude vs Phase

mag.

mag.

phase

phase



Fourier Transform

• any continuous, integrable, periodic function can be represented as an 

infinite sum of sines and cosines:

• convolution theorem (critical):

f (x) = f̂ (x)e2pixx dx
-¥

¥

ò f̂ (x) = f (x)e-2pixx dx
-¥

¥

ò

x*g = F-1 F x{ } ×F g{ }{ }



Discrete vs Continuous Fourier Transform

Primal Domain Fourier Domain



Sampling

Primal Domain Fourier Domain

?

discrete sampled signal



Primal Domain Fourier Domain

*
Sampling operator

Sample rate of 𝑓𝑠 Shifted copies at 𝑓𝑠 

Sampling



Primal Domain Fourier Domain

Highest frequency
Sample rate should 

be twice the highest 

frequency to avoid 

aliasing!

Sampling



Sampling exercise
Sample frequency: ?

Signal frequency: ?



Sampling exercise
Sample frequency: 20 Hz

Signal: 4 Hz 



Sampling exercise
Sample frequency: 20 Hz

Signal: 4 Hz 

We get 

repeated 

copies around 

the sampling 

frequency!



Sampling exercise
Sample frequency: 20 Hz

Signal: 8 Hz 



Sampling exercise
Sample frequency: 20 Hz

Signal: 12 Hz 



Sampling exercise
Sample frequency: 20 Hz

Signal: 16 Hz 



Sampling exercise
Sample frequency: 20 Hz

Signal: 20 Hz 



Sampling exercise
Sample frequency: 20 Hz

Signal: 24 Hz 



Sampling exercise
Sample frequency: 20 Hz

Signal: 28 Hz 



Sampling exercise
Sample frequency: 20 Hz

Signal: 32 Hz 



Periodicity

Primal Domain Fourier Domain

?
periodic signal



Primal Domain Fourier Domain

*

Sample rate of 𝑓𝑠 Shifted copies at 𝑓𝑠 

Periodicity



Primal Domain Fourier Domain

Periodicity



Primal Domain Fourier Domain

A periodic signal can be represented by a discrete set of Fourier 

coefficients

• These are called the “Fourier series coefficients”

Periodicity



Discrete Fourier Transform

Primal Domain Fourier Domain

?

In practice, we wish to take the Fourier 

transform of discrete signals.

But we need to represent the Fourier domain 

with discrete values, too!



Discrete Fourier Transform

Primal Domain Fourier Domain

?

Assume the primal domain signal is periodic



Discrete Fourier Transform

Primal Domain Fourier Domain

Assume the primal domain signal is periodic

Output of DFTInput to DFT



Discrete Fourier Transform

• most important for us: discrete Fourier transform

x[n] =
1

N
x̂[k]

k=0

N-1

å e2pikn/N
x̂[k] = x[n]

n=0

N-1

å e-2pikn/N



Discrete Fourier Transform

Fast Fourier Transform: Cooley & Tukey 1965



Discrete Fourier Transform

Fast Fourier Transform: Cooley & Tukey 1965

O(N2) -> O(N log N)



Fourier Transforms in Imaging



object distance S sensor distance S’

• Ideal lens: A point maps to a point at a certain plane.

1

𝑆′ +
1

𝑆
=

1

𝑓

Lens imperfections



Lens imperfections

object distance S sensor distance S’

• Ideal lens: A point maps to a point at a certain plane.

• Real lens: A point maps to a circle that has non-zero minimum radius among all 

planes.

What is the effect of this on the images we capture?

1

𝑆′ +
1

𝑆
=

1

𝑓



object distance S sensor distance S’

• Ideal lens: A point maps to a point at a certain plane.

• Real lens: A point maps to a circle that has non-zero minimum radius among all 

planes.

Shift-invariant blur.

blur kernel

1

𝑆′ +
1

𝑆
=

1

𝑓

Lens imperfections



Lens imperfections
What causes lens imperfections?



Lens imperfections
What causes lens imperfections?

• Aberrations. 

• Diffraction.

large 

aperture

small 

aperture

(Important note: Oblique 

aberrations like coma and 

distortion are not shift-

invariant blur and we do not 

consider them here!)



Lens as an optical low-pass filter

object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.

• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture 

shape.

diffraction-limited 

PSF of a circular 

aperture 

(Airy pattern)

blur kernel

1

𝑆′ +
1

𝑆
=

1

𝑓



Some basics of diffraction theory 

We will assume that we can use:

• Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to 

wavelength).

• incoherent illumination (i.e., the light we are measuring is not laser light).

We will also be ignoring various scale factors. Different functions are not drawn to 

scale.



Some basics of diffraction theory 

aperture: 

rect 𝑥

coherent point spread 

function: sinc 𝑥

optical transfer 

function: tent 𝑥

?

?
The 1D case



Some basics of diffraction theory 
51

aperture: 

rect 𝑥

coherent point spread 

function: sinc 𝑥

optical transfer 

function: tent 𝑥

?
The 1D case



Some basics of diffraction theory 
52

aperture: 

rect 𝑥
incoherent point spread 

function: sinc2 𝑥

coherent point spread 

function: sinc 𝑥

optical transfer 

function: tent 𝑥

?

The 1D case



Some basics of diffraction theory 
53

aperture: 

rect 𝑥
incoherent point spread 

function: sinc2 𝑥

coherent point spread 

function: sinc 𝑥

optical transfer 

function: tent 𝑥

why do we get the 

same result?

The 1D case



Some basics of diffraction theory 
54

aperture: 

rect 𝑥
incoherent point spread 

function: sinc2 𝑥

coherent point spread 

function: sinc 𝑥

optical transfer 

function: tent 𝑥

what happens if we 

increase the aperture 

size?

The 1D case



Some basics of diffraction theory 
55

aperture: 

rect 𝑥/2
incoherent point spread 

function: sinc2 2𝑥

coherent point spread 

function: sinc 2𝑥

optical transfer 

function: tent 𝑥/2
The 1D case



Some basics of diffraction theory 
56

aperture: 

rect 𝑥/10
incoherent point spread 

function: sinc2 10𝑥

coherent point spread 

function: sinc 10𝑥

optical transfer 

function: tentሺ
ሻ

𝑥/
10

The 1D case

… point spread function 

becomes smaller

As the aperture size 

increases…



Some basics of diffraction theory 
57

incoherent point spread 

function

optical transfer 

function
The 2D case

… point spread function 

becomes smaller

As the aperture size 

increases…

aperture



Some basics of diffraction theory 
58

incoherent point spread 

function

optical transfer 

function
The 2D case

… point spread function 

becomes smaller

As the aperture size 

increases…

aperture



Some basics of diffraction theory 
59

incoherent point spread 

function

optical transfer 

function
The 2D case

… point spread function 

becomes smaller

As the aperture size 

increases…

aperture

Why do we prefer circular 

apertures?



Some basics of diffraction theory 
60

incoherent point spread 

function

optical transfer 

function
The 2D case

… point spread function 

becomes smaller

As the aperture size 

increases…

aperture

Other shapes produce very 

anisotropic blur.



Lens as an optical low-pass filter

object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.

• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture 

shape.

diffraction-limited 

PSF of a circular 

aperture 

(Airy pattern)

blur kernel

61

optical transfer 

function (OTF)

aperture



• away from focal plane: out of focus blur

focal plane

b
lu

rr
e

d
 p

o
in

t

Lens as Optical Low-pass Filter



• shift-invariant convolution

focal plane

Lens as Optical Low-pass Filter



Lens as Optical Low-pass Filter

p
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F
):

 c

x b
sharp image measured, blurred image

b = c*x

diffraction-limited PSF of circular 

aperture (aka “Airy” pattern):



What’s a Discrete Image?

• continuous 2D visual signal on sensor:

• integration over pixels:

i x,y( )

sensor pixel:

w

h



What’s a Discrete Image?

• continuous 2D visual signal on sensor:

• integration over pixels:

• discrete sampling:

     (in irradiance     )

i x,y( )

W

m2



What’s a Discrete Image?

• continuous 2D visual signal on sensor:

• integration over pixels:

• discrete sampling:

     (in irradiance     )

i x,y( )

W

m2

What does this mean for image frequencies we can capture?



What’s a Discrete Image?

(detector footprint modulation transfer function, Boreman 2001)



What’s a Discrete Image?

(detector footprint modulation transfer function, Boreman 2001)



Image filtering & anti-aliasing



Filtering – Low-pass Filter
• low-pass filter: convolution in primal domain

• convolution kernel c is also known as point spread function (PSF)

*

=

b = x*c

bx c

small

kernel



Filtering – Low-pass Filter

• low-pass filter: multiplication in frequency domain

.

=

F b{ } = F x{ } ×F c{ }

big



Filtering – Low-pass Filter

• low-pass filter: hard cutoff

.

=

F b{ } = F x{ } ×F c{ }



Filtering – Low-pass Filter

• Bessel function of the first kind or “jinc”

F-1 { }

imagemagick.org optique-ingenieur.org



Filtering – Low-pass Filter

• hard frequency filters often introduce ringing





Filtering – High-pass Filter

• sharpening (possibly with ringing)





Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

b = x*(d - clowpass_gauss ) = x- x*clowpass_gauss

b = x*(d + chighpass ) = x + x*chighpass

or



Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

originalunsharp mask



Filtering – Band-pass Filter





Filtering – Oriented Band-pass Filter



• edges with specific orientation (e.g., hat) are gone!



Optical Filtering with Fourier Optics

• can do all of this optically

http://en.wikipedia.org/wiki/Fourier_optics



Image Downsampling (& Upsampling) 

• best demonstrated with “high-frequency” image

• that’s just resampling, right?



• best demonstrated with “high-frequency” image

• that’s just resampling, right?

pocketfullofliberty.com/high-frequency-trading

original image: I



pocketfullofliberty.com/high-frequency-trading

re-sample image: I(1:4:end,1:4:end) in Matlab

something is wrong - aliasing!



Primal Domain Fourier Domain

Sampling

What happens if we subsample in the primal domain?



Primal Domain Fourier Domain

*
Sampling operator

Sample rate of 𝑓𝑠 Shifted copies at 𝑓𝑠 

Sampling



Primal Domain Fourier Domain

Sampling

What happens if we subsample in the primal domain?

- Shifted copies start to overlap! High frequencies alias into lower frequencies



Primal Domain Fourier Domain

Sampling

What happens if we subsample in the primal domain?

- Shifted copies start to overlap! High frequencies alias into lower frequencies

- To solve: first low-pass filter

Filter cutoff frequency 

(what determines this?)



Primal Domain Fourier Domain

Sampling

What happens if we subsample in the primal domain?

- Shifted copies start to overlap! High frequencies alias into lower frequencies

- To solve: first low-pass filter

- Then no aliasing after downsampling!

Filter cutoff frequency 

(what determines this?)



• best demonstrated with “high-frequency” image

• that’s just resampling, right?

pocketfullofliberty.com/high-frequency-trading

need to low-pass filter image first!



• best demonstrated with “high-frequency” image

• that’s just resampling, right?

pocketfullofliberty.com/high-frequency-trading

need to low-pass filter image first!



pocketfullofliberty.com/high-frequency-trading

first: filter out high frequencies (“anti-aliasing”)

then: then re-sample image: I(1:4:end,1:4:end)



pocketfullofliberty.com/high-frequency-trading

no anti-aliasing with anti-aliasing



• “anti-aliasing” → before re-sampling, apply appropriate filter!

• how much filtering? Shannon-Nyquist sampling theorem: 

fs ³ 2 fmax

Image Downsampling (& Upsampling) 



Parmar et al. 2021



Examples of Aliasing: Temporal Aliasing

• wagon wheel effect (temporal aliasing)

• sampling frequency was lower than 2 fmax

wikipedia



Examples of Aliasing: Temporal Aliasing

• wagon wheel effect
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Examples of Aliasing: Sampling on Sensor

• point source on focal plane maps to PSF

focal plane



Examples of Aliasing: Sampling on Sensor

• PSF must be larger than 2*pixel size!

focal plane

Optical Anti-Aliasing (AA) filter



Other Forms of Aliasing
• photography – optical AA filter removed (“hot rodding” camera)

mosaicengineering.comJohn Shafer



Deconvolution



Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

i * k = b

104



Lens as an optical low-pass filter

image from a perfect lens

* =

image from imperfect lens

i * k = b

If we know b and k, can we recover i?

105

imperfect lens PSF



Deconvolution

i * k = b
If we know k and b, can we recover i?

106



Deconvolution

i * k = b
Reminder: convolution is multiplication in Fourier domain:

F(i) . F(k) = F(b)
If we know k and b, can we recover i?

107



Deconvolution

After division, just do inverse Fourier transform:

Reminder: convolution is multiplication in Fourier domain:

Deconvolution is division in Fourier domain:

F(iest) = F(b) \ F(k)

iest = F-1 ( F(b) \ F(k) )

108

i * k = b

F(i) . F(k) = F(b)



Deconvolution

Any problems with this approach?

109



Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

b  = k * i + n

• The measured signal includes noise

noise term

zeros at high 

frequencies

110



Deconvolution

• When we divide by zero, we amplify the high frequency noise

• The OTF (Fourier of PSF) is a low-pass filter

b  = k * i + n

• The measured signal includes noise

noise term

zeros at high 

frequencies

111



Naïve deconvolution

* =

b * k-1 = iest

-1

Even tiny noise can make the results awful.

• Example for Gaussian of σ = 0.05

112



Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(k)|2
iest = F-1 (                                           )                                

|F(k)|2 + 1/SNR(ω)

F(b)

F(k)

• Derived as solution to maximum-likelihood problem under Gaussian noise 

assumption

• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
signal variance at ω

noise variance at ω



Wiener Deconvolution
Apply inverse kernel and do not divide by zero:

Intuitively:

• When SNR is high (low or no noise), just divide by kernel.

• When SNR is low (high noise), just set to zero.

114

|F(k)|2
iest = F-1 (                                           )                                

|F(k)|2 + 1/SNR(ω)

F(b)

F(k)
noise-dependent damping factor



Deconvolution comparisons

naïve deconvolution Wiener deconvolution

115



Deconvolution comparisons

σ = 0.01 σ = 0.05 σ = 0.01

116



Derivation

𝑏 = 𝑘 ∗ 𝑖 + 𝑛
Noise n is assumed to be zero-

mean and independent of signal 

i.

Sensing model:

117



Derivation

𝑏 = 𝑘 ∗ 𝑖 + 𝑛

Sensing model:

Fourier transform:

𝐵 = 𝐾 ⋅ 𝐼 + 𝑁

Why multiplication?

118

Noise n is assumed to be zero-

mean and independent of signal 

i.



Derivation
Sensing model:

Fourier transform:

Problem statement: Find function H(ω) that minimizes expected error in Fourier 

domain.

Convolution becomes 

multiplication.

min
𝐻

𝐸 𝐼 − 𝐻𝐵 2

119

𝑏 = 𝑘 ∗ 𝑖 + 𝑛

𝐵 = 𝐾 ⋅ 𝐼 + 𝑁

Noise n is assumed to be zero-

mean and independent of signal 

i.



Derivation
Replace B and re-arrange loss:

min
𝐻

𝐸 1 − 𝐻𝐾 𝐼 − 𝐻𝑁 2

min
𝐻

1 − 𝐻𝐾 2𝐸 𝐼 2 − 2𝐻 1 − 𝐻𝐾 𝐸 𝐼𝑁 + 𝐻 2𝐸 𝑁 2

Expand the squares:

120



Derivation
When handling the cross terms:

• Can I write the following?

𝐸 𝐼𝑁 = 𝐸 𝐼 𝐸 𝑁

121



Derivation
When handling the cross terms:

• Can I write the following?

Yes, because I and N are assumed independent.

• What is this expectation product equal to?

 

122

𝐸 𝐼𝑁 = 𝐸 𝐼 𝐸 𝑁



Derivation
When handling the cross terms:

• Can I write the following?

Yes, because I and N are assumed independent.

• What is this expectation product equal to?

 Zero, because N has zero mean.

123

𝐸 𝐼𝑁 = 𝐸 𝐼 𝐸 𝑁



Derivation
Replace B and re-arrange loss:

min
𝐻

𝐸 1 + 𝐻𝐾 𝐼 − 𝐻𝑁 2

min
𝐻

1 − 𝐻𝐾 2𝐸 𝐼 2 − 2𝐻 1 − 𝐻𝐾 𝐸 𝐼𝑁 + 𝐻 2𝐸 𝑁 2

Expand the squares:

cross-term is zero

min
𝐻

1 − 𝐻𝐾 2𝐸 𝐼 2 + 𝐻 2𝐸 𝑁 2

Simplify:

How do we solve this optimization problem?

124



Derivation
Differentiate loss with respect to H, set to zero, and solve for H:

𝜕loss

𝜕𝐻
= 0

⇒ −2𝐾 1 − 𝐻𝐾 𝐸 𝐼 2 + 2𝐻𝐸 𝑁 2 = 0

⇒ 𝐻 =
𝐾𝐸 𝐼 2

𝐾2𝐸 𝐼 2 + 𝐸 𝑁 2

Divide both numerator and denominator with 𝐸 𝐼 2 , extract factor 1/K, and done! 

125



Deconvolution with Wiener Filtering

• results: not too bad, but noisy 

• need more advance image priors to solve this ill-posed 

inverse problem robustly → more in week 7&8



Sampling & Deconvolution – Summary

• Shannon-Nyquist theorem: always sample signal at a 

sampling rate >= 2*highest frequency of signal!

• if Shannon-Nyquist is violated, aliasing occurs

• aliasing cannot be corrected digitally in post-

processing (see optical anti-aliasing filter)

• PSF is usually a low-pass filter, so deconvolution is an 

ill-posed inverse problem 



Linear systems review



Matrices and Linear Systems – Review

• basic linear algebra, review if necessary!

• see references for online resources

• brief review now



Matrices and Linear Systems – Review

• most computational imaging problems are linear

• geometric optics approximation of light is linear in 

intensity

• not necessarily true for wave-based models (e.g. 

interference, phase retrieval, …)



• most computational imaging problems are linear

Matrices and Linear Systems – Review

b = Ax

blurry, noisy, or otherwise 

corrupted measurements

matrix modeling image formation, usually known

unknown image 



Matrices and Linear Systems – Review

• common problem: given b, what can I hope to 

recover?

• answer: analyze matrix via condition number, rank, 

SVD → please review these concepts

b = Ax

blurry, noisy, or otherwise 

corrupted measurements

matrix modeling image formation, usually known

unknown image 



Matrices and Linear Systems – Review

• other common problem: given b, what is x?

• answer: invert matrix?

xest = A-1b
?

b = Ax



Matrices and Linear Systems – Review

• other common problem: given b, what is x?

• answer: invert matrix – generally not!

xest = A-1b
?

b = Ax



Linear Systems

• problem 1: matrix inverse only defined for square, full-

rank matrices – most imaging problems are NOT! 

• problem 2: most imaging problems deal with really big 

matrices – couldn’t compute inverse, even if there was 

one!

• solution: iterative (convex) optimization



Linear Systems

• case 1: over-determined system = more 

measurements than unknowns

• case 2: under-determined system = fewer 

measurements than unknowns

𝐴 ∈ ℝ𝑚×𝑛 , 𝑚 > 𝑛

𝐴 ∈ ℝ𝑚×𝑛 , 𝑚 < 𝑛



Linear Systems

• case 1: over-determined system = more 

measurements than unknowns

• formulate least-squared error objective function:

minimize
x

1

2
b- Ax

2

2
r

2

2
= ri

2

iå , r = b- Ax

norm ℓ2
residual

𝐴 ∈ ℝ𝑚×𝑛 , 𝑚 > 𝑛



• least squares solution: gradient of objective = 0

• gradient:

• equate to zero – normal equations:

Ñx

1

2
b- Ax

2

2
= Ñx

1

2
bTb- 2bTAx + xTATAx( ) = ATAx - ATb

ATAx = ATb

Linear Systems



• least squares solution: gradient of objective = 0

• gradient:

• equate to zero – normal equations:

Ñx

1

2
b- Ax

2

2
= Ñx

1

2
bTb- 2bTAx + xTATAx( ) = ATAx - ATb

ATAx = ATb

Linear Systems

The residual is “normal” to the columns of A



• case 2: under-determined system = fewer 

measurements than unknowns

• ATA not invertible

• regularized solution

(always full rank, but still too big to directly invert, 

equivalent to least norm solution)

Linear Systems

xest = ATA+ lI( )
-1

ATb

𝐴 ∈ ℝ𝑚×𝑛, 𝑚 < 𝑛



• solve with iterative method, easiest one: gradient 

descent

• use the negative gradient of objective as descent 

direction at iteration k, with step length

Linear Systems – Gradient Descent

a



• use the negative gradient of objective as descent 

direction at iteration k, with step length

• for large-scale problems, implement as function 

handles! 

Linear Systems – Gradient Descent

a

𝑥ሺ𝑘+1ሻ = 𝑥ሺ𝑘ሻ − ∇𝑥= 𝑥ሺ𝑘ሻ − 𝛼𝐴𝑇 𝐴𝑥 𝑘 − 𝑏



• back to convolution example:

• efficient implementation using convolution theorem:

Linear Systems – Gradient Descent

= 𝑥ሺ𝑘ሻ − 𝛼 𝑐∗ ∗ 𝑐 ∗ 𝑥 𝑘 − 𝑏

𝑥ሺ𝑘+1ሻ = 𝑥ሺ𝑘ሻ − ∇𝑥= 𝑥ሺ𝑘ሻ − 𝛼𝐴𝑇 𝐴𝑥 𝑘 − 𝑏

𝑥ሺ𝑘+1ሻ = 𝑥ሺ𝑘ሻ − 𝛼 𝐹−1 𝐹 𝑐 ∗ ∙ 𝐹 𝑐 ∙ 𝐹 𝑥 𝑘 − 𝐹 𝑏



Linear Systems – Stochastic Gradient Descent

• What if our measurements are too large to store in 

memory?

• Can happen for linear models—very common for 

nonlinear models (neural networks)!

• Will see more on this later…

b = Ax



Linear Systems – Stochastic Gradient Descent

• Solution?

• Stochastic optimization by sampling entries/rows 

from 𝑏 and 𝐴 at each iteration

b = Ax



Linear Systems – Stochastic Gradient Descent

Tradeoffs

GD is expensive

• but better convergence

SGD is more efficient

• works well far from minima

• but struggles close to minima

• can be good for non-convex 

problems!



Next: Computational Photography

HDR Imaging & 

Tone Mapping

Coded Apertures



References and Further Reading

• Boreman, “Modulation Transfer Function in Optical and ElectroOptical Systems”, SPIE Publications, 2001

• http://www.imagemagick.org/Usage/fourier/

• Wikipedia

• Stanford EE263 lectures: https://www.youtube.com/playlist?list=PL06960BA52D0DB32B

https://www.youtube.com/playlist?list=PL06960BA52D0DB32B
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