Review of Sampling, Deconvolution, Linear Systems

CSC2529
David Lindell
University of Toronto
cs.toronto.edu/~lindell/teaching/2529

*slides adapted from Gordon Wetzstein, Yannis Gkioulekas, and Fredo Durand
Announcements

• HW 2 due Wednesday 5/10
• HW3 is out

• See website for all office hours/problem session dates
Fourier Transform

- What is this?
Fourier Transform

- What is this?
Fourier Transform

• What is this?
Fourier Transform

- What is this?
Fourier Transform

• any continuous, integrable function can be represented as an infinite sum of sines and cosines:

\[
f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{2\pi i \xi x} \, d\xi \quad \leftrightarrow \quad \hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \xi x} \, dx
\]
Fourier Transform

\[f(x, y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} dk_x dk_y \]
Fourier Transform

\[f(x, y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} \, dk_x \, dk_y \]

\[\cos(2\pi [k_x x + k_y y]) + j \sin(2\pi [k_x x + k_y y]) \]
Fourier Transform

\[f(x, y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} \, dk_x \, dk_y \]

\[Ae^{i\phi} \]
Fourier Transform

\[f(x, y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} dk_x dk_y \]

\[A \cos(2\pi [k_x x + k_y y] + \phi) + j A \sin(2\pi [k_x x + k_y y] + \phi) \]
Fourier Transform

$$f(x, y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} dk_x dk_y$$

$$A \cos(2\pi [k_x x + k_y y] + \phi) + j A \sin(2\pi [k_x x + k_y y] + \phi)$$

Fourier coefficients of real signals are conjugate symmetric
Fourier Transform

\[f(x, y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} \, dk_x \, dk_y \]

\[A \cos(2\pi [k_x x + k_y y] + \phi) + jA \sin(2\pi [k_x x + k_y y] + \phi) \]

Images are sums of cosines at different amplitudes, phases, spatial frequencies
Magnitude vs Phase
Fourier Transform

• any continuous, integrable, periodic function can be represented as an infinite sum of sines and cosines:

\[
f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{2\pi i \xi x} \, d\xi \quad \longleftrightarrow \quad \hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \xi x} \, dx
\]

• convolution theorem (critical):

\[
x \ast g = F^{-1}\left\{F\{x\} \cdot F\{g\}\right\}
\]
Discrete vs Continuous Fourier Transform

Primal Domain

Fourier Domain

\[F \]
Sampling

Primal Domain

discrete sampled signal

Fourier Domain
Sampling

Primal Domain

Fourier Domain

Sampling operator

Sample rate of f_s

Shifted copies at f_s
Sample rate should be twice the highest frequency to avoid aliasing!
Periodicity

Primal Domain

Fourier Domain

periodic signal

\[F \]
Primal Domain

Fourier Domain

Sample rate of f_s

Shifted copies at f_s
A periodic signal can be represented by a discrete set of Fourier coefficients.

- These are called the “Fourier series coefficients”
In practice, we wish to take the Fourier transform of discrete signals.

But we need to represent the Fourier domain with discrete values, too!
Assume the primal domain signal is periodic
Discrete Fourier Transform

Primal Domain

Fourier Domain

Input to DFT

Output of DFT

Assume the primal domain signal is periodic
Discrete Fourier Transform

- most important for us: discrete Fourier transform

\[
\hat{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \hat{x}[k] e^{2\pi i kn/N} \quad \leftrightarrow \quad \hat{x}[k] = \sum_{n=0}^{N-1} x[n] e^{-2\pi i kn/N}
\]
An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2^m factorial experiment was introduced by Yates and is widely known by his name. The generalization to 3^m was given by Box et al. [1]. Good [2] generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good's methods are applicable to certain problems in which one must multiply an N-vector by an $N \times N$ matrix which can be factored into m sparse matrices, where m is proportional to $\log N$. This results in a procedure requiring a number of operations proportional to $N \log N$ rather than N^2. These methods are applied here to the calculation of complex Fourier series. They are useful in situations where the number of data points is, or can be chosen to be, a highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how special advantage can be obtained in the use of a binary computer with $N = 2^m$ and how the entire calculation can be performed within the array of N data storage locations used for the given Fourier coefficients.

Fast Fourier Transform: Cooley & Tukey 1965
An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2^m factorial experiment was introduced by Yates and is widely known by his name. The generalization to 3^m was given by Box et al. [1]. Good [2] generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good’s methods are applicable to certain problems in which one multiplies a large number of matrices that can be factored into m sparse matrices requiring a number of multiplications much less than N^2. These methods are applied here to the calculation of complex Fourier series. They are useful in situations where the number of data points is, or can be chosen to be, a highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how special advantage can be obtained in the use of a binary computer with $N = 2^m$ and how the entire calculation can be performed within the array of N data storage locations used for the given Fourier coefficients.

Discrete Fourier Transform

Fast Fourier Transform: Cooley & Tukey 1965
Imaging
Lens imperfections

- Ideal lens: A point maps to a point at a certain plane.

\[\frac{1}{S'} + \frac{1}{S} = \frac{1}{f} \]
Lens imperfections

- Ideal lens: A point maps to a point at a certain plane.
- Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

\[
\frac{1}{S'} + \frac{1}{S} = \frac{1}{f}
\]

What is the effect of this on the images we capture?
Lens imperfections

- Ideal lens: A point maps to a point at a certain plane.
- Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

\[
\frac{1}{S'} + \frac{1}{S} = \frac{1}{f}
\]

Shift-invariant blur.
Lens imperfections

What causes lens imperfections?
Lens imperfections

What causes lens imperfections?
• Aberrations.

(Important note: Oblique aberrations like coma and distortion are not shift-invariant blur and we do not consider them here!)

• Diffraction.

small aperture

large aperture
Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.

- “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

\[
\frac{1}{S'} + \frac{1}{S} = \frac{1}{f}
\]

Diagram showing the relationship between object distance \(S \), sensor distance \(S' \), and the focal length \(f \). The blur kernel and diffraction-limited PSF (Airy pattern) are also illustrated.
Some basics of diffraction theory

We will assume that we can use:
• Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to wavelength).
• incoherent illumination (i.e., the light we are measuring is not laser light).

We will also be ignoring various scale factors. Different functions are not drawn to scale.
Some basics of diffraction theory

The 1D case

aperture: rect(\(x\))

Fourier transform

autocorrelation
Some basics of diffraction theory

The 1D case

aperture: \(\text{rect}(x) \)

Fourier transform

coherent point spread function: \(\text{sinc}(x) \)

autocorrelation
Some basics of diffraction theory

- **Aperture:** \(\text{rect}(x) \)
- **Incoherent point spread function:** \(\text{sinc}(x) \)
- **Fourier transform**
- **Autocorrelation**
- **Coherent point spread function:** \(\text{sinc}(x) \)
- **Optical transfer function:** \(\text{tent}(x) \)
- **Fourier transform**

The 1D case
Some basics of diffraction theory

- Aperture: \(\text{rect}(x) \)
- Coherent point spread function: \(\text{sinc}(x) \)
- Optical transfer function: \(\text{tent}(x) \)
- Incoherent point spread function: \(\text{sinc}^2(x) \)

The 1D case

Why do we get the same result?
Some basics of diffraction theory

aperture: \(\text{rect}(x) \)

Fourier transform

coherent point spread function: \(\text{sinc}(x) \)

Fourier transform

incoherent point spread function: \(\text{sinc}^2(x) \)

Fourier transform

what happens if we increase the aperture size?

The 1D case
Some basics of diffraction theory

The 1D case

aperture: \(\text{rect}(x/2) \)

coherent point spread function: \(\text{sinc}(2x) \)

optical transfer function: \(\text{tent}(x/2) \)

incoherent point spread function: \(\text{sinc}^2(2x) \)

Fourier transform

autocorrelation
Some basics of diffraction theory

- **Aperture:** rect($x/10$)
- **Coherent point spread function:** sinc($10x$)
- **Incoherent point spread function:** sinc$^2(10x)$
- **Optical transfer function:** tent($x/10$)

The 1D case

As the aperture size increases...

... point spread function becomes smaller
Some basics of diffraction theory

The 2D case

aperture

As the aperture size increases...

autocorrelation

Fourier transform

optical transfer function

... point spread function becomes smaller

incoherent point spread function
Some basics of diffraction theory

The 2D case

As the aperture size increases...

aperture

optical transfer function

autocorrelation

Fourier transform

... point spread function becomes smaller

incoherent point spread function

Some basics of diffraction theory

45
Some basics of diffraction theory

The 2D case

Why do we prefer circular apertures?

As the aperture size increases...

Why do we prefer circular apertures?

As the aperture size increases...

The 2D case

Why do we prefer circular apertures?

As the aperture size increases...

The 2D case

Why do we prefer circular apertures?

As the aperture size increases...

The 2D case

Why do we prefer circular apertures?

As the aperture size increases...

The 2D case
Some basics of diffraction theory

The 2D case

As the aperture size increases...

aperture

Other shapes produce very anisotropic blur.

Fourier transform

incoherent point spread function

... point spread function becomes smaller

autocorrelation

optical transfer function
Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.

- “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

[Diagram of lens with optical low-pass filter concepts]
Lens as Optical Low-pass Filter

- away from focal plane: out of focus blur
Lens as Optical Low-pass Filter

- shift-invariant convolution

focal plane
Lens as Optical Low-pass Filter

diffraction-limited PSF of circular aperture (aka “Airy” pattern):

\[b = c \ast x \]
What’s a Discrete Image?

- continuous 2D visual signal on sensor: $i(x,y)$

- integration over pixels: $	ilde{i}(x,y) = i(x,y) \ast \left(\text{rect} \left[\frac{x}{w} \right] \cdot \text{rect} \left[\frac{y}{h} \right] \right)$
What’s a Discrete Image?

- continuous 2D visual signal on sensor: \(i(x,y) \)

- integration over pixels: \(\tilde{i}(x,y) = i(x,y) \ast \left(\text{rect} \left[\frac{x}{w} \right] \cdot \text{rect} \left[\frac{y}{h} \right] \right) \)

- discrete sampling: (in irradiance \(\frac{W}{m^2} \)) \(E[i,j] = \text{sample} \left(\tilde{f}(x,y) \right) = \tilde{f}(x,y) \cdot \sum_m \sum_n \delta(i,j) \)
What’s a Discrete Image?

(detector footprint modulation transfer function, Boreman 2001)
What’s a Discrete Image?

(detector footprint modulation transfer function, Boreman 2001)
Filtering – Low-pass Filter

- low-pass filter: convolution in primal domain \(b = x \ast c \)
- convolution kernel \(c \) is also known as point spread function (PSF)
Filtering – Low-pass Filter

- low-pass filter: multiplication in frequency domain $F\{b\} = F\{x\} \cdot F\{c\}$
Filtering – Low-pass Filter

- low-pass filter: hard cutoff

\[F\{b\} = F\{x\} \cdot F\{c\} \]
Filtering – Low-pass Filter

- Bessel function of the first kind or “jinc”
Filtering – Low-pass Filter

- hard frequency filters often introduce ringing
Filtering – High-pass Filter

- sharpening (possibly with ringing, but don’t see any here)
Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

\[b = x \ast (\delta - c_{\text{lowpass gauss}}) = x - x \ast c_{\text{lowpass gauss}} \]

or

\[b = x \ast (\delta + c_{\text{highpass}}) = x + x \ast c_{\text{highpass}} \]
Filtering – Unsharp Masking

- sharpening (without ringing): unsharp masking, e.g. in Photoshop
Filtering – Band-pass Filter
Filtering – Oriented Band-pass Filter

- edges with specific orientation (e.g., hat) are gone!
Image Downsampling (& Upsampling)

• best demonstrated with “high-frequency” image

• that’s just resampling, right?
• best demonstrated with "high-frequency" image

• that's just resampling, right?
re-sample image: I(1:4:end,1:4:end) in Matlab
something is wrong - aliasing!
need to low-pass filter image first!
need to low-pass filter image first!
first: filter out high frequencies ("anti-aliasing")
then: then re-sample image: I(1:4:end,1:4:end)
Image Downsampling (& Upsampling)

• “anti-aliasing” → **before** re-sampling, apply appropriate filter!

• how much filtering? Shannon-Nyquist sampling theorem:

\[f_s \geq 2f_{\text{max}} \]
no anti-aliasing

with anti-aliasing
Parmar et al. 2021
Examples of Aliasing: Temporal Aliasing

- wagon wheel effect (temporal aliasing)
- sampling frequency was lower than $2f_{\text{max}}$
Examples of Aliasing: Temporal Aliasing

- wagon wheel effect

[YouTube Video](https://www.youtube.com/watch?v=jHS9JGkEOmA)
Examples of Aliasing: Sampling on Sensor

- point source on focal plane maps to PSF
Examples of Aliasing: Sampling on Sensor

- PSF must be larger than 2*pixel size!
Other Forms of Aliasing

- photography – optical AA filter removed (“hot rodding” camera)
Deconvolution
Lens as an optical low-pass filter

image from a perfect lens i * imperfect lens PSF k = image from imperfect lens b
Lens as an optical low-pass filter

If we know b and k, can we recover i?

image from a perfect lens

imperfect lens PSF

image from imperfect lens

$i \ast k = b$
Deconvolution

\[i \ast k = b \]

If we know \(k \) and \(b \), can we recover \(i \)?
Deconvolution

\[i \ast k = b \]

Reminder: convolution is multiplication in Fourier domain:

\[F(i) \cdot F(k) = F(b) \]

If we know \(k \) and \(b \), can we recover \(i \)?
Deconvolution

\[i * k = b \]

Reminder: convolution is multiplication in Fourier domain:

\[F(i) \cdot F(k) = F(b) \]

Deconvolution is division in Fourier domain:

\[F(i_{\text{est}}) = F(b) \backslash F(k) \]

After division, just do inverse Fourier transform:

\[i_{\text{est}} = F^{-1} \left(F(b) \backslash F(k) \right) \]
Deconvolution

Any problems with this approach?
Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

• The measured signal includes noise

\[b = k \ast i + n \]
Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

\[b = k \ast i + n \]

• The measured signal includes noise

• When we divide by zero, we amplify the high frequency noise
Naïve deconvolution

Even tiny noise can make the results awful.

- Example for Gaussian of $\sigma = 0.05$

\[b * k^{-1} = i_{est} \]
Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

\[
i_{\text{est}} = F^{-1}\left(\frac{|F(k)|^2}{|F(k)|^2 + 1/\text{SNR}(\omega)} \cdot \frac{F(b)}{F(k)}\right)
\]

noise-dependent damping factor

- Derived as solution to maximum-likelihood problem under Gaussian noise assumption
- Requires noise of signal-to-noise ratio at each frequency

\[
\text{SNR}(\omega) = \frac{\text{signal variance at } \omega}{\text{noise variance at } \omega}
\]
Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

\[
i_{\text{est}} = F^{-1} \left(\frac{|F(k)|^2}{|F(k)|^2 + 1/\text{SNR}(\omega)} \cdot \frac{F(b)}{F(k)} \right)
\]

Intuitively:
- When SNR is high (low or no noise), just divide by kernel.
- When SNR is low (high noise), just set to zero.
Deconvolution comparisons

naïve deconvolution

Wiener deconvolution
Deconvolution comparisons

$\sigma = 0.01$

$\sigma = 0.05$

$\sigma = 0.01$
Derivation

Sensing model:

\[b = k \times i + n \]

Noise \(n \) is assumed to be zero-mean and independent of signal \(i \).
Derivation

Sensing model:

\[b = k \ast i + n \]

Noise \(n \) is assumed to be zero-mean and independent of signal \(i \).

Fourier transform:

\[B = K \cdot I + N \]

Why multiplication?
Derivation

Sensing model:

\[b = k \ast i + n \]

Fourier transform:

\[B = K \cdot I + N \]

Noise \(n \) is assumed to be zero-mean and independent of signal \(i \).

Convolution becomes multiplication.

Problem statement: Find function \(H(\omega) \) that minimizes expected error in Fourier domain.

\[
\min_{H} E \left[\| I - HB \|^2 \right]
\]
Derivation

Replace B and re-arrange loss:

$$\min_H E[\| (1 - HK)I - HN \|^2]$$

Expand the squares:

$$\min_H \|1 - HK\|^2 E[\|I\|^2] - 2H (1 - HK) E[IN] + \|H\|^2 E[\|N\|^2]$$
Derivation

When handling the cross terms:
• Can I write the following?

$$E[IN] = E[I]E[N]$$
Derivation

When handling the cross terms:

• Can I write the following?

\[E[IN] = E[I]E[N] \]

Yes, because I and N are assumed independent.

• What is this expectation product equal to?
When handling the cross terms:

• Can I write the following?

\[E(IN) = E[I]E[N] \]

Yes, because I and N are assumed independent.

• What is this expectation product equal to?

Zero, because N has zero mean.
Derivation

Replace B and re-arrange loss:

\[
\min_H E[\|(1 + HK)I - HN\|^2]
\]

Expand the squares:

\[
\min_H \|1 - HK\|^2 E[\|I\|^2] - 2H(1 - HK)E[IN] + \|H\|^2 E[\|N\|^2]
\]

Simplify:

\[
\min_H \|1 - HK\|^2 E[\|I\|^2] + \|H\|^2 E[\|N\|^2]
\]

How do we solve this optimization problem?
Derivation

Differentiate loss with respect to H, set to zero, and solve for H:

$$\frac{\partial \text{loss}}{\partial H} = 0$$

$$\Rightarrow -2K(1 - HK)E[\|I\|^2] + 2HE[\|N\|^2] = 0$$

$$\Rightarrow H = \frac{KE[\|I\|^2]}{K^2E[\|I\|^2] + E[\|N\|^2]}$$

Divide both numerator and denominator with $E[\|I\|^2]$, extract factor $1/K$, and done!
Deconvolution with Wiener Filtering

• results: not too bad, but noisy

• need more advance image priors to solve this ill-posed inverse problem robustly → more in week 7&8
Sampling & Deconvolution – Summary

• Shannon-Nyquist theorem: always sample signal at a sampling rate $\geq 2\times$highest frequency of signal!

• if Shannon-Nyquist is violated, aliasing occurs

• aliasing cannot be corrected digitally in post-processing (see optical anti-aliasing filter)

• PSF is usually a low-pass filter, so deconvolution is an ill-posed inverse problem 😞
Matrices and Linear Systems – Review

• basic linear algebra, review if necessary!

• see references for online resources

• brief review now
• most computational imaging problems are linear
• geometric optics approximation of light is linear in intensity
• not necessarily true for wave-based models (e.g. interference, phase retrieval, …)
most computational imaging problems are linear

\[b = Ax \]

- blurry, noisy, or otherwise corrupted measurements
- unknown image
- matrix modeling image formation, usually known
Matrices and Linear Systems – Review

- common problem: given b, what can I hope to recover?
- answer: analyze matrix via condition number, rank, SVD → please review these concepts

$$b = Ax$$

blurry, noisy, or otherwise corrupted measurements

unknown image

matrix modeling image formation, usually known
Matrices and Linear Systems – Review

- other common problem: given b, what is x?
- answer: invert matrix?

\[b = Ax \]

\[x_{est} = A^{-1}b \]
Matrices and Linear Systems – Review

- other common problem: given b, what is x?
- answer: invert matrix – generally not!

$$b = Ax$$

$x_{est} \neq A^{-1}b$
Linear Systems

- **problem 1**: matrix inverse only defined for square, full-rank matrices – most imaging problems are NOT!

- **problem 2**: most imaging problems deal with really big matrices – couldn’t compute inverse, even if there was one!

- solution: iterative (convex) optimization
Linear Systems

• case 1: over-determined system = more measurements than unknowns

 \[A \in \mathbb{R}^{m \times n}, m > n \]

• case 2: under-determined system = fewer measurements than unknowns

 \[A \in \mathbb{R}^{m \times n}, m < n \]
Linear Systems

• case 1: over-determined system = more measurements than unknowns

\[A \in \mathbb{R}^{m \times n}, m > n \]

• formulate least-squared error objective function:

\[
\text{minimize} \quad \frac{1}{2} \left\| b - Ax \right\|_2^2 \quad \left\| r \right\|_2^2 = \sum_i r_i^2, \quad r = b - Ax
\]
Linear Systems

• least squares solution: gradient of objective = 0

• gradient:

\[\nabla_x \frac{1}{2} \| b - Ax \|_2^2 = \nabla_x \frac{1}{2} \left(b^T b - 2b^T Ax + x^T A^T Ax \right) = A^T Ax - A^T b \]

• equate to zero – normal equations:

\[A^T Ax = A^T b \]
Linear Systems

• least squares solution: gradient of objective = 0

• gradient:

\[\nabla_x \frac{1}{2} \| b - Ax \|^2 = \nabla_x \frac{1}{2} \left(b^T b - 2b^T Ax + x^T A^T Ax \right) = A^T Ax - A^T b \]

• equate to zero – normal equations:

\[A^T Ax = A^T b \]

\[A^T (Ax - b) = 0 \]

The residual is “normal” to the columns of A.
Linear Systems

- closed-form solution to normal equations:

\[A^T Ax = A^T b \quad \longrightarrow \quad x_{est} = \left(A^T A \right)^{-1} A^T b \]

- rarely applicable, because again A is big and usually not full rank

- regularized solution

\[x_{est} = \left(A^T A + \lambda I \right)^{-1} A^T b \]

(always full rank, but still too big to directly invert)
Linear Systems – Gradient Descent

- solve with iterative method, easiest one: gradient descent

\[
\begin{pmatrix}
A^T A + \lambda I
\end{pmatrix} x = A^T b
\]

- use the negative gradient of objective as descent direction at iteration \(k \), with step length \(\alpha \)

\[
x^{(k+1)} = x^{(k)} - \alpha \nabla_x x = x^{(k)} - \alpha \tilde{A}^T (\tilde{A} x^{(k)} - \tilde{b})
\]
Linear Systems – Gradient Descent

• use the negative gradient of objective as descent direction at iteration k, with step length α

$$x^{(k+1)} = x^{(k)} - \nabla_x = x^{(k)} - \alpha A^T (Ax^{(k)} - b)$$

• for large-scale problems, implement as function handles!
Linear Systems – Gradient Descent

• back to convolution example:

\[x^{(k+1)} = x^{(k)} - \nabla_x = x^{(k)} - \alpha A^T (Ax^{(k)} - b) \]
\[= x^{(k)} - \alpha \left(c^* \ast (c \ast x^{(k)} - b) \right) \]

• efficient implementation using convolution theorem:

\[x^{(k+1)} = x^{(k)} - \alpha F^{-1}\left\{ F\{c\}^* \cdot \left(F\{c\} \cdot F\{x^{(k)}\} - F\{b\} \right) \right\} \]
Linear Systems – Stochastic Gradient Descent

\[b = Ax \]

- What if our measurements are too large to store in memory?
- Can happen for linear models—very common for nonlinear models (neural networks)!
- Will see more on this later…
Linear Systems – Stochastic Gradient Descent

\[b = Ax \]

- Solution?
 - Stochastic optimization by sampling entries/rows from \(b \) and \(A \) at each iteration

\[\tilde{b} = \tilde{A}x \]

\[x^{(k+1)} = x^{(k)} - \alpha \tilde{A}^{(k)T} (\tilde{A}^{(k)} x^{(k)} - \tilde{b}^{(k)}) \]
GD is expensive
 • but better convergence

SGD is more efficient
 • works well far from minima
 • but struggles close to minima
 • can be good for non-convex problems!
Next: Computational Photography

HDR Imaging & Tone Mapping

Coded Apertures
References and Further Reading

- http://www.imagemagick.org/Usage/fourier/
- Wikipedia
- Stanford EE263 lectures: https://www.youtube.com/playlist?list=PL06960BA52D0DB32B