Review of Sampling, Deconvolution, Linear Systems

CSC2529

David Lindell

University of Toronto

cs.toronto.edu/~lindell/teaching/2529

*slides adapted from Gordon Wetzstein, Yannis Gkioulekas, and Fredo Durand

Announcements

- HW 2 due Friday 9/27
- HW 3 is out, due 10/4
- Problem session for HW 3 tomorrow
- See website for all office hours/problem session dates
- Next week both Aviad and I unavailable—lecture recording will be posted on Quercus.

Outline

- Fourier transform review
- Fourier transforms in imaging
- Image filtering, anti-aliasing, and deconvolution
- Linear systems review

 any continuous, integrable function can be represented as an infinite sum of sines and cosines:

$$f(x) = \dot{\mathfrak{g}}_{-\downarrow}^{\downarrow} \hat{f}(x) e^{2\rho i x x} dx \iff \hat{f}(x) = \dot{\mathfrak{g}}_{-\downarrow}^{\downarrow} f(x) e^{-2\rho i x x} dx$$

$$f(x,y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} \mathrm{d}k_x \mathrm{d}k_y$$

$$F(x,y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} dk_x dk_y$$
$$\cos(2\pi [k_x x + k_y y]) + j \sin(2\pi [k_x x + k_y y])$$

$$f(x,y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} dk_x dk_y$$
$$A e^{j\phi}$$

$$f(x,y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} dk_x dk_y$$
$$A\cos(2\pi [k_x x + k_y y] + \phi) + jA\sin(2\pi [k_x x + k_y y] + \phi)$$

$$f(x,y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} \mathrm{d}k_x \mathrm{d}k_y$$

$$\mathbf{A} \cos(2\pi [k_x x + k_y y] + \phi) + jA \sin(2\pi [k_x x + k_y y] + \phi)$$

Fourier coefficients of real signals are conjugate symmetric

$$f(x,y) = \int_{-\infty}^{\infty} F(k_x, k_y) e^{2\pi i (k_x x + k_y y)} dk_x dk_y$$
$$A\cos(2\pi [k_x x + k_y y] + \phi) + jA\sin(2\pi [k_x x + k_y y] + \phi)$$

Images are sums of cosines at different amplitudes, phases, spatial frequencies

Magnitude vs Phase

Magnitude vs Phase

 any continuous, integrable, periodic function can be represented as an infinite sum of sines and cosines:

$$f(x) = \dot{\mathfrak{g}}_{-\downarrow}^{\downarrow} \hat{f}(x) e^{2\rho i x x} dx \iff \hat{f}(x) = \dot{\mathfrak{g}}_{-\downarrow}^{\downarrow} f(x) e^{-2\rho i x x} dx$$

• convolution theorem (critical):

$$x^*g = F^{-1}\left\{F\left\{x\right\} \times F\left\{g\right\}\right\}$$

Discrete vs Continuous Fourier Transform

Sampling

discrete sampled signal

Sampling

Sampling

Sample frequency: ? Signal frequency: ?

Sample frequency: 20 Hz Signal: 4 Hz

Sample frequency: 20 Hz Signal: 8 Hz

Sample frequency: 20 Hz Signal: 12 Hz

Sample frequency: 20 Hz Signal: 16 Hz

Sample frequency: 20 Hz Signal: 20 Hz

Sample frequency: 20 Hz Signal: 24 Hz

Sample frequency: 20 Hz Signal: 28 Hz

Sample frequency: 20 Hz Signal: 32 Hz

A periodic signal can be represented by a discrete set of Fourier coefficients

• These are called the "Fourier series coefficients"

Discrete Fourier Transform

In practice, we wish to take the Fourier transform of discrete signals.

But we need to represent the Fourier domain with discrete values, too!

Assume the primal domain signal is periodic

Assume the primal domain signal is periodic

• most important for us: discrete Fourier transform

$$x[n] = \frac{1}{N} \mathop{\text{a}}_{k=0}^{N-1} \hat{x}[k] e^{2\rho i k n/N} \quad \longleftrightarrow \quad \hat{x}[k] = \mathop{\text{a}}_{n=0}^{N-1} x[n] e^{-2\rho i k n/N}$$

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2^m factorial experiment was introduced by Yates and is widely known by his name. The generalization to 3^m was given by Box et al. [1]. Good [2] generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good's methods are applicable to certain problems in which one must multiply an N-vector by an $N \times N$ matrix which can be factored into m sparse matrices, where m is proportional to log N. This results in a procedure requiring a number of operations proportional to N log N rather than N^2 . These methods are applied here to the calculation of complex Fourier series. They are useful in situations where the number of data points is, or can be chosen to be, a highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how special advantage can be obtained in the use of a binary computer with $N = 2^m$ and how the entire calculation can be performed within the array of N data storage locations used for the given Fourier coefficients.

Fast Fourier Transform: Cooley & Tukey 1965

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2^m factorial experiment was introduced by Yates and is widely known by his name. The generalization to 3^m was given by Box et al. [1]. Good [2] generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good's methods are applicable to certain problems in which one mu e factored $O(N^2) \rightarrow O(N \log N)$ into m sparse procedure requiring a n N^2 . These methods are applied here to the calculation of complex Fourier series. They are useful in situations where the number of data points is, or can be chosen to be, a highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how special advantage can be obtained in the use of a binary computer with $N = 2^m$ and how the entire calculation can be performed within the array of N data storage locations used for the given Fourier coefficients.

Fast Fourier Transform: Cooley & Tukey 1965

Fourier Transforms in Imaging

• Ideal lens: A point maps to a point at a certain plane.

 $\overline{S'}$

• Ideal lens: A point maps to a point at a certain plane.

۲/

 Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

What is the effect of this on the images we capture?

• Ideal lens: A point maps to a point at a certain plane.

۲/

 Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

What causes lens imperfections?

What causes lens imperfections?

• Aberrations.

(Important note: Oblique aberrations like coma and distortion <u>are not shift-</u> <u>invariant</u> blur and we do not consider them here!)

• Diffraction.

small aperture

large aperture

Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.

۲)

• "Diffraction-limited" PSF: No aberrations, only diffraction. Determined by aperture shape.

We will assume that we can use:

- Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to wavelength).
- incoherent illumination (i.e., the light we are measuring is not laser light).

We will also be ignoring various scale factors. Different functions are <u>not</u> drawn to scale.

The 1D case

The 1D case

Other shapes produce very anisotropic blur.

Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.

• "Diffraction-limited" PSF: No aberrations, only diffraction. Determined by aperture shape.

Lens as Optical Low-pass Filter

Lens as Optical Low-pass Filter

Lens as Optical Low-pass Filter

• continuous 2D visual signal on sensor: i(x,y)

• integration over pixels:

$$\tilde{i}(x,y) = i(x,y) * \left(rect\left[\frac{x}{w}\right] \cdot rect\left[\frac{y}{h}\right]\right)$$

- continuous 2D visual signal on sensor: i(x, y)
- integration over pixels: $\tilde{i}(x,y) = i(x,y) * \left(rect \left\lfloor \frac{x}{w} \right\rfloor \cdot rect \left\lfloor \frac{y}{h} \right\rfloor \right)$

• discrete sampling: (in irradiance $\frac{W}{m^2}$ $E[i,j] = sample(\tilde{f}(x,y)) = \tilde{f}(x,y) \cdot \sum_m \sum_n \delta(i,j)$

- continuous 2D visual signal on sensor: i(x, y)
- integration over pixels: $\tilde{i}(x,y) = i(x,y) * \left(rect \left[\frac{x}{w} \right] \cdot rect \left[\frac{y}{h} \right] \right)$

• discrete sampling: (in irradiance $\frac{W_i}{m^2}$ $E[i,j] = sample(\tilde{f}(x,y)) = \tilde{f}(x,y) \cdot \sum_m \sum_n \delta(i,j)$

What does this mean for image frequencies we can capture?

(detector footprint modulation transfer function, Boreman 2001)

(detector footprint modulation transfer function, Boreman 2001)

Image filtering & anti-aliasing

Filtering – Low-pass Filter

• low-pass filter: convolution in primal domain

- $b = x^*c$
- convolution kernel c is also known as point spread function (PSF)

Filtering – Low-pass Filter

low-pass filter: multiplication in frequency domain

$$F\{b\} = F\{x\} \times F\{c\}$$

Filtering – Low-pass Filter

• low-pass filter: hard cutoff

$$F\{b\} = F\{x\} \times F\{c\}$$

Filtering – Low-pass Filter

• Bessel function of the first kind or "jinc"

Filtering – Low-pass Filter

hard frequency filters often introduce ringing

Filtering – High-pass Filter

4

• sharpening (possibly with ringing)

Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

$$b = x^*(\mathcal{O} - c_{lowpass_gauss}) = x - x^*c_{lowpass_gauss}$$

or
$$b = x^*(\mathcal{O} + c_{highpass}) = x + x^*c_{highpass}$$

Filtering – Unsharp Masking

• sharpening (without ringing): unsharp masking, e.g. in Photoshop

Filtering – Band-pass Filter

Filtering – Oriented Band-pass Filter

edges with specific orientation (e.g., hat) are gone!

Optical Filtering with Fourier Optics

• can do all of this optically

Image Downsampling (& Upsampling)

• best demonstrated with "high-frequency" image

• that's just resampling, right?

pocketfullofliberty.com/high-frequency-trading

original image: I

re-sample image: I(1:4:end,1:4:end) in Matlab something is wrong - aliasing!

What happens if we subsample in the primal domain?

What happens if we subsample in the primal domain?

- Shifted copies start to overlap! High frequencies alias into lower frequencies

(what determines t

- Shifted copies start to overlap! High frequencies alias into lower frequencies
- To solve: first low-pass filter

What happens if we subsample in the primal domain?

Filter cutoff frequer (what determines t

- Shifted copies start to overlap! High frequencies alias into lower frequencies
- To solve: first low-pass filter
- Then no aliasing after downsampling!

pocketfullofliberty.com/high-frequency-trading

need to low-pass filter image first!

pocketfullofliberty.com/high-frequency-trading

need to low-pass filter image first!

first: filter out high frequencies ("anti-aliasing") then: then re-sample image: I(1:4:end,1:4:end)

pocketfullofliberty.com/high-frequency-trading

no anti-aliasing

with anti-aliasing

Image Downsampling (& Upsampling)

• "anti-aliasing" → before re-sampling, apply appropriate filter!

• how much filtering? Shannon-Nyquist sampling theorem:

Parmar et al. 2021

Examples of Aliasing: Temporal Aliasing

- wagon wheel effect (temporal aliasing)
- sampling frequency was lower than $2f_{\text{max}}$

Examples of Aliasing: Temporal Aliasing

• wagon wheel effect

youtube.com/watch?v=jHS9JGkEOmA

Examples of Aliasing: Sampling on Sensor

Other Forms of Aliasing

• photography – optical AA filter removed ("hot rodding" camera)

John Shafer

mosaicengineering.com

Deconvolution

Lens as an optical low-pass filter

Lens as an optical low-pass filter

If we know b and k, can we recover i?

imperfect lens PSF

image from imperfect lens

Deconvolution i * k = b

If we know k and b, can we recover i?

Deconvolution i * k = b

Reminder: convolution is multiplication in Fourier domain:

$F(i) \cdot F(k) = F(b)$

If we know k and b, can we recover i?

Deconvolution i * k = b

Reminder: convolution is multiplication in Fourier domain:

$$F(i) \cdot F(k) = F(b)$$

Deconvolution is division in Fourier domain:

$$F(i_{est}) = F(b) \setminus F(k)$$

After division, just do inverse Fourier transform:

.

$$I_{est} = F^{-1} (F(b) \setminus F(k))$$

Deconvolution

Any problems with this approach?

Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

• The measured signal includes noise

 $b = k * i + n \leftarrow noise term$

Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

• The measured signal includes noise

 $b = k * i + n \leftarrow noise term$

• When we divide by zero, we amplify the high frequency noise

Naïve deconvolution

Even tiny noise can make the results awful.

• Example for Gaussian of $\sigma = 0.05$

112

Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

noise-dependent damping factor

- Derived as solution to maximum-likelihood problem under Gaussian noise ٠ assumption
- Requires noise of signal-to-noise ratio at each frequency •

signal variance at ω

noise variance at ω

$$SNR(\omega) =$$

Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

Intuitively:

- When SNR is high (low or no noise), just divide by kernel.
- When SNR is low (high noise), just set to zero.

Deconvolution comparisons

naïve deconvolution

Wiener deconvolution

Deconvolution comparisons

σ = 0.01

σ = 0.05

σ = 0.01

Sensing model:

$$b = k * i + n$$

Noise n is assumed to be zeromean and independent of signal i.

Sensing model:

$$b = k * i + n$$

Noise n is assumed to be zeromean and independent of signal i.

Fourier transform:

$$B = K \cdot I + N$$
Why multiplication?

Sensing model:

$$b = k * i + n$$

Noise n is assumed to be zeromean and independent of signal i.

Fourier transform:

$$B = K \cdot I + N$$

Convolution becomes multiplication.

Problem statement: Find function $H(\omega)$ that minimizes expected error in Fourier domain.

$$\min_{H} E[\|I - HB\|^2]$$

Replace B and re-arrange loss:

$$\min_{H} E[\|(1 - HK)I - HN\|^2]$$

Expand the squares:

$$\min_{H} \|1 - HK\|^2 E[\|I\|^2] - 2H(1 - HK)E[IN] + \|H\|^2 E[\|N\|^2]$$

When handling the cross terms:

• Can I write the following?

E[IN] = E[I]E[N]

When handling the cross terms:

• Can I write the following?

```
E[IN] = E[I]E[N]
```

Yes, because I and N are assumed independent.

• What is this expectation product equal to?

When handling the cross terms:

• Can I write the following?

```
E[IN] = E[I]E[N]
```

Yes, because I and N are assumed independent.

• What is this expectation product equal to?

Zero, because N has zero mean.

Replace B and re-arrange loss:

$$\min_{H} E[\|(1 + HK)I - HN\|^2]$$

Expand the squares:

$$\min_{H} \|1 - HK\|^{2} E[\|I\|^{2}] - 2H(1 - HK)E[IN] + \|H\|^{2} E[\|N\|^{2}]$$

 $\mathbf{k}_{\text{cross-term is zero}}$

Simplify:

$\min_{H} \|1 - HK\|^2 E[\|I\|^2] + \|H\|^2 E[\|N\|^2]$

How do we solve this optimization problem?

Differentiate loss with respect to H, set to zero, and solve for H:

$$\frac{\partial \text{loss}}{\partial H} = 0$$

$$\Rightarrow -2K(1 - HK)E[||I||^{2}] + 2HE[||N||^{2}] = 0$$
$$\Rightarrow H = \frac{KE[||I||^{2}]}{K^{2}E[||I||^{2}] + E[||N||^{2}]}$$

Divide both numerator and denominator with $E[||I||^2]$, extract factor 1/K, and done!

Deconvolution with Wiener Filtering

• results: not too bad, but noisy

 need more advance image priors to solve this ill-posed inverse problem robustly → more in week 7&8

Sampling & Deconvolution – Summary

- Shannon-Nyquist theorem: always sample signal at a sampling rate >= 2*highest frequency of signal!
- if Shannon-Nyquist is violated, aliasing occurs

- aliasing cannot be corrected digitally in postprocessing (see optical anti-aliasing filter)
- PSF is usually a low-pass filter, so deconvolution is an ill-posed inverse problem ☺

Linear systems review

• basic linear algebra, review if necessary!

• see references for online resources

• brief review now

- most computational imaging problems are linear
- geometric optics approximation of light is linear in intensity
- not necessarily true for wave-based models (e.g. interference, phase retrieval, ...)

• most computational imaging problems are linear

matrix modeling image formation, usually known

- common problem: given b, what can I hope to recover?
- answer: analyze matrix via condition number, rank,
 SVD → please review these concepts

$$b = Ax$$

blurry, noisy, or otherwise
corrupted measurements

matrix modeling image formation, usually known

- other common problem: given b, what is x?
- answer: invert matrix?

$$b = Ax$$
$$x_{est} \stackrel{?}{=} A^{-1}b$$

- other common problem: given b, what is x?
- answer: invert matrix generally not!

- problem 1: matrix inverse only defined for square, fullrank matrices – most imaging problems are NOT!
- problem 2: most imaging problems deal with really big matrices – couldn't compute inverse, even if there was one!
- solution: iterative (convex) optimization

• case 1: over-determined system = more measurements than unknowns $A \in \mathbb{R}^{m \times n}, m > n$

• case 2: under-determined system = fewer measurements than unknowns $A \in \mathbb{R}^{m \times n}, m < n$

• case 1: over-determined system = more measurements than unknowns $A \in \mathbb{R}^{m \times n}, m > n$

• formulate least-squared error objective function:

$$\begin{array}{c|c} \underset{x}{\operatorname{minimize}} & \frac{1}{2} ||b - Ax||_{2}^{2} & ||r||_{2}^{2} = \overset{\circ}{\operatorname{a}}_{i} r_{i}^{2}, \quad r = b - Ax \\ & \uparrow \\ & & \uparrow \\ & \ell_{2} \text{ norm} & \text{residual} \end{array}$$

- least squares solution: gradient of objective = 0
- gradient:

$$\tilde{N}_{x} \frac{1}{2} \|b - Ax\|_{2}^{2} = \tilde{N}_{x} \frac{1}{2} (b^{T}b - 2b^{T}Ax + x^{T}A^{T}Ax) = A^{T}Ax - A^{T}b$$

• equate to zero – normal equations:

$$A^{T}Ax = A^{T}b$$

- least squares solution: gradient of objective = 0
- gradient:

$$\tilde{N}_{x} \frac{1}{2} ||b - Ax||_{2}^{2} = \tilde{N}_{x} \frac{1}{2} (b^{T}b - 2b^{T}Ax + x^{T}A^{T}Ax) = A^{T}Ax - A^{T}b$$

• equate to zero – normal equations:

$$A^{T}Ax = A^{T}b$$

$$A^T(Ax - b) = 0$$

The residual is "normal" to the columns of A

• case 2: under-determined system = fewer measurements than unknowns $A \in \mathbb{R}^{m \times n}, m < n$

- A^TA not invertible
- regularized solution $x_{est} = (A^T A + /I)^{-1} A^T b$

(always full rank, but still too big to directly invert, equivalent to least norm solution)

Linear Systems – Gradient Descent

solve with iterative method, easiest one: gradient descent

$$\underbrace{A^T A + \lambda I}_{\tilde{A}} x = \underbrace{A^T b}_{\tilde{b}}$$

• use the negative gradient of objective as descent direction at iteration k, with step length ∂

$$x^{(k+1)} = x^{(k)} - \alpha \nabla_x = x^{(k)} - \alpha \tilde{A}^T \left(\tilde{A} x^{(k)} - \tilde{b} \right)$$

Linear Systems – Gradient Descent

use the negative gradient of objective as descent direction at iteration k, with step length a

$$x^{(k+1)} = x^{(k)} - \nabla_x = x^{(k)} - \alpha A^T (A x^{(k)} - b)$$

• for large-scale problems, implement as function handles!

Linear Systems – Gradient Descent

• back to convolution example:

$$x^{(k+1)} = x^{(k)} - \nabla_x = x^{(k)} - \alpha A^T (A x^{(k)} - b)$$
$$= x^{(k)} - \alpha (c^* * (c * x^{(k)} - b))$$

• efficient implementation using convolution theorem:

$$x^{(k+1)} = x^{(k)} - \alpha F^{-1} \{ F\{c\}^* \cdot (F\{c\} \cdot F\{x^{(k)}\} - F\{b\}) \}$$

Linear Systems – Stochastic Gradient Descent

$$b = Ax$$

- What if our measurements are too large to store in memory?
- Can happen for linear models—very common for nonlinear models (neural networks)!
- Will see more on this later...

Linear Systems – Stochastic Gradient Descent

b = Ax

- Solution?
 - Stochastic optimization by sampling entries/rows from *b* and *A* at each iteration

$$\tilde{b} = \tilde{A}x$$

 $x^{(k+1)} = x^{(k)} - \alpha \tilde{A}^{(k)T} (\tilde{A}^{(k)} x^{(k)} - \tilde{b}^{(k)})$

Linear Systems – Stochastic Gradient Descent

Tradeoffs

GD is expensive

• but better convergence

SGD is more efficient

- works well far from minima
- but struggles close to minima
- can be good for non-convex problems!

Next: Computational Photography

HDR Imaging & Tone Mapping

Coded Apertures

References and Further Reading

- Boreman, "Modulation Transfer Function in Optical and ElectroOptical Systems", SPIE Publications, 2001
- http://www.imagemagick.org/Usage/fourier/
- Wikipedia
- Stanford EE263 lectures: <u>https://www.youtube.com/playlist?list=PL06960BA52D0DB32B</u>