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Announcements

• HW 2 is out (due next Friday Sep 27)

• TA office hours (HW2) Wed 1-2pm BA 5256



Outline

• Review

• Color

• Camera processing pipeline



Review – “Sensors are Buckets”

collect photons like 

a bucket

integrate spectrum integrate incident 

directions



focal plane

Each pixel sees a point on 

the focal plane from 

different perspectives!



Bayer pattern

wikipedia

Review – Color Filter Arrays



Image Formation
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plenoptic function

spectral sensitivity 

of sensor

angle-dependent factor

• high-dimensional integration over angle, wavelength, time

plenoptic function:

[Adelson 1991]



More Ways to Capture Color

field sequential

wikipedia

multiple sensors vertically stacked

red sensor
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More Ways to Capture Color

• Russian chemist and photographer

• used Maxwell’s color photography technique 

(1855)

• commissioned by Tsar Nicholas II, photo-

documented diversity of Russian empire from 

1909-1915

• ~3500 negatives
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More Ways to Capture Color

• notable French inventor

• Nobel price for color photography in 1908 

= volume emulsion capturing interference

• today, this process is most similar to 

volume holography!

• also invented integral imaging (will hear 

more…)

Gabriel Lippmann Lippmann’s

stuffed parrot



More Ways to Capture Color

• notable French inventor

• Nobel price for color photography in 1908 

= volume emulsion capturing interference

• today, this process is most similar to 

volume holography!

• also invented integral imaging (will hear 

more…)

Gabriel Lippmann Lippmann’s

stuffed parrot



Three-CCD Camera

Philips / wikipedia

beam splitter prism



Stacked Sensor

Foveon X3

Sigma SD9



Other Wavelengths

• OmniVision:

     RGB + near IR!



Other Wavelengths

• OmniVision:

     RGB + near IR!



Other Wavelengths

• OmniVision:

     RGB + near IR!



Other Wavelengths

nostril

pit organ for IR

• thermal IR

• often use Germanium 

optics (transparent IR)

• sensors don’t use 

silicon: indium, 

mercury, lead, etc.

FLIR Systems 



Color is an artifact of human perception

• “Color” is not an objective physical property of light (electromagnetic radiation).
• Instead, light is characterized by its wavelength.

What we call “color” is how we 
subjectively perceive a very 

small range of these 
wavelengths.

electromagnetic 
spectrum
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Spectral Sensitivity Function (SSF)

• Any light sensor (digital or not) has different sensitivity to different wavelengths.

• This is described by the sensor’s spectral sensitivity function

• When measuring light of some SPD           , the sensor produces a scalar 
response:

sensor 
response

light SPD sensor SSF

Weighted combination of light’s SPD: light contributes more at 
wavelengths where the sensor has higher sensitivity.
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Spectral Sensitivity Function of Human Eye

• The human eye is a collection of light sensors called cone cells.

• There are three types of cells with different spectral sensitivity functions.

• Human color perception is three-dimensional (tristimulus color).

“short”

“medium”

“long”
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The retinal color space

“pure beam” (laser)
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The retinal color space

• “lasso curve”

• contained in positive octant

• parameterized by wavelength

• starts and ends at origin

• never comes close to M axis“pure beam” (laser)

why?

why?
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The retinal color space

“pure beam” (laser)

if we also consider variations in the 

strength of the laser this “lasso” turns into 

(convex!) radial cone with a “horse-shoe 

shaped” radial cross-section
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The retinal color space

“mixed beam” 

= convex combination of pure colors

colors of mixed beams are at the interior 

of the convex cone with boundary the 

surface produced by monochromatic 

lights
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The retinal color space

“mixed beam” 

= convex combination of pure colors

• distinct mixed beams can 

produce the same retinal color

• these beams are called 

metamers
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There is an infinity of metamers
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Color matching
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“primaries”

“test light”

Adjust the strengths of the primaries until they re-produce the test color. Then:

equality symbol means “has the same retinal 

color as” or “is metameric to”

CIE color matching
29



“primaries”

“test light”

CIE color matching

To match some test colors, you need to 

add some primary beam on the left (same 

as “subtracting light” from the right)
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“primaries”

CIE color matching

Repeat this matching experiments for pure test beams at wavelengths λi and keep 

track of the coefficients (negative or positive) required to reproduce each pure test 

beam. 
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“primaries”

CIE color matching

Repeat this matching experiments for pure test beams at wavelengths λi and keep 

track of the coefficients (negative or positive) required to reproduce each pure test 

beam. 

note the negative 

values
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“primaries”

CIE color matching

What about “mixed beams”?
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Two views of retinal color

Analytic: Retinal color is produced by 

analyzing spectral power distributions 

using the color sensitivity functions.

Synthetic: Retinal color is produced by 

synthesizing color primaries using the 

color matching functions.
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Two views of retinal color

Analytic: Retinal color is produced by 

analyzing spectral power distributions 

using the color sensitivity functions.

Synthetic: Retinal color is produced by 

synthesizing color primaries using the 

color matching functions.

The two views are equivalent: Color matching functions are also color sensitivity 

functions. For each set of color sensitivity functions, there are corresponding color 

primaries.
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36

CIE RGB colorspace

Created by the International Commission on 

Illumination in 1931 based on color matching 

experiments from 12 people!
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CIE RGB colorspace

Created by the International Commission on 

Illumination in 1931 based on color matching 

experiments from 12 people!

Negative values are not physical

since we cannot subtract light
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CIE RGB colorspace

Created by the International Commission on 

Illumination in 1931 based on color matching 

experiments from 12 people!

CIE XYZ colorspace
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CIE XYZ colorspace



chromaticity

luminance/brightness

CIE xy (chromaticity)

Perspective projection of 3D retinal 

color space to two dimensions.
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CIE xy (chromaticity)

Note: These colors can be 

extremely misleading depending on 

the file origin and the display you 

are using
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CIE xy (chromaticity)

What does the boundary of the 

chromaticity diagram correspond 

to?
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Color gamuts

We can compare color spaces by looking at 

what parts of the chromaticity space they 

can reproduce with their primaries.

But why would a color space not be able to 

reproduce all of the chromaticity space? 
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Color gamuts

We can compare color spaces by looking at 

what parts of the chromaticity space they 

can reproduce with their primaries.

But why would a color space not be able to 

reproduce all of the chromaticity space? 

• Many colors require negative weights to 

be reproduced, which are not realizable.
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Color gamuts

sRGB color gamut:

• What are the three triangle corners?

• What is the interior of the triangle?

• What is the exterior of the triangle?
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Color gamuts

sRGB color gamut

sRGB color primaries

sRGB 

realizable 

colors

sRGB 

impossible 

colors
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Color gamuts

Gamuts of various common 

industrial RGB spaces

What is 

this?
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The problem with RGBs visualized in chromaticity 
space

RGB values have no meaning if the 

primaries between devices are not the 

same!
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Chromaticity diagrams can be misleading

Different gamuts may compare very differently when seen in full 3D retinal color 

space.
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Some take-home messages about color spaces

Analytic: Retinal color is three 

numbers formed by taking the dot 

product of a power spectral 

distribution with three color 

matching/sensitivity functions.

Synthetic: Retinal color is three 

numbers formed by assigning weights 

to three color primaries to match the 

perception of a power spectral 

distribution.
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Some take-home messages about color spaces

Fundamental problem: Analysis spectrum (camera, eyes) cannot be the same as 

synthesis one (display) - impossible to encode all possible colors without something 

becoming negative

• CIE XYZ only needs positive coordinates, but need primaries with negative light.

• sRGB must use physical (non-negative) primaries, but needs negative coordinates for 

some colors.
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Some take-home messages about color spaces

Problem with current practice: Many different RGB color spaces used by different 

devices, without clarity of what exactly space a set of RGB color values are in.

• Huge problem for color reproduction from one device to another.

• there are standards (like sRGB), but consumer displays are not calibrated—so you 

cannot really conclude that images are color accurate
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camera processing pipeline
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Review: Photons to RAW Image

sensor ADC
(quantization)

amplifier 
(gain,ISO)

photon

noise

additive noise
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noise

quantization

“noise”



Image Processing Pipeline

demosaicking gamut mappingdenoising

R
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compression

… … …

• dead pixel removal

• dark frame subtraction (fixed pattern / thermal noise removal)

• lens blur / vignetting / distortion correction

• sharpening / edge enhancement 

also:



Image Processing Pipeline

RAW image

(dcraw –D)
JPEG image



Image Processing Pipeline

• demosaicking

• denoising

• digital autoexposure

• white balancing

• linear 10/12 bit to 8 bit gamma

• compression



Image Processing Pipeline
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Exif Meta Data

exchangeable image file format



Demosaicking (CFA Interpolation)
RAW
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Demosaicking (CFA Interpolation)
RAW linear interpolation green channel
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ĝlin (x, y) =
1

4
g(x + m, y + n)

(m,n)å
(m,n) = {(0,-1),(0,1),(-1,0),(1,0)}

Bayer CFA



Demosaicking (CFA Interpolation)
RAW linear interpolation
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Demosaicking (CFA Interpolation)
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Quick aside: optical low-pass filter
• Sensors often have a separate glass sheet in front of them acting as an optical low-pass 

filter (OLPF, also known as optical anti-aliasing filter).

• The OLPF is typically implemented as two birefringent layers, combined with the infrared 

filter.

• The two layers split 1 ray into 4 rays, implementing a 4-tap discrete convolution filter 

kernel.

65

birefringence in a calcite crystal birefringence ray diagram



Quick aside: optical low-pass filter

• However, the OLPF means you also lose resolution.

• Photographers often hack their cameras to remove 

the OLPF, to avoid the loss of resolution (“hot 

rodding”).

• Camera manufacturers offer camera versions with 

and without an OLPF.

66

• Sensors often have a separate glass sheet in front of them acting as an optical low-pass 

filter (OLPF, also known as optical anti-aliasing filter).

• The OLPF is typically implemented as two birefringent layers, combined with the infrared 

filter.

• The two layers split 1 ray into 4 rays, implementing a 4-tap discrete convolution filter 

kernel.



Quick aside: optical low-pass filter

without OLPF with OLPF

Example where OLPF is needed
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Quick aside: optical low-pass filter

without OLPF with OLPF

Example where OLPF is unnecessary
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Quick aside: optical low-pass filter
69

Nikon D800 Nikon D800E

Identical camera model with and without an OLPF (no need for 

customization).



Demosaicing – Low-pass Chroma

• sampling problem (despite optical AA filter): (too) high-

frequency red/blue information

• simple solution: low-pass filter chrominance – humans are 

most sensitive to “sharpness” in luminance:

1. apply naïve interpolation

2. convert to Y’CbCr (related to YUV)

3. median filter chroma channels: Cb & Cr

4. convert back to RGB

Y’

Cb

Cr



Demosaicing – Low-pass Chroma
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Demosaicing – Low-pass Chroma

1.

2. blur

3. Y’CrCb to RGB
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Demosaicing – Low-pass Chroma

Y’CrCb to RGB:

RGB to Y’CrCb:
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Matlab functions: rgb2ycbcr() and ycbcr2rgb()

Pixel values for above equations between 0 and 255!



Demosaicing – Low-pass Chroma
linear interpolation chrominance filtered



Demosaicing – Edge-Directed Interpolation
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• intuitive approach: consider 3x3 neighborhood

• example: recover missing green pixel



Demosaicing – Edge-Directed Interpolation
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• better: consider 5x5 neighborhood

• example: recover missing green pixel on red pixel



Demosaicing – Edge-Directed Interpolation

• insights so far:

• larger pixel neighborhood may be better, but also more costly

• using gradient information (edges) may be advantageous, even if 

that info comes from other color channels!

• nonlinear method is okay, but not great – linear would be best!

• Malvar et al. 2004 – what’s the best linear filter for 5x5 neighborhood?

• this is implemented in Matlab function demosaic() and part of HW2



Demosaicing- Malvar et al. 2004

ĝ(x,y) = ĝlin(x,y)+aDR(x,y)

r̂(x,y) = r̂lin(x,y)+ bDG (x,y)

r̂(x,y) = r̂lin(x,y)+gDB(x,y)

• interpolate R at G pixels:

• interpolate R at B pixels:

• interpolate G at R pixels:

DR(x, y) = r(x, y)-
1

4
r(x + m, y + n)

(m,n)å
(m,n) = {(0,-2),(0,2),(-2,0),(2,0)}

red gradient:

• gain parameters optimized from Kodak dataset: a =1/ 2, b = 5 / 8, g = 3/ 4



Demosaicing - Malvar et al. 2004

• write out math to get linear filters:

• use normalized filters in practice, i.e. 

scale numbers by sum of filter



Demosaicing - Malvar et al. 2004
linear interpolation Malvar et al.



common sources:

out-of-focus blur

geometric distortion

spherical aberration

chromatic aberration

coma
Input

Deblurring / Deconvolution
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6

Blurred input image Deblurred / deconvolved image



Denoising

noisy image

(Gaussian iid noise, σ=0.2) 

• problem: have noisy image, want to 

remove noise but retain high-

frequency detail



Denoising – Most General Approach

idenoised (x) =
1

w(x, ¢x )
all pixels ¢xå

inoisy( ¢x )
all pixels ¢xå ×w(x, ¢x )

• many (not all) denoising techniques work like this

• idea: average a number of similar pixels to reduce noise

• question/difference in approach: how similar are two noisy pixels?



Denoising – Most General Approach

idenoised (x) =
1

w(x, ¢x )
all pixels ¢xå

inoisy( ¢x )
all pixels ¢xå ×w(x, ¢x )

1. Local, linear smoothing

2. Local, nonlinear filtering

3. Anisotropic diffusion

4. Non-local methods



Denoising – 1. Local, Linear Smoothing

• naïve approach: average in local neighborhood, e.g. using a Gaussian low-

pass filter

w(x, ¢x ) = exp -
¢x - x

2

2s 2

æ

è
ç

ö

ø
÷

idenoised (x) =
1

w(x, ¢x )
all pixels ¢xå

inoisy( ¢x )
all pixels ¢xå ×w(x, ¢x )



Denoising – 2. Local, Nonlinear Filtering

• almost as naïve: use median filter in local neighborhood

idenoised (x) = median W inoisy, x( )( )

small window of image        centered atinoisy x



Denoising

noisy image (Gaussian, σ=0.2) 

Gaussian Median

σ=0.1 

σ=0.3 

σ=0.5 

w=1 

w=3 

w=5 



original Gaussian filtering bilateral filtering

88

Denoising – 3. Bilateral Filtering



input

*

*

*

output

Why is the output so blurry?

89

Gaussian kernel

Denoising – 3. Bilateral Filtering



input

Gaussian kernel

*

*

*

output

Blur kernel averages across edges

90

Denoising – 3. Bilateral Filtering



input

bilateral filter kernel

*

*

*

output

Do not blur if there is an edge! How does it do that?

91

Denoising – 3. Bilateral Filtering



Denoising – 3. Bilateral Filtering

• more clever: average in local neighborhood, but only average similar 

intensities!

  

w(x, ¢x ) = exp -
¢x - x

2

2s 2

æ

è

ç
ç

ö

ø

÷
÷
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noisy
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idenoised (x) =
1

w(x, ¢x )
all pixels ¢xå

inoisy( ¢x )
all pixels ¢xå ×w(x, ¢x )

spatial distance distance of intensities



Denoising – Gaussian Filter

J: filtered output (is blurred)

f: Gaussian convolution kernel

I: step function & noise



Denoising – Bilateral Filter

J: filtered output (is not blurred)

f: Gaussian convolution kernel

I: noisy image (step function & noise)
difference in intensity as scale!
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Denoising – Bilateral Filter

original image bilateral filter = “edge-aware smoothing”



Denoising – Bilateral Filter

noisy image bilateral filter = “edge-aware smoothing”



Exploring the bilateral filter parameter space

input

s = 2

s = 6

s = 18

r = 0.1 r = 0.25
r = 8 

(Gaussian blur)
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Denoising

noisy input bilateral filtering median filtering
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Contrast enhancement

input sharpening based on 

bilateral filtering

sharpening based on 

Gaussian filtering

How would you use Gaussian or bilateral filtering for sharpening?
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Photo retouching
100



Photo retouching

original digital pore removal (aka bilateral filtering)

101



Before
102



After
103



Close-up comparison

original digital pore removal (aka bilateral filtering)

104



Cartoonization

input cartoon rendition

105



Cartoonization

How would you create this effect?

106



Cartoonization

edges from bilaterally filtered image bilaterally filtered image

+ =

cartoon rendition

Note: image cartoonization and abstraction are very active research areas.

107



108

Denoising – 4. Non-local Means



Denoising – 4. Non-local Means

• define distance between global 

image patches

• average distant pixels with similar 

neighborhood! 

idenoised (x) = inoisy( ¢x )
all pixels ¢xå ×w(x, ¢x )

[B
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2
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0
5
]

𝑤(𝑝, 𝑞)

𝑤(𝑝, 𝑟)

𝑤(𝑝, 𝑠)



Denoising – 4. Non-local Means

• very powerful approach: exploit self-similarity in image; average pixels with a 

similar neighborhood, but don’t need to be close → non-local

w(x, ¢x ) = exp -
W inoisy , x '( ) -W inoisy, x( )
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idenoised (x) =
1

w(x, ¢x )
all pixels ¢xå

inoisy( ¢x )
all pixels ¢xå ×w(x, ¢x )
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Denoising – 4. Non-local Means
noisy Gaussian filtering anisotropic filtering

TV bilateral filtering NL-means
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Everything put together

Gaussian filtering

Bilateral filtering

Smooths everything nearby (even edges)

Only depends on spatial distance

Smooths ‘close’ pixels in space and intensity

Depends on spatial and intensity distance

Non-local means

Smooths similar patches no matter how far away

Only depends on intensity distance



Denoising – Other Non-local Method BM3D

• find similar image patches and group them in 3D blocks

• apply collaborative filter on all of them:

• DCT-transform each 3D block

• threshold transform coefficients

• inverse transform 3D block
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Denoising

• many methods for denoising (check Buades 2005): 

• filtering wavelet or other coefficients

• total variation denoising

• patch-based or convolutional sparse coding …

• state of the art: non-local methods, in particular BM3D



Gamut Mapping

Need to map from camera gamut 

to standard gamut (sRGB). 

Different ways of projecting the 

colors lead to different camera 
modes (e.g., vivid, portrait, 

landscape, etc.).

Internally, we transform from 

camera XYZ->CIE XYZ and 
eventually sRGB



Gamma Correction

• from linear 10/12 bit to 8 bit (save space)

• perceptual linearity for optimal encoding with specific bit depth

• sensitivity to luminance is roughly γ=2.2

perceptually linear 

spacing!



Gamma Correction in sRGB

• standard 8 bit color space of most images, e.g. jpeg

• roughly equivalent to γ=2.2

CsRGB =
12.92Clinear Clinear £ 0.0031308

(1+ a)Clinear

1/2.4 - a Clinear > 0.0031308

ì

í
ï

îï

a = 0.055

linear

gamma

γ=2.2

CsRGB



Compression – JPEG (joint photographic experts group)

jpeg – ps quality 0 jpeg – ps quality 2 original



Compression – JPEG (joint photographic expert group)

1. transform to YCbCr

2. downsample chroma components Cb & Cr

• 4:4:4 – no downsampling

• 4:2:2 – reduction by factor 2 horizontally

• 4:2:0 – reduction by factor 2 both horizontally and vertically

3. split into blocks of 8x8 pixels

4. discrete cosine transform (DCT) of each block & component

5. quantize coefficients

6. entropy coding (run length encoding – lossless compression)



Compression – JPEG (joint photographic expert group)

DCT basis functions RLE of “same frequency” coefficients
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Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic experts group)

jpeg – ps quality 0 jpeg – ps quality 2 original



Image Processing Pipeline

demosaicking gamut mappingdenoising

R
A

W
 im

a
g

e

J
P

E
G

 im
a

g
e

compression

… … …



Homework 2

• calculate and plot depth of field of different cameras

• implement a simple image processing pipeline in Python and explore 

demosaicking, denoising, etc.



Next: Math Review

• sampling

• filtering

• deconvolution

• sparse image priors

• …



References and Further Reading

Denoising

• S. Paris, P. Kornprobst, J. Tumblin, F. Durand “A Gentle Introduction to Bilateral Filtering and its Applications”, SIGGRAPH 2007 course notes

• Buades, Morel, “A non-local algorithm for image denoising”, CVPR 2005

• Dabov, Foi, Katkovnik, Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering”, IEEE Trans. Im. Proc. 2007

Demosaicking

• Malvar, He, Cutler, “High-quality Linear Interpolation for Demosaicking of Bayer-patterned Color Images”, Proc. ICASSP 2004

• Gunturk, Glotzbach, Alltunbasak, Schafer, “Demosaicking: Color Filter Array Interpolation”, IEEE Signal Processing Magazine 2005

Plenoptic function 

• E. Adelson, J. Bergen “The Plenoptic Function and Elements of Early Vision”, Computational Models of Visual Processing, 1991

• G. Wetzstein, I. Ihrke, W. Heidrich “On Plenoptic Multiplexing and Reconstruction”, Int. Journal on Computer Vision, 2013

Other, potentially interesting work

• F. Heide, S. Diamond, M. Niessner, J. Ragan-Kelly, W. Heidrich, G. Wetzstein, “ProxImaL: Efficient Image Optimization using Proximal Algorithms”, 

ACM SIGGRAPH 2016

• Kodac dataset (especially good and standard for demosaicking): http://r0k.us/graphics/kodak/http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/
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