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Neural Field Representations
neural fields, neural rendering, applications



Announcements

• Poster session is next Thurs. Dec 8!
• Remember to print your poster ahead of time, follow instructions on Quercus

• Reach out to project mentors with any questions/request feedback

• No in-person lecture next week– guest lecture over zoom



Outline
• Overview of neural fields
• Representing 3D shape
• Neural rendering with NeRF
• Case studies

• SIREN
• AutoInt
• ACORN
• BACON
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Conventional Representations

• Number of samples related to global highest frequency (i.e., Nyquist)

• Can be difficult to optimize due to many parameters
• Need hand-crafted priors for ill-posed problems

• (sparse) basis representations can help, but are not very flexible for high
dimensional or multimodal signals



Neural fields

Field: a set of numbers along with mathematical operations defined on that set.

CVPR 2022 workshop: “a scalar or vector-valued quantity defined across an input domain”
• Neural field: “a field that is parameterized partly or fully by a neural network”
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Neural field explosion!

Began around 2019 and accelerated since NeRF (2020)  
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Neural Field Representations

• Compact representations

• Differentiable and easy to optimize (allows learning priors)

• Multi-modal and easy to scale to high dimensions



Compact Representations

This scene is stored in about 30 MB of trained network weights 
(optimized from ~2 GB of image pixels)



Differentiable/Easy to Optimize

slide: Jon Barron

Becomes trivial to reconstruct 3D appearance and geometry from multiview imagery



Differentiable/Easy to Optimize

[Chan et al. ‘22]Can learn priors/generative models over a space of signals



Multi-modal

A model for text to 3D shape and appearance based on neural fields
[Poole et al. ‘22]
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3D Representations

• Meshes
• Point clouds
• Voxel grids
• …

• Cumbersome to represent with a neural network!



Occupancy Fields

[Mescheder et al. ‘19]



Occupancy Fields

[Mescheder et al. ‘19]



Occupancy Fields

[Mescheder et al. ‘19]



Signed Distance Field



Signed Distance Field

[Park et al. ‘19]



Signed Distance Field

[Park et al. ‘19]



Signed Distance Field

[Park et al. ‘19]
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Neural Radiance Fields

[Mildenhall et al. ‘20]



Training Set

Mildenhall et al. ‘20
Liu et al. ’20
Schwarz et al. ‘20
…

Novel Views (from VRE)Learned Volume
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Volume Rendering Equation (VRE)

position,
direction



Volume Rendering Equation (VRE)

color of rendered ray transmittanceabsorption
coefficient

emissive
radiance





Discretizing the VRE

color of rendered ray transmittanceabsorption
coefficient

emissive
radiance

How much light is emitted along a single 
section? Assuming constant radiance…



Discretizing the VRE

color of rendered ray transmittanceabsorption
coefficient

emissive
radiance

• Assume constant radiance 



Discretizing the VRE



Discretizing the VRE



Discretizing the VRE

Light emitted along one section



Discretizing the VRE

transmittance

discretize and 
sum over sections



discretize and 
sum over sections

Discretizing the VRE

transmittance



discretize and 
sum over sections

Discretizing the VRE

transmittance



Discretizing the VRE

color of rendered ray transmittanceabsorption
coefficient

emissive
radiance



Neural Radiance Fields



Neural Radiance Fields

• Given images with known camera positions
• Sample along rays
• Optimize the absorption and radiance to minimize photometric error!



Positional Encoding

Naïve NeRF produces blurry results…



Positional Encoding

Naïve NeRF produces blurry results… Result with positional encoding



Positional Encoding

Toy example of image fitting

Without Pos. Enc. With Pos. Enc



Positional Encoding

• Simple trick!
• Instead of passing in v =(x, y) into the network we pass



Positional Encoding

•Why does this work?

• Explained with theory from Neural Tangent Kernel
• Training a network is similar to kernel regression

(becomes closer as network layers become wider)



Positional Encoding

• Kernel Regression

Sum over training points

weighting & kernel function 
computes similarity between input 
and training points

e.g., if the kernel is a Gaussian, this puts a bump at every training data point



Width of kernel is important to trade off interpolation/overfitting to data!



Width of kernel is important to trade off interpolation/overfitting to data!



NTK Visualization



NeRF Results

Detailed geometry (depth map visualizes the location of the mean of the absorption)



NeRF Results

View dependent effects (right is fixing the ray position, but feeding different ray direction)
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Images AudioShapes

ReLU MLP



Images AudioShapes Quantities defined by a 
differential equation



Images AudioShapes Quantities defined by a 
differential equation

SIREN: Sinusoidal Representation Networks
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z

NN(x, y, z)



Locality Derivatives

All derivatives exist, are nonzero 
and bounded by 1

Periodicity allows SIREN to replicate activations 
across the input domain

𝜕/𝜕𝑥 𝜕!/𝜕𝑥!



ReLU MLP

SIREN

Images AudioShapes Quantities defined by a 
differential equation



Related Work

Mescheder et al. 2018
Park et al. 2018
Chen et al. 2018

Implicit Representations

Sine Activations in NNs

Lee et al. 1990
Lagaris et al. 1998
He et al. 2000

Neural PDE Solvers

Gallant et al. 1988
Sopena et al. 1999
Candès et al. 1999

Mai-Duy et al. 2003
Sirignano et al. 2018
Raissi et al. 2019
…

Parascandolo et al. 2016
Stanley et al. 2007
…

Sitzmann et al. 2019
Mildenhall et al. 2020
Mildenhall et al. 2020
…

x
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z

NN(x, y, z)



Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

RGB valuesspatial coords.



Representing Images

GT ReLU ReLU P.E. RBF SIRENTanh
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Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

amplitudetime point



Representing Audio – Voice
Ground Truth

ReLU MLP ReLU w/ positional encoding SIREN



Representing Audio – Music
Ground Truth

ReLU MLP ReLU w/ positional encoding SIREN



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

space-time coord. RGB value



Ground Truth

ReLU MLP SIREN

Representing Video



Representing Video

Ground Truth SIRENReLU MLP



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

gray levelspatial coord.



Poisson’s Equation

GT Softplus ReLU P.E. Tanh SIREN

supervision
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Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

spatial coord. signed distance



3D Shapes - solving the Eikonal equation
SIRENReLU

5 layers, 
256 hidden units



ReLU SIREN



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

complex wave field spatial coord.



Solving the Helmholtz Equation
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Ground Truth

Perfectly-Matched 
Boundary Layers



Solving the Helmholtz Equation

ReLU Tanh SIREN
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Ground Truth



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

real wave field spatial coord.



Solving the Wave Equation

GT SIREN Tanh



SIREN in generative models

Uses SIREN-based backbone for 
generative 3D model synthesis! 

Pi-GAN [Chan et al. ‘21]
GRAM [Deng et al. ‘22]



SIREN in physics solvers

Uses SIREN for efficient physics 
solvers (NVIDIA SimNet)

[Hennigh et al. ‘20]
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coordinates
occupancy, 
SDF …

signal

Challenges Towards Large 
Scale Neural Representations

Evaluating a volume of 1K x 1K x 1K voxels
requires 1 billion forward passes!



Challenges
§ Neural network capacity
§ Training time takes hours or days already!
§ Inference time is prohibitive

Evaluating a volume of 1K x 1K x 1K voxels
requires 1 billion forward passes!



Comp. Efficiency Mem. Efficiency Online multiscale Pruning

Explicit

Global implicit

Local implicit

Hybrid Implicit-Explicit (ours)

DeepVoxels

Explicit methods

Input: features
Output: signal

Neural Volumes



Comp. Efficiency Mem. Efficiency Online multiscale Pruning

Explicit

Global implicit

Local implicit

Hybrid Implicit-Explicit (ours)

Fourier FeaturesSIREN

Global implicit methods

Input: coordinates
Output: signal

DeepSDF



Comp. Efficiency Mem. Efficiency Online multiscale Pruning

Explicit

Global implicit

Local implicit

Hybrid Implicit-Explicit (ours)

Local Implicit Image 
Functions

Deep Local Shapes Convolutional Occupancy 
Nets

Neural Geometric Level 
of Detail

Neural Sparse Voxel 
Fields

Local implicit methods

Input: features & 
coordinates

Output: signal



Comp. Efficiency Mem. Efficiency Online multiscale Pruning

Explicit

Global implicit

Local implicit

Hybrid Implicit-Explicit (ours)

ACORN: an hybrid implicit-explicit architecture

Global coordinate encoder

Input: global coordinates
Output: features

Local coordinate decoder

Input: local coordinates
& features

Output : signal





Scaling Up
(64 MP)

SIREN

ACORN

8k

8k

8192 px

8192 px

Optimized ACORN





The partition is optimized 
online, using an Integer 
Linear Program.

Blocks are split and 
merged based on a 
feedback of the training 
error.



Blocks:

Global 
coordinates:

Local 
coordinates:

Scale:



Coordinate encoder



Coordinate encoder Feature grid 
vector to grid

…



Feature grid Interpolated feature vector 

Linear interpolation at

…



Interpolated feature vector Feature decoder Reconstructed 
signal

e.g. occupancy at 





Coordinate 
Encoder       

ACORN

Feature grid Interpolated 
feature vector 

Feature 
decoder 



Learned decomposition

Loss
Ground truth

Block decomposition
updated 
online

optimized 
online

ACORN
Predicted

Signal to represent



Learned decomposition

Loss
Ground truth

Block decomposition
updated 
online

optimized 
online

ACORN
Predicted

Signal to represent





Coarser grid for low 
level of details

Finer grid for high 
level of details



Quadtree representing           region



should split, stay as is, or merge?1.



error to split, stay as is, merge2.

minimize

with

What is the best partition?



Limit the total number of blocks in the partition3.

Assumption: the network has a given capacity,
thus it can only fit a given number of blocks



Learned decomposition

Loss
Ground truth

Block decomposition
updated 
online

optimized 
online

ACORN
Predicted

Signal to represent

Integer Linear Program



Learned decomposition

Loss
Ground truth

Block decomposition
updated 
online

optimized 
online

ACORN
Predicted

Signal to represent

Integer Linear Program



Learned decomposition

Loss
Ground truth

Block decomposition

ACORN
Predicted

Signal to represent

Integer Linear Program

minimize total loss in the partition

subject to: a maximum number of blocks

each block can either be split or merged, and the partition remains valid 

, with and



Results



Photo: Trevor Dobson, https://creativecommons.org/licenses/by-nc-nd/2.0/



3D Shapes

Lucy Statue: Stanford 3D Scanning Repository









Training Time



Recent followup: Instant NGP

Real-time Gigapixel fitting! [Müller et al. ‘22]



Recent followup: Instant NGP

…and NeRF fitting! [Müller et al. ‘22]
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Training Set

Mildenhall et al. ‘20
Liu et al. ’20
Schwarz et al. ‘20
…

Novel Views (from VRE)Learned Volume





Closed-form Solution



Image: XKCD CC BY-NC



Image: XKCD CC BY-NC



Quadrature Monte Carlo

Numerical Integration Techniques

Riemann Sums



Automatic integration











AutoInt
steps

1 2 3Specify integral network Instantiate grad network Train grad network 4 Reassemble into 
the integral network



AutoInt
steps

1 2 3Specify integral network Instantiate grad network Train grad network 4 Reassemble into 
the integral network



Grad Network



Grad Network

Integral Network





Training loss

Monte Carlo approximation



Integrating 2D Signals
ReLU Softplus SIREN (sine) Swish
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Integrating 2D Signals
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Volume Rendering Equation (VRE)

color of rendered ray transmittanceabsorption
coefficient

emissive
radiance



Volume Rendering Equation (VRE)





Approximation of the VRE
sum over piecewise segments

color of rendered ray emissive
radiance

transmittance absorption
coefficient

with



average absorption value average radiance value

average transmittance

Approximation of the VRE



Model: Heinzelnisse CC-BY-NC









…network is a tree that contains both NL and NL’

Open questions

Expressiveness of grad network 
architectures deriving from 

standard MLPs

Other pairs of (grad, integral) 
networks…

…that might be easier to train and more 
expressive

Training the integral network 
directly…

…for instance via the bounds: 
𝐹 𝑎 − 𝐹(𝑏)

1 2 3

seems to work when a
and b are sampled 

densely,
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coordinates

Coordinate Network



pixel values

coordinates

signed distance functions

neural radiance fields

Coordinate Network



coordinates voxel grid

array

coordinate network



downsampled coordinatessupervised coordinates unsupervised coordinates

?

coordinate network
(aliased)

coordinates



coordinates

Band-Limited Coordinate Network (BACON)

anti-aliased downsamplingsupervised coordinates 

network spectrum network spectrum



coordinates

Band-Limited Coordinate Network (BACON)

anti-aliased downsamplingsupervised scale 

network spectraSDF Supervision



coordinates

Band-Limited Coordinate Network (BACON)

anti-aliased downsamplingsupervised scale 

network spectra

multiview image supervision
(neural radiance field)



Sinusoidal Rep. Networks
(SIREN) [Sitzmann et al. ‘20]

Fourier Features
[Tancik et al. ‘20]

• single scale • single scale



Mip-NeRF
[Barron et al. ‘21]

scale

• multiscale
• multiscale supervision

Sinusoidal Rep. Networks
(SIREN) [Sitzmann et al. ‘20]

Fourier Features
[Tancik et al. ‘20]

• single scale • single scale



• black box behavior
• multiresolution outputs not bandlimited

Neural Geometric LOD
[Takikawa et al. ’21]

Adaptive Coordinate Networks
[Martel et al. ‘21]

PlenOctrees
[Yu et al. ‘21]

Sinusoidal Rep. Networks
(SIREN) [Sitzmann et al. ‘20]

Fourier Features
[Tancik et al. ‘20]

Mip-NeRF
[Barron et al. ‘21]

scale

• multiscale
• multiscale supervision

• single scale • single scale



BACON
(proposed)

• multiscale
• single-scale supervision

• black box behavior
• multiresolution outputs not bandlimited

Neural Geometric LOD
[Takikawa et al. ’21]

Adaptive Coordinate Networks
[Martel et al. ‘21]

PlenOctrees
[Yu et al. ‘21]

Sinusoidal Rep. Networks
(SIREN) [Sitzmann et al. ‘20]

Fourier Features
[Tancik et al. ‘20]

Mip-NeRF
[Barron et al. ‘21]

scale

single scale single scale • multiscale
• multiscale supervision



BACON
(proposed)

• multiscale
• single-scale supervision

• black box behavior
• multiresolution outputs not bandlimited

Neural Geometric LOD
[Takikawa et al. ’21]

Adaptive Coordinate Networks
[Martel et al. ‘21]

PlenOctrees
[Yu et al. ‘21]

Sinusoidal Rep. Networks
(SIREN) [Sitzmann et al. ‘20]

Fourier Features
[Tancik et al. ‘20]

Mip-NeRF
[Barron et al. ‘21]

scale

single scale single scale • multiscale
• multiscale supervision

Multiplicative Filter Networks
[Fathony et al. ‘21]



BACON
(proposed)

• multiscale
• single-scale supervision

• black box behavior
• multiresolution outputs not bandlimited

Neural Geometric LOD
[Takikawa et al. ’21]

Adaptive Coordinate Networks
[Martel et al. ‘21]

PlenOctrees
[Yu et al. ‘21]

Sinusoidal Rep. Networks
(SIREN) [Sitzmann et al. ‘20]

Fourier Features
[Tancik et al. ‘20]

Mip-NeRF
[Barron et al. ‘21]

scale

single scale single scale • multiscale
• multiscale supervision

• analytical Fourier spectra
• adjustable bandwidth
• initialization for deep networks

Multiplicative Filter Networks
[Fathony et al. ‘21]



Target Signal Target Spectrum (magnitude)



Target Signal Target Spectrum (magnitude)

supervised
points











Target Signal Target Spectrum (magnitude)

model
output

BACON
cutoff
frequency

BACON



BACON
(low-pass)

Target Signal Target Spectrum (magnitude)

model
output

BACON
cutoff
frequency



Architecture













Distribution of Frequencies Initialization Scheme# Parameterized Sines



Results



Fourier 
Spectrum



Low-pass Reference Fourier FeaturesSIREN

Mip-NeRF PE BACON

4x Downsampling



High-res Reference Fourier FeaturesSIREN

Mip-NeRF PE BACON

4x Upsampling



supervised region

-0.5 0.5



supervised region

-1.0 1.0









Neural Fields

• Exciting and rapidly evolving research area!
• Many hard problems being solved, but still more work to be done

• Robust generalization
• Compositionality 
• Compact, efficient, & scalable 3D reconstruction

• How to integrate with computational imaging problems?



Guest lecture (on Zoom!)

Next time…

Mark Sheinin (CMU)

Imaging, Fast and Slow: 
Computational Imaging for Sensing 
High-speed Phenomena

(two-time CVPR Best Paper Award winner!)


