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Seamless Human-Background Integration via
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Abstract—Indoor human detection is essential for enhancing virtual reality (VR) systems by ensuring user safety and improving
immersion. To address the lack of indoor pedestrian datasets, we propose an automated pipeline that transforms outdoor datasets into
realistic indoor scenes, eliminating the need for manual mask creation. Our approach integrates Telea inpainting for seamless blending
and style refinement using Deep Image Blending to produce high-quality augmented datasets. Experimental results demonstrate that
models trained on our augmented datasets achieve superior detection performance compared to traditional blending techniques, with
significant gains in mean Average Precision (mAP) and mean Average Recall (mAR). We have shown that in the absence of indoor
datasets, our approach for augmenting outdoor datasets is a practical alternative. This work provides a scalable solution for dataset
generation, supporting advancements in VR safety and interactivity.

✦

1 INTRODUCTION

A CCURATE detection of moving individuals in indoor
environments is crucial for enhancing virtual reality

(VR) systems by preventing collisions, ensuring user safety,
and fostering immersive interactions. However, the limited
availability of publicly accessible indoor pedestrian datasets
poses a challenge to advancing research in this domain. To
address this, we propose a novel pipeline that transforms
outdoor datasets into indoor equivalents, enabling the de-
velopment of robust datasets tailored for indoor human
detection.

While existing image blending techniques often rely
on manually crafted masks, this approach can be time-
consuming and inconsistent. Our method automates the
data augmentation, streamlining the transformation from
outdoor to indoor scenes. This automation facilitates the
creation of comprehensive datasets essential for training
effective indoor human detection models, with minimal
reliance on manual input.

Key considerations in developing this pipeline include
maintaining the realism and diversity of augmented indoor
scenes and designing algorithms that accurately simulate
indoor environments from outdoor data. By addressing
these aspects, we successfully implemented a scalable and
efficient data augmentation phase that supports the genera-
tion of high-quality datasets.

This work has significant implications for VR applica-
tions that rely on accurate indoor human detection. By
addressing the dataset scarcity challenge, our method sup-
ports advancements in VR safety, usability, and immersion,
contributing to the development of more responsive and
interactive virtual environments.

2 RELATED WORK

2.1 Laplacian Blending Technique
The Laplacian Blending Technique, first introduced by Burt
and Adelson [1], decomposes images into multi-resolution

Fig. 1. Laplacian Blending Methodology

Laplacian and Gaussian pyramids to facilitate seamless
blending across image boundaries. This technique creates
smooth transitions in the overlapping regions by combining
spatial frequency information at different scales. Specifically,
Gaussian pyramids are used to define blending masks with
softened edges, while Laplacian pyramids enable the recon-
struction of high-frequency details. This approach allows
for the combination of images with minimal perceptual
artifacts, effectively addressing issues like abrupt intensity
changes or visible seams at the composite boundaries.

Building on this foundational methodology, subsequent
techniques have integrated advanced algorithms to address
specific limitations. For instance, Poisson blending [2] in-
corporates gradient-domain consistency to ensure smooth
transitions, even in scenarios involving varying intensities
or textures. Similarly, GAN-based methods, such as GP-
GAN [3], enhance visual realism by combining Laplacian
blending principles with adversarial training to synthesize
plausible high-frequency details.

Contemporary advancements leverage deep neural net-
works, incorporating style and content losses to achieve
consistent textures and illumination in the blended regions.
These methods adapt the underlying principles of Laplacian
blending to modern applications like image harmonization,
texture synthesis, and style transfer, demonstrating its en-
during relevance and adaptability in computer vision tasks.
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2.2 Poisson Blending Technique
Poisson blending, introduced by Pérez et al. [2], provides
a robust approach to seamless image editing by leveraging
the mathematical properties of the Poisson equation with
Dirichlet boundary conditions. The technique formulates
the blending task as a variational problem where the goal
is to reconstruct the intensity values of a target region such
that the gradient field aligns with a guidance vector field,
typically derived from a source image. This ensures smooth
transitions across the boundary of the blending region while
preserving gradient consistency, effectively eliminating arti-
facts such as abrupt intensity changes or visible seams.

In practice, Poisson blending solves pixel intensities by
minimizing the difference between the gradients of the
blending region and the source image, subject to boundary
constraints imposed by the target image. This approach
enables natural blending even when the source and target
regions differ significantly in texture or illumination. Unlike
earlier methods such as multiresolution blending (Laplacian
technique), which operate across multiple spatial frequency
bands, Poisson blending achieves exact gradient field in-
tegration, resulting in precise control over the composite
image’s visual properties.

Extensions of Poisson blending have incorporated addi-
tional constraints or optimization strategies to enhance its
applicability. For instance, gradient-domain [4] techniques
generalize Poisson blending by allowing non-conservative
guidance fields, enabling effects like texture enhancement,
selective color adjustments, and transparent object insertion.
More recently, neural network-based approaches [5] have
integrated gradient-domain optimization with style and
content losses, broadening the utility of the method in artis-
tic rendering, image harmonization [6], and photorealistic
editing. These advancements demonstrate the versatility of
Poisson blending as a foundation for seamless image com-
position and its evolution into modern image processing
pipelines.

2.3 Deep Image Blending Technique
Deep Image Blending [5] builds upon traditional techniques
like Poisson Blending and extends them to address key
limitations while incorporating advanced methodologies
for improved results. Poisson Blending achieves seamless
boundary transitions by enforcing gradient consistency be-
tween source and target images, but it struggles to adapt
to target textures and often results in the over-blending of
target colors into the source object. Additionally, its reliance
on a closed-form solution makes it difficult to combine with
other optimization objectives.

Deep Image Blending overcomes these challenges
through a two-stage approach that integrates differentiable
Poisson blending with style and content losses derived
from deep neural networks. In the first stage, the algo-
rithm enforces Poisson-based gradient-domain consistency
to produce a seamless boundary while ensuring alignment
between the source and target gradients. In the second stage,
style and content losses are utilized to refine the texture and
style of the blending region, achieving a balance between
preserving the source content and adapting to the target’s
appearance.

Fig. 2. Two-Step Image Blending Algorithm of Deep Image Blending [5]

Unlike supervised methods like GP-GAN [3], which
require extensive paired training data, Deep Image Blending
operates without training, making it versatile and gener-
alizable across diverse image types, including real-world
scenes and stylized paintings. Its differentiable formulation
also allows for the inclusion of additional loss functions,
such as histogram and total variation losses, to stabilize the
blending process and enhance spatial smoothness.

Through this advanced framework, Deep Image Blend-
ing not only produces superior visual results compared
to traditional Poisson Blending and hybrid techniques but
also demonstrates robustness in handling complex blending
tasks, including those involving inconsistent textures or
illumination.

3 PROPOSED METHOD

Our goal is to seamlessly blend humans from outdoor to
indoor scenes to generate a comprehensive data set that
can later be used to train indoor human detection models.
Blending techniques such as Laplacian blending [1] and
Poisson blending [2] have been widely used to seamlessly
merge cutouts to their background, yet they are limited
in their application for our purposes. Laplacian blending
ends up introducing blurriness and brightness artifacts onto
the human cutout resulting in the loss of features. How-
ever, Poisson blending ends up introducing elements of
the background into the human cutout. Seamless image
blending techniques predominantly depend on manually
crafted masks, an expensive process and labor intensive.
This hinders the efficiency and scalability of the dataset
creation process.

We propose an automated pipeline that can seamlessly
blend humans from outdoor to indoor scenes in a computa-
tionally effective and realistic way.

3.1 Dataset Information
For pedestrian images, we use an outdoor pedestrian
dataset [7]1, called the Penn-Fudan Database for Pedestrian
Detection and Segmentation. This data set contains 170
images with 345 labeled pedestrians, of which 96 images are

1. The dataset can be accessed at https://www.cis.upenn.edu/∼jshi/
ped html

https://www.cis.upenn.edu/~jshi/ped_html
https://www.cis.upenn.edu/~jshi/ped_html
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Fig. 3. A visual workflow of our proposed algorithm.

from the University of Pennsylvania and 74 are from Fudan
University. For indoor scenes, we captured five images from
different locations within the MScAC (Master of Science in
Applied Computing) office, located on the 9th floor of 700
University Ave, Toronto.

3.2 The Technique

3.2.1 Obtaining Raw Human Masks
Each image from the Penn-Fudan dataset is processed
through Mask R-CNN Inception ResNet V2 (Mask ResNet)
[8]2, an image segmentation model trained on the COCO
2014 dataset [9] and published by TensorFlow on Kaggle.
The Mask ResNet model returns masks for all object classes
it can segment, but we focus solely on the ”human” class.
Any masks smaller than 9% of the image area (full image
area is 400 x 400 pixels) are discarded. If more than two
human masks are detected in an image, only the first two
masks are kept, and the others are discarded. The bounding
boxes are kept for each mask. Finally, all retained masks are
combined into a single 400 x 400 pixel mask.

3.2.2 Generating a Tri-Map from Raw Mask
To refine the mask, we generate a tri-map. A trimap essen-
tially consists of three regions: (1) the background region,
which represents pixels from the background image; (2) the
mid-boundary, an unknown region between background
and foreground that will be estimated using information
from both the background and the foreground pixels; and

2. The model can be accessed at https://tfhub.dev/tensorflow/
mask rcnn/inception resnet v2 1024x1024/1

Fig. 4. Sample trimap of a pedestrian. White pixels represent confirmed
object, gray pixels represent mixture of object and background and black
pixels represent confirmed background

(3) the foreground region, which represents pixels from the
human. See Figure 4.

First, we create an erosion mask by eroding the initial
mask by 0.75% of its width. Then, we generate a dilation
mask by dilating the initial mask by 0.75% of its width.
Next, we subtract the erosion mask from the dilation mask
to obtain a trimap mask, which contains a thin white bound-
ary. The rationale for using the mask width to generate the
erosion and dilation masks is to ensure the boundary is fine
and proportional—neither too large nor too small.

3.2.3 Naive Light Adjustment
We also implement a naive light adjustment algorithm to
adjust the lighting of the outdoor pedestrian image to the

https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1
https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1
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lighting of the indoor background. First, we convert both
the indoor and outdoor image to LAB color space [10]. LAB
color space has 3 channels (1) L - light channel, represents
light to dark from 0 to 100 (2) A- α channel that represents
green to red transition from -127 to 128 (3) B- β channel that
represents blue to yellow transition from -127 to 128 . We
want to use the L channel since we are working with the
lighting of the image.

Let Lout be the L-channel of the outdoor image and Lin

be the L-channel of the indoor image. We then find the
means of the L-channels of both images i.e. µLout

, µLin
and

the standard deviations of the L-channels of both images
i.e. σLout

, σLin
. We then perform the following operation on

Lout.

Lout = (
Lout − µLout

σLout

× σLin
) + µLin

The algorithm aims to normalize the L-channel of the out-
door image and then scale it by the lighting of the indoor
image. We then pass this light adjusted outdoor pedestrian
image along with its masks and the background image to
the next step.

3.2.4 Cut-Paste and Telea Inpainting
The raw human mask is used to extract the human cut-
out from the light adjusted outdoor image, which is then
pasted onto all five indoor backgrounds. This process is
a simple cut-paste operation without depth correction, re-
sulting in sharp intensity changes and edge imperfections
at the boundary between the human and the background.
To address these issues, we use the tri-map we generated
earlier as a reference for correcting the intensity changes and
edge artifacts from the cut-paste process. The coordinates of
the mid-boundary region (as defined in Section 3.2.2) on the
tri-map correspond to the unknown area on the blended
image that will be inpainted using the Telea inpainting
technique [11] by referring to the known pixels in the 5
pixel boundary of the unknown area.

The Telea inpainting technique uses neighbouring
known pixels to fill in unknown regions, starting with
the unknown pixels closest to the known pixels. In our
case, the mid-boundary between the human and the in-
door background represents the unknown region. When
inpainting this mid-boundary, the unknown pixels adjacent
to the background will be filled using the pixels from the
indoor background, while those adjacent to the human will
be filled using the pixels from the human. The unknown
pixels that are equidistant from both the background and
the human will be filled with information from pixels of
the background and the cutout. This results in a more
natural transition, minimizing sharp intensity changes and
any background artifacts caused by an uneven mask. At this
point, we have a blended image with a smooth transition.
For the purposes of this pipeline, we use the OpenCV
implementation of Telea Inpainting3.

3.2.5 Style Refinement with Deep Image Blending Step 2
To seamlessly blend the human cutout into the indoor back-
grounds, it is necessary to adjust the style of the blended

3. Usage information can be found at https://docs.opencv.org/3.4/
df/d3d/tutorial py inpainting.html

Fig. 5. Conceptual outline of Deep Image Blending Step 2. Taken from
the original paper [5]

image. Step 2 of the Deep Image Blending (DIB) algorithm
focuses on transferring the style of the original background
to the blended image’s background while preserving the
content of the cutout. This step primarily addresses contrast
and lighting correction in the blended image. It uses the
VGG16 model to optimize four loss functions: style loss,
content loss and total variation (TV) loss (see Figure 5). For
additional details on the exact loss functions, please refer to
the Deep Image Blending paper [5] and codebase 4.

In this process, Step 1 of Deep Image Blending is re-
placed by the blended image generated through Telea in-
painting from the previous step. We feed the resulting image
into Step 2 of DIB and run the algorithm for 500 itera-
tions (same hyperparameters as mentioned in the paper)
to produce the final, seamlessly blended image. Lastly, we
extract co-ordinates of the bounding boxes from the masks
(an automated approach using cv2.rectangle() from
OpenCV). This approach offers two key advantages over
Step 1 of Deep Image Blending:

1. Step 1 of Deep Image Blending randomly initial-
izes the background for the cutout and generates
the entire background from scratch by optimizing
on losses. This process is highly time-consuming
and computationally expensive (1000 iterations take
about 15 minutes). Additionally, it can introduce
elements into the background that do not exist in
the original image.

2. Since Step 1 of DIB optimizes using a Poisson loss
(refer to the Deep Image Blending paper [5]), it often
overlays color and styles from the background onto
the human cutout. This can lead to significant loss of
detail in the human features (see Experimental Re-
sults). By replacing Step 1 with the Telea inpainted
image, we address the issue of introducing extra-
neous background elements and better preserve the
human cutout, making the final blend more realistic.

4. The implementation of this algorithm can be found at https://
github.com/owenzlz/DeepImageBlending

https://docs.opencv.org/3.4/df/d3d/tutorial_py_inpainting.html
https://docs.opencv.org/3.4/df/d3d/tutorial_py_inpainting.html
https://github.com/owenzlz/DeepImageBlending
https://github.com/owenzlz/DeepImageBlending
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Fig. 6. This figure shows the comparison between the state-of-the-art image composite approaches and ours on outdoor pedestrians on indoor
background images. Poisson Blending refers to Poisson Image Editing [2]. Laplacian refers to Lapacian blending [1]. Deep Image Blending
(DIB) refers to Deep Image Blending [5] Naive cut paste blur refers to simply cutting outdoor image based on mask and pasting it onto background
image

The images generated using these two methods make up
the indoor human detection datasets.

4 EXPERIMENTAL

4.1 Experimental Setup
To curate a high-quality dataset, we filtered images from
the Penn-Fudan Pedestrian dataset. Images with signifi-
cant occlusions or where individuals were not appropri-
ately scaled relative to the background were excluded.
This filtering process resulted in a subset of 118 images.
Each of these images was augmented using five distinct
background images, leveraging our proposed trimap-based
approach alongside several state-of-the-art blending tech-
niques. These techniques included Poisson blending (us-
ing OpenCV’s cv2.seamlessClone() implementation5),
Laplacian blending, and simple cut-and-paste methods.

For the 118 filtered images, this augmentation process
produced a total of 590 augmented images. Our approach
utilized a trimap to ensure precise foreground-background
segmentation, which was critical for achieving seamless
blending. Each blending technique was applied uniformly
across the dataset to maintain comparability. We evaluated
our initial telea inpainting light adjustment augmentation
seperately before applying deep image blending step 2 to
evaluate the difference between them as well. The aug-
mented samples were carefully inspected for quality, with
examples shown in Figure 6 to highlight the differences in
visual fidelity among the techniques.

5. For more details, refer to https://docs.opencv.org/4.x/df/da0/
group photo clone.html

The resulting augmented dataset provides a diverse set
of indoor scenes that closely mirror real-world conditions,
making it well-suited for training object detection models
for indoor pedestrian detection tasks.

4.2 Training Protocol
We trained separate instances of Faster R-CNN ResNet-
50 [12] from scratch on each augmented dataset to assess
the impact of different blending techniques. The datasets
were split into 90% training and 10% validation subsets. For
testing, we captured real-world images of individuals in our
office environment with unseen backgrounds, ensuring that
the test set was entirely independent of the training and
validation data. This test set was specifically designed to
simulate indoor pedestrian detection scenarios and evaluate
the generalizability of the trained models.

Each model’s performance was evaluated using metrics
aligned with the COCO 2014 dataset [9], implemented via
the pycocotools library. The evaluation included mean Av-
erage Precision (mAP) and mean Average Recall (mAR) to
provide a comprehensive assessment of the models’ detec-
tion capabilities. Notably, we excluded the dataset generated
using deep image blending due to the subpar quality of
its augmentations, as illustrated in Figure 6. Additionally,
a baseline model was trained exclusively on the original
outdoor dataset and evaluated on the same test set for
comparison.

The training setup employed stochastic gradient descent
(SGD) with a learning rate of 0.005, momentum of 0.9, and
weight decay of 0.0005. The learning rate was decayed to
10% of its previous value every three epochs. The batch size

https://docs.opencv.org/4.x/df/da0/group__photo__clone.html
https://docs.opencv.org/4.x/df/da0/group__photo__clone.html
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Models trained on different augmented datasets
Outdoors (Baseline) Poisson Laplacian Simplae cut and paste Inpainted (Ours) Inpainted + DIB step 2 (Ours)

mAP IoU=0.50:0.95 0.478 0.534 0.581 0.592 0.627 0.650
mAP IoU=0.50 0.868 0.869 0.928 0.913 0.937 0.935
mAP IoU=0.75 0.523 0.621 0.670 0.763 0.816 0.793

mAR IoU=0.50:0.95 0.593 0.573 0.660 0.662 0.695 0.702
TABLE 1

Comparison of model trained on dataset with different augmentation techniques with baseline on coco evaluation metrics

Fig. 7. Comparison of bounding boxes created by the model trained on
different augmented datasets

was set to four images per batch. Training was conducted on
an Nvidia RTX 4070 GPU, taking approximately 10 minutes
per model, with an inference time of 42 ms per image. These
parameters were chosen based on preliminary experiments
to balance training efficiency and performance.

To ensure robust comparisons, each blending technique’s
dataset was trained using identical hyperparameters and
data splits. This approach minimized confounding factors
and allowed us to isolate the effect of the augmentation
method on model performance.

4.3 Evaluation and Results

The performance metrics of the trained models are sum-
marized in Table 1. Our proposed augmentation techniques
consistently outperformed all other state-of-the-art blending
methods. Specifically, the inpainting + DIB step 2 method
achieved a mean Average Precision (mAP) of 65.0%, rep-
resenting a 17.2% improvement over the baseline model
trained on outdoor-only data. The mean Average Recall
(mAR) was 70.2%, which is 10.9% higher than the base-
line. These results highlight the superior quality of our
augmentation technique in creating training data for indoor
pedestrian detection.

Interestingly, even augmentations with visually unreal-
istic blending improved performance over the baseline, un-
derscoring the value of augmenting pedestrian datasets for
indoor environments. This observation suggests that aug-
mentations introduce beneficial diversity into the dataset,
helping the model generalize better to unseen indoor sce-
narios.

Among the techniques evaluated, simple cut-and-paste
using the human mask outperformed Poisson and Laplacian
blending. This finding suggests that for human detection in
non-uniform backgrounds, Poisson and Laplacian blending
may degrade overall augmentation quality. Our results indi-
cate that maintaining clear object boundaries is more critical

Fig. 8. POC of integrating model with MetaQuest pass through API
showing person in passthrough VR when close to the user

than achieving perfect visual realism for object detection
tasks.

Visual examples in Figure 7 illustrate bounding boxes
predicted by the models on test images. These examples
show that models trained on datasets augmented using our
proposed techniques generated more precise and accurate
bounding boxes compared to those trained on other meth-
ods. The inpainting + DIB step 2 approach, in particular,
produced bounding boxes with better localization and fewer
false positives.

In summary, these results underscore the effectiveness of
our augmentation strategy in enhancing object detection for
indoor pedestrian scenarios. Our findings demonstrate the
potential of leveraging targeted augmentation techniques
to improve model performance in domain-specific applica-
tions, paving the way for further research in this area.

5 CONCLUSION

5.1 Summary

To conclude, we propose an automated data augmenta-
tion pipeline that seamlessly blend humans from an out-
door scene to an indoor scene allowing for the genera-
tion of comprehensive training datasets for indoor object
detection models. In our case for human detection for
VR, but can be extended to many other applications. We
combine mask refinement via Telea inpainting with Step
2 of Deep Image Blending [5], replacing Step 1 of Deep
Image Blending reducing the computational cost of the
process. We also demonstrate that our indoor augmen-
tation technique outperforms existing methods, such as
Laplacian and Poisson blending, for indoor human detec-
tion. Additionally, we show that training an indoor object
detection model using an outdoor pedestrian dataset is
insufficient. In the absence of indoor datasets, our aug-
mented indoor dataset yields optimal results. The code for
this paper can be found at https://github.com/A-Shah-ctrl/
Seamless-Human-Background-Integration

https://github.com/A-Shah-ctrl/Seamless-Human-Background-Integration
https://github.com/A-Shah-ctrl/Seamless-Human-Background-Integration
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5.2 Limitations and Future Work

As a part of the project we aimed to integrate the indoor
object detection system with the MetaQuest 3 VR headset.
The idea was that when a human is detected in close
proximity to the VR user, the human would pass through
the VR scenes, alerting the user and helping to prevent
collisions as shown in Figure 8. However, since Meta has
not yet released the pass-through API for the MetaQuest
3, we were unable to complete the integration. We plan to
proceed with this integration as soon as the API becomes
available.

The dataset generation pipeline is relatively efficient
compared to the full Deep Image Blending (DIB) algorithm;
however, using Mask R-CNN Inception ResNet V2 [8] for
image segmentation to obtain human masks presents a
significant bottleneck. Step 2 of the DIB process requires
approximately 500 iterations, which further slows down
dataset generation. To improve efficiency, we could poten-
tially remove DIB Step 2 from the pipeline, retaining only
the mask refinement with Telea inpainting step. Perfor-
mance results from the model trained on both Inpainting
+ DIB Step 2, and Inpainting alone, show very similar out-
comes. Future work could focus on reducing segmentation
time by exploring alternative image segmentation models,
such as Grounded SAM [13] 6.
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