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Hyperspectral Image Super-Resolution with
Spatiospectral Attention in the Fourier Domain

Peter Phan

Abstract—Hyperspectral imaging provides greater spectral resolution over traditional multispectral imaging, and is useful in a wide
range of tasks requiring the analysis of spectral signatures. However, physical limitations force a trade-off in lower spatial resolution for
greater spectral resolution. Various deep learning-based models have been explored for the hyperspectral image super-resolution
fusion task, whereby a low-resolution hyperspectral image is fused with a high-resolution multispectral image to produce a
high-resolution hyperspectral image. Such models have solely focused on the spatial domain representation, neglecting intrinsic details
present in frequency domain representations. In this paper, we build upon one of these models by incorporating both spatial and
frequency domain representations. Our methods demonstrate greater performance in hyperspectral image reconstruction as a whole
as well as high-frequency preservation and individual spectral preservation.

Index Terms—Computational Photography
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1 INTRODUCTION

H YPERSPECTRAL imaging captures information across
many more bands than multispectral imaging, pro-

viding greater spectral fidelity. This capability is valuable
for a wide range of applications that depend on spectral
analysis, such as material identification and object classifi-
cation. However, the fundamental trade-off between spatial
and spectral resolution remains a key limitation in HSI ac-
quisition: sensors capable of capturing many spectral bands
often yield imagery with relatively coarse spatial detail,
while those offering high spatial resolution do so at the
expense of spectral richness [1]. Obtaining high-resolution
hyperspectral data directly from sensors is thus challenging
and often impractical.

A promising way to overcome this limitation is to fuse
a low-resolution HSI (LR-HSI) with a higher-resolution MSI
(HR-MSI) to produce a high-resolution HSI (HR-HSI). Over
the past decade, numerous techniques—ranging from tra-
ditional model-based approaches [2] to more recent deep
learning methods [3] [4]—have aimed to solve this super-
resolution problem. Deep learning approaches have at-
tracted considerable attention due to their ability to auto-
matically learn effective representations from the data itself.
Networks like HSRnet have shown that it is possible to
preserve spectral information while recovering fine spatial
details, and the convolutional architecture of HSRnet allows
it generalize across different data sets and sensor modalities.
However, existing networks often focus solely on spatial
domain representations, overlooking the wealth of informa-
tion that can be revealed when considering the frequency
domain.

To further advance the frontier of HSI super-resolution,
we propose an enhanced version of HSRnet that incorpo-
rates both spatial and frequency domain information. Our
method introduces a novel loss term designed to penal-

• P. Phan is with the Department of Mechanical and Industrial Engineering,
University of Toronto.
E-mail: tammy.phan@utoronto.ca

Fig. 1. Illustration of HSI super-resolution from an LR-HSI and an HR-
MSI [5]

ize reconstruction errors in the Fourier domain, thereby
improving the frequency fidelity of the reconstructed HR-
HSI. Furthermore, we modify the HSRnet architecture to
operate in both the spatial and Fourier domains. By apply-
ing the network to the frequency-transformed version of
the input images and then combining its output with the
spatial-domain reconstruction through a weighted fusion,
the network can better leverage complementary informa-
tion from both representations. This dual-domain approach
leads to improved recovery of fine spatial details and more
consistent spectral signatures, while maintaining a relatively
simple network structure and low computational overhead.

In summary, the main contributions of this work are as
follows:

Dual-Domain Fusion: We extend the HSRnet framework
to incorporate both spatial and frequency domain repre-
sentations. This dual-domain fusion enables the network
to leverage distinct and complementary features, improving
spatial detail recovery and spectral integrity simultaneously.

Frequency-Aware Loss: We introduce a novel loss term
defined in the Fourier domain, which penalizes frequency-
domain errors. This encourages the model to maintain high-
frequency components accurately, leading to sharper and
more detailed reconstructions.

Enhanced Generalization and Efficiency: By combining
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spatial and frequency domain information, our proposed
method increases reliance on inherent representation-based
features over data-specific features.

The rest of this article is organized as follows. Section
II reviews recent developments in HSI super-resolution,
focusing on both model-based and deep learning-based ap-
proaches. Section III introduces the proposed dual-domain
HSRnet architecture, detailing the network design and the
frequency-aware loss function. In Section IV, we present
extensive experimental results and discuss the effectiveness,
robustness, and efficiency of our approach compared to
existing methods. Finally, Section V concludes the article
and outlines potential directions for future research.

2 RELATED WORK

Existing methods for HSI–MSI fusion generally fall into two
broad categories: model-based, and deep learning-based
methods.

2.0.1 Model-based Methods
Traditional model-based methods formulate the fusion
problem as an optimization task with prior constraints.
For example, Li et al. [6] and Xu et al. [7] use the Tucker
tensor decomposition to decompose the HR-HSI into com-
pact core tensor and factor matrices, embedding sparsity
or smoothness constraints to guide the reconstruction pro-
cess. Classical optimization algorithms (e.g., ADMM) can
then be applied to find a solution. While some of these
frameworks demonstrate sound theoretical underpinnings
and good interpretability, their performance can be sensitive
to the choice of priors and tuning parameters. In addition,
different scenes or sensors may require different parameter
settings, limiting the general applicability of these methods.

2.0.2 Deep Learning Methods
Deep learning-based methods have emerged as a power-
ful alternative to model-based methods. The problem is
formulated as a non-linear mapping that takes a LR-HSI
and a corresponding HR-MSI to a HR-HSI, and deep neural
networks have proven particularly effective at learning such
mappings.

Early neural approaches adopted architectures inspired
by image super-resolution networks designed for RGB im-
ages. Subsequently, more specialized designs have emerged,
including attention modules and spectral–spatial feature
fusion layers. Xie et al. [3] constructed a fusion model which
merges the generalization models of low-resolution images
and the low-rankness prior knowledge of HR-HSI images
and then designed the deep network by unfolding the
proximal gradient algorithm. Zhang et al. [8] designed an
interpretable spatial-spectral reconstruction network (SSR-
Net). FusionNet [9] approched the fusion problem using
a variational probabilistic autoencoder. In this article, we
focus on HSRnet, introduced by Hu et al. [4] HSRnet is a
deep CNN incorporating attention modules to learn multi-
scale spatial and spectral information.

A noteworthy trend in recent work is the integration
of model-derived insights into the network design. For
example, certain methods “unfold” iterative algorithms into
deep architectures, ensuring that the network respects the

generative models of the LR-HSI and MSI [3]. Others incor-
porate explicit spectral response functions, low-rank priors,
or graph-based constraints directly into their layers [10].
While these data-driven strategies often yield impressive
performance, they can still suffer from limitations related
to training complexity, data dependence, and generalization
to unseen domains.

2.0.3 Beyond the Spatial Domain
Existing HSI super-resolution methods operate primarily in
the spatial domain, focusing on local patches, residual im-
ages, or semantic features learned directly from pixel neigh-
borhoods. Comparatively less attention has been devoted
to exploring the frequency domain, where global structures
and periodic patterns can be more naturally captured. Some
recent studies on general image restoration have highlighted
the benefits of frequency-based losses or transformations
[11], [12]. Such perspectives are only beginning to influence
image super-resolution, suggesting that further integration
of spatial and frequency representations could enhance the
reconstruction quality, reduce artifacts, and improve the
model’s robustness.

3 PROPOSED METHOD

3.1 Overview of HSRnet
We first provide a brief overview of HSRnet. The core idea
of HSRnet is to take a low-resolution hyperspectral image
(LR-HSI) and combine it with a high-resolution multispec-
tral image (HR-MSI) to produce a super-resolved HSI that
retains both high spatial and high spectral fidelity.

The process begins by naively upsampling the LR-HSI
to match the desired spatial resolution. Although this naive
upsampling preserves most of the spectral structure, it lacks
fine spatial details. To address this, HSRnet leverages the
HR-MSI to learn the spatial residuals that can be added back
into the upsampled HSI. At the same time, it uses the LR-
HSI itself to learn spectral residuals, ensuring that the final
output closely matches the ground truth hyperspectral data.

Formally, we want to find a function f that maps an
LR-HSI, Y ∈ Rh×w×S , and an HR-MSI, Z ∈ RH×W×s, to an
HR-HSI, X ∈ RH×W×S , where h,w and H,W represent the
spatial dimensions of the LR and HR images respectively,
and s, S denote the number of spectral bands of the MSI
and HSI. We estimate the parameters Θ of f by minimizing
the loss:

min
Θ

L = ∥fΘ(Y,Z)−X∥22,

where fΘ is modeled by a deep convolutional neural net-
work (CNN), and Θ represents its weights.

HSRnet’s design can be understood as three parts:
Spectral Learning at Low Resolution: The LR-HSI al-

ready contains rich spectral information. By learning spec-
tral residuals at the low-resolution scale, the model refines
the spectral content of the naively upsampled HSI. As a
result, the final HR-HSI aligns closely with the true spectral
signatures found in X .

Spatial Learning at Multiple Scales: Spatial details are
introduced at both the low-resolution and high-resolution
scales using the HR-MSI. At the low-resolution scale, the
HR-MSI is first downsampled and concatenated with the
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Fig. 2. HSRnet Architecture [4]

LR-HSI. A pixel shuffle layer is used to upsample it back
to high resolution, and a subsequent ResNet module learns
spatial residuals.

Spatial Attention at High Resolution: To enhance high-
resolution spatial features, the HR-MSI passes through a
spatial attention module. This module typically includes
a global average pooling layer that captures global spatial
context, followed by convolution with a learnable kernel.

3.2 Incorporating the Fourier Domain
While HSRnet and other image fusion models can effec-
tively preserve low-frequency details, they do not preserve
high-frequency details. This was confirmed by passing the
images through a high/low pass filter in the Fourier do-
main. We experiment with various frequency domain-based
adjustments to HSR-Net to improve frequency preservation.
To punish loss of high-frequency details, we add a High-
Frequency Domain Loss Term while training, defined by

Lhf =
1

HWC

HWC∑
i=1

∥HP(X)i − HP(fΘ(Y,Z))i∥22

where HP is a high-pass filter, H,W,C is the height,
width, and spectral channel dimension respectively, X is the
ground truth HR-HSI, fΘ is the network, Y is the LR-HSI
and Z is the HR-MSI.

To enforce even greater high-frequency preservation, we
modify the architecture directly, by learning residuals of the
image in both the spatial and frequency domain, and then
fuse both residuals through a weighted sum, combining
the learnt spatial residuals and learnt frequency residuals.
We denote this model as the HSRnet Frequency Domain
Fusion Network (FD-HSRnet). Given the LR-HSI Y , HR-
MSI Z , FD-HSRnet FΘ is defined as

FΘ(Y, Z) = βfΘ(Y,Z) + γIFFT
(
fΘ(Re(YFFT),Re(ZFFT))

+ ifΘ(Im(YFFT), Im(ZFFT))
)

where β and γ are parameters for the weighted sum, ∗FFT
is the Fourier transformed input, IFFT is the inverse Fourier
transform, Re() takes the real part of the complex number,
and Im() takes the imaginary part. In this paper, we use
β = 0.85 and γ = 0.15.

3.2.1 Training
We emulate the training regime of HSRnet. All models were
trained on the same dataset and hyperparameters. Training
was done on the CAVE hyperspectral image dataset, which
consists of 32 hyperspectral images over 31 bands. 20 images
were used for training and 11 for validation. 3920 non-
overlapping patches were extracted from the 20 images for
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Fig. 3. FD-HSRnet

TABLE 1
Average Values over 11 Testing Images from the CAVE Dataset

Model PSNR SSIM SAM ERGAS
HSRnet 33.73 0.930 0.065 3.82

HSRnet + 0.05Lhf 34.17 0.941 0.061 3.66
HSRnet + 0.10Lhf 34.69 0.951 0.058 3.49
HSRnet + 0.15Lhf 35.00 0.959 0.055 3.36
HSRnet + 0.20Lhf 35.20 0.963 0.054 3.29

FD-HSRnet 33.73 0.93 0.065 3.82
FD-HSRnet + 0.20Lhf 35.22 0.963 0.054 3.28

training. To simulate low-resolution hyperspectral images,
a Gaussian blur was applied with a 3 × 3 kernel and 0.5
standard deviation, before downsampling each patch by a
factor of 4. Additionally, the spectral response function of
the Nikon D700 camera was used to extract the correspond-
ing multispectral images [13]. All models were implemented
in Python 3.12.6 with PyTorch 2.4 and trained on an NVIDIA
RTX 4060 GPU. The Adam optimizer was used with a
learning rate of 1e − 4. All models were trained for 200
epochs, and training time ranged between 1 and 2 hours
each. The original HSRnet architecture and training regime
was first reimplemented in PyTorch, and all subsequent
models in this paper are based on this reimplementation.

The original HSRnet was trained to minimize the mean
squared error,

LMSE = ∥fΘ(Y,Z)−X∥22,

We denote the HSRnet models trained with our additional
high-frequency domain loss term as HSRnet+αLhf where
α is the weight of the additional loss term.

L = LMSE + αLhf

4 EXPERIMENTAL RESULTS

We train various models and compare them against the orig-
inal HSRnet. For evaluation, we use the CAVE dataset. We
adopt four widely used quantitative quality measures, the
peak signal-to-noise ratio (PSNR), the structure similarity
index, the spectral angle mapper (SAM), and the erreur
relative globale adimensionnelle de synthèse (ERGAS).

TABLE 2
Average Values over 11 Testing Images from the CAVE Dataset (High

Frequencies)

Model PSNR SSIM SAM ERGAS
HSRnet 18.95 0.109 1.336 38984

HSRnet + 0.05Lhf 20.02 0.213 1.142 35949
HSRnet + 0.10Lhf 20.48 0.256 1.072 34642
HSRnet + 0.15Lhf 21.32 0.360 0.954 31310
HSRnet + 0.20Lhf 21.55 0.386 0.925 30819

FD-HSRnet 18.95 0.109 1.337 38984
FD-HSRnet + 0.20Lhf 21.56 0.386 0.924 30729

TABLE 3
Average Values over 11 Testing Images from the CAVE Dataset (Low

Frequencies)

Model PSNR SSIM SAM ERGAS
HSRnet 49.06 0.992 0.021 1.19

HSRnet + 0.05Lhf 49.35 0.993 0.021 1.15
HSRnet + 0.10Lhf 49.95 0.993 0.021 1.08
HSRnet + 0.15Lhf 50.05 0.993 0.021 1.07
HSRnet + 0.20Lhf 50.36 0.994 0.021 1.04

FD-HSRnet 49.06 0.993 0.020 1.19
FD-HSRnet + 0.20Lhf 50.42 0.994 0.021 1.03

The average values for each metric over the 11 testing
images are shown in Table 1. To test the performance on
high-frequency details, we apply a high-pass filter to each
result and calculate the metrics on the output. The average
values for only the high-frequencies are shown in Table
2, and for only the low-frequencies are shown in Table 3.
We find that our proposed method outperforms the origi-
nal HSRnet on the original images and also demonstrates
improved high-frequency preservation. Notably, HSRnet +
αLhf demonstrates gradually increasing performance as α
increases. Furthermore, FD-HSRnet performs similarly to
HSRnet, but outperforms all other methods when trained
with the additional loss term. It is interesting to note that
although our new methods only directly punish loss of high-
frequency details, the preservation of low-frequency details
also improves, as shown in Table 3.

For qualitative analysis, we display the results of a single
unseen image for the 31st, 16th, and 1st bands in Figure 4.
Both HSRnet + 0.2Lhf and FD-HSRnet + 0.2Lhf produce
sharper super-resolved images than the original HSRnet.

To evaluate spectral reconstruction, we plot selected
spectral vectors for another testing image, jelly beans, for the
ground truth HR-HSI, downsampled LR-HSI, original HSR-
net output, HSRnet + 0.2Lhf output, FD-HSRnet output,
and FD-HSRnet + 0.2Lhf output in Figure 5.

For each band, we also compute the mean difference
between the outputs of each model and the ground truth,
for all 11 testing images, shown in Figure 6. Our analysis
has so far considered the quality of the hyperspectral image
as a whole. To test the possibility of increased performance
due to some bands overcompensating for others, we plot
for each band the difference between the mean squared error
over all 11 testing images, as shown in Figure 7. This is
additional confirmation that FD-HSRnet performs similarly
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Fig. 4. Top row pair: 31st band, Middle row pair: 16th band, Bottom row
pair: 1st band
For each row pair; First row: ground truth HR-HSI, downsampled LR-
HSI, original HSRnet output. Second row: HSRnet + 0.2Lhf output, FD-
HSRnet output, FD-HSRnet + 0.2Lhf output

to HSRnet; there is almost no change in the error. However,
the impact of the high-frequency loss term can be seen for
both HSR-net and FD-HSRnet. In both HSRnet + 0.2Lhf

and FD-HSRnet + 0.2Lhf , the change in error is negative
at every band i.e., both methods show greater performance
over the original HSRnet at every single band.

Fig. 5. Top: spectral vector at (128,480), (256, 256), (372, 464)

5 CONCLUSION

The HSRnet is an architecture for the hyperspectral image
super-resolution problem, where a high-resolution multi-
spectral image is fused with a low-resolution hyperspectral
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Fig. 6. Mean squared error for each testing image at each band

Fig. 7. Difference in mean squared error over all 11 testing images, at
each band

image through a deep CNN architecture that utilizes multi-
scale spatiospectral attention mechanisms. Recognizing that
some intrinsic features may be better represented in the
frequency domain, we build upon the HSRnet with a dual
domain approach incorporating both spatial and frequency
domain representations. We do this via two methods: an
additional high-frequency domain loss term that punishes
errors at high-frequencies, as well as a dual-domain fusion
approach at the architecture level.

Experiments demonstrated that our method outper-
forms HSRnet with higher PSNR and SSIM values and
lower SAM and ERGAS values. The improvement of the lat-
ter two values indicate reduced spectral distortion. We also
demonstrate increased performance across the entire spec-
tral range i.e., our methods improve reconstruction quality
as a whole. As well, while our methods are motivated by
penalizing loss of high-frequency details, both methods also
improve loss of low-frequency details, demonstrating the
complementary nature of the two domains.

By operating on existing network structures and in-
corporating frequency-domain information in a modular
manner, our enhancements maintain the general applica-
bility and low complexity of HSRnet. This enables better
performance without sacrificing scalability and adaptability.

5.1 Limitations and Future Work
Due to time and computing constraints, in this paper we
have only tested the high-frequency domain loss term with
α ≤ 0.2, and FD-HSRnet with a single set of heuristically
chosen fusion parameters β = 0.85, γ = 0.15. Future
work could perform a parameter sweep for more optimal
values. Additionally, the original HSRnet was trained for
much longer (∼1 hour versus ∼5 hours) on a similar per-
forming GPU. Even so, our approach demonstrates that
the addition of a high-frequency domain loss term may
drastically decrease the training time. Future work could
also explore why certain spectral bands are less affected
by our approach (e.g., band number 5 in Figure 7), investi-
gate more sophisticated frequency-domain transformations,
explore frequency-aware priors inspired by physical mod-
els of imaging systems, or integrate these enhancements
with recent advances in attention and transformer-based
networks. Finally, future work should involve testing our
approach on a broader range of datasets and adapting it
to other hyperspectral super-resolution models, as well as
other image restoration and enhancement tasks.
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