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Figure 1. Results of blind rotation deblurring, a challenging non-linear inverse problem: (a) ground truth image, (b) rotation blurred
measurement, and restored images using (c) BlindDPS [8], (d) FastEM [23], (e) GibbsDDRM [27], and (f) CL-DPS (ours). Notably, all
methods fail catastrophically except for CL-DPS.

Abstract

Diffusion models (DMs) have recently shown great
promise in solving inverse problems. While most research in
this area addresses non-blind inverse problems, where the
measurement operator is assumed to be known, real-world
applications frequently involve blind inverse problems with
unknown measurements. Existing DM-based methods for
blind inverse problems are limited, primarily addressing
only linear measurements and thus lacking applicability to
real-life scenarios that often involve non-linear operations.
To overcome these limitations, we propose CL-DPS, a novel
approach based on contrastive learning for solving blind
inverse problems via diffusion posterior sampling. In CL-
DPS, we first train an auxiliary deep neural network (DNN)

offline using a modified version of MoCo [16], a contrastive
learning technique. This auxiliary DNN serves as a likeli-
hood estimator, enabling estimation of p(y|x) without prior
knowledge of the measurement operator, thereby adjusting
the reverse path of the diffusion process for inverse problem
solving. Additionally, we introduce an overlapped patch-
wise inference method to improve the accuracy of likeli-
hood estimation. Extensive qualitative and quantitative ex-
periments demonstrate that CL-DPS effectively addresses
non-linear inverse problems, such as rotational deblurring,
which previous methods could not solve. Code available:
https://github.com/cldps/cldps.

https://github.com/cldps/cldps


1. Introduction
Inverse problems are pervasive across many fields, with
significant applications in areas such as medical imaging
[20, 26], computational photography [28, 38], and seismic
imaging in geophysics [19, 45], among others. Particularly,
the objective of the inverse problems is to recover the orig-
inal signal x from the corrupted measurement y which is
generated by the forward operation/measurement Aψ(·).

Inverse problems are typically divided into two major
categories based on the availability of Aψ: non-blind and
blind inverse problems. Non-blind inverse problems as-
sume thatAψ is known. In contrast, blind inverse problems
arise when Aψ is unknown, requiring the simultaneous es-
timation of both Aψ and x, which presents a significantly
greater challenge.

Inverse problems are inherently ill-posed, often rely
heavily on data priors p(x) for accurate computation. Re-
cently, diffusion models (DMs) have emerged as pow-
erful tools for solving inverse problems due to their re-
markable ability to capture complex data distributions p(x)
[9, 10, 13, 34]. A straightforward approach to leveraging
DMs for solving inverse problem involves training a con-
ditional DM to directly estimate the posterior p(x|y) via
supervised learning. However, this method can be compu-
tationally intensive, as it requires training separate DMs for
each distinct measurement operator Aψ .

To overcome this limitation, recent work has focused on
approximating the posterior by leveraging pre-trained, un-
conditional DMs that estimate the prior p(x), thus bypass-
ing the need for additional model training. In this approach,
the prior p(x) provided by the DMs is combined with the
likelihood p(y|x) to sample from the posterior distribution
in inverse problems. These methods rely on approximating
the likelihood term p(y|x), as it is analytically intractable
[9, 34].

Nevertheless, most inverse-problem solvers proposed in
the literature are strictly limited to scenarios in which the
measurement operator Aψ is known and fixed [9, 34]. To
address this issue, we propose CL-DPS, a method based
on contrastive learning for solving blind inverse problems
via diffusion posterior sampling. Specifically, in CL-DPS,
first an auxiliary deep neural network (DNN) is trained of-
fline using a modified version of MoCo [16], a contrastive
learning (CL) technique. The role of this auxiliary DNN
is to estimate the likelihood p(y|x) without knowing the
measurement Aψ . Then, during inverse problem solving,
we perform inference with this auxiliary DNN to estimate
p(y|x), which is then used to adjust the reverse path of the
diffusion process. To further improve the auxiliary DNN’s
accuracy in estimating p(y|x), we introduce a novel over-
lapped patch-wise inference method that divides the images
into patches during the inference stage.

To evaluate the effectiveness of CL-DPS, we conduct ex-

periments on two well-known datasets named FFHQ [21]
and AFHQ, [5] under both blind linear and non-linear mea-
surements. Notably, in the non-linear measurement setting,
such as rotation blur, all benchmark methods fail, whereas
CL-DPS successfully restores the images (see Fig. 1 for re-
stored images from rotation blur). In summary, the contri-
butions of the paper are as follows:
•We propose CL-DPS, an inverse problem solver using dif-
fusion models for the blind setting. CL-DPS incorporates an
auxiliary DNN, trained using MoCo, to serve as a likelihood
estimator. Unlike previous blind solvers, which are limited
to recovering images only under linear measurements, CL-
DPS is capable of recovering images for both linear and
non-linear measurements.
• To increase the accuracy of the auxiliary DNN in esti-
mating the likelihood, we introduce overlapped patch-wise
inference, an information theoretically certified method that
increases mutual information between the DNN’s input and
output, allowing it to capture richer semantic information.
• Through extensive quantitative and qualitative experi-
ments, we demonstrate that CL-DPS effectively addresses
both linear and non-linear blind inverse problems.

2. Related Works and Notation
2.1. Diffusion Model for Inverse Problem

The use of diffusion models to solve inverse problems
through posterior sampling has recently attracted consider-
able attention across various domains. For blind inverse
problems, alongside the approaches discussed in Sec. 1
[8, 27, 32], [1] introduced Blind RED-Dif, an extension of
the RED-diff framework [25]. This method employs vari-
ational inference to jointly estimate both the latent image
and the unknown forward model parameters, addressing the
challenges of unknown measurement operators.

2.2. Contrastive Learning

As a versatile semi-supervised learning framework, con-
trastive learning learns useful feature representation by
clustering positive samples and dispersing negative sam-
ples. It achieves great success since instance discrimination
has been proposed in [41]. For interested readers seeking
further information, please refer to the survey paper [14].

2.3. Notation

For a positive integer C, let [C] ≜ {1, . . . , C}, and
[C1, . . . , C2] ≜ {C1, . . . , C2}. Denote by P [i] the i-th el-
ement of vector P . Scalars are denoted by lowercase let-
ters (e.g. u), vectors by boldface lowercase letters (e.g. u).
For two vectors u and v, denote by ⟨u,v⟩ their inner prod-
uct. We use |C| to denote the cardinality of a set C. (·)T
denotes the transpose operation. We denote a closed in-
terval by [A,B], an open interval by (A,B), and a half-



open interval by (A,B] or [A,B). The mutual informa-
tion between two random variables X and Y is given by
I(X,Y ) = H(X) −H(X|Y ), where H(·) denotes the en-
tropy function. Let fθ denote a DNN parameterized by θ,
with f(·) representing the output of the DNN.

3. Background and Preliminaries
3.1. Diffusion Models

Diffusion models define a generative process as the re-
verse of a noise addition process. Specifically, [35] intro-
duced the Itô-stochastic differential equation (SDE) to de-
scribe this noise addition process—referred to as the for-
ward SDE—for the data xt over a continuous time interval
t ∈ [0, T ], where xt ∈ Rd for all t.

In this paper, we adopt the variance-preserving form of
the SDE (VP-SDE) [35], which is equivalent to the DDPM
framework [18] whose equation is given as follows:

dx = −βt

2
x dt+

√
βt dw, (1)

where βt : R → R+ represents the noise schedule of the
process, which is typically chosen as a monotonically in-
creasing linear function of t [18]. The term w represents
the standard d-dimensional Wiener process. The data dis-
tribution is specified at t = 0, i.e., x0 ∼ pdata, while at
t = T , the process reaches a simple, tractable distribution,
such as an isotropic Gaussian: xT ∼ N (0, I).

The goal is to recover the data-generating distribution
from the tractable distribution. This can be accomplished
by formulating the corresponding reverse SDE for Eq. (1),
as derived in [3]:

dx =

[
−βt

2
x− βt∇xt

log pt(xt)

]
dt+

√
βtdw̄, (2)

where dt represents time flowing backward, and dw̄ corre-
sponds to the standard Wiener process in reverse. The drift
function now depends on the time-dependent score function
∇xt log pt(xt), which is approximated by a neural network
sθ trained via denoising score matching [39]:

θ∗ = argmin
θ

Et∼U(ε,1),xt∼p(xt|x0),x0∼pdata (3)[
∥sθ(xt, t)−∇xt log p(xt|x0)∥22

]
, (4)

where ε ≃ 0 represents a small positive constant. Once
the optimal parameters θ∗ are obtained through Eq. (3), the
approximation ∇xt

log pt(xt) ≃ sθ∗(xt, t) can be used as
a plug-in estimate to replace the score function in Eq. (2).

Discretizing Eq. (2) and solving it produces samples
from the data distribution p(x0), which is the ultimate goal
of generative modeling. In addition, following [18], we in-
troduce αi ≜ 1− βi and ᾱi ≜

∏i
j=1 αj .

3.2. Diffusion Models for Solving Inverse Problems

We consider the problem of reconstructing an unknown sig-
nal x0 ∈ Rd from noisy measurements y ∈ Rm:

y = Aψ(x0) + n, (5)

where Aψ(·) : Rd → Rm represents a measurement opera-
tor (can be linear or nonlinear) with parameters ψ, which
we assume to be unknown in our setting—an approach
we refer to as “blind”. Additionally, n ∼ N (0, σ2I) is
i.i.d. additive Gaussian noise with a known standard de-
viation σ. This leads to a likelihood function p(y|x0) =
N (y|Aψ(x0), σ

2I).
Typically, we are interested in the case where m < d,

which aligns with many real-world scenarios. When m <
d, the problem becomes ill-posed, requiring some form of
prior to obtain a meaningful solution. In the Bayesian
framework, a prior distribution p(x0) is employed, with
samples drawn from the posterior p(x0|y). The rela-
tionship is formally defined by Bayes’ rule: p(x0|y) =
p(y|x0)p(x0)

p(y) . By using a diffusion model as the prior, we
can directly modify Eq. (2) to obtain the reverse diffusion
sampler for sampling from the posterior distribution:

dx =
[
− βt

2
x− βt(∇xt

log pt(xt)

+∇xt
log pt(y|xt))

]
dt+

√
βtdw̄, (6)

where we have used the fact that

∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt).
(7)

In Eq. (6), two terms need to be computed: the score func-
tion∇xt log pt(xt) and the likelihood∇xt log pt(y|xt). To
compute the former, pt(xt), we can directly use the pre-
trained score function sθ∗ . However, obtaining the latter
term in closed form is challenging due to its time depen-
dence, as only an explicit relationship between y and x0

exists. Thus, the likelihood pt(y|xt) must be estimated.
To estimate pt(y|xt), some prior studies assume that the

measurement A(x0) is known [6, 9]. However, this as-
sumption often diverges significantly from real-world sce-
narios. Alternatively, other research focuses on cases where
A(x0) is unknown, addressing what is commonly referred
to as the “blind inverse problem” [2, 12]. Our work follows
this latter approach, with a particular emphasis on leverag-
ing contrastive learning, as detailed in Sec. 4.

We differ the momentum contrastive learning to the ap-
pendix.

4. Methodology
As discussed in Sec. 3, estimating the posterior pt(xt|y) re-
quires an estimation of the likelihood pt(y|xt). To achieve
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Figure 2. (a) Illustration of the training process for the auxiliary DNN. Small patches from xt and y are used as keys and queries,
respectively. Green and red arrows indicate positive and negative pairs, respectively. (b) Structure of the linear projection head and the
color consistency head.

this, we aim to train an auxiliary DNN offline (prior to ap-
plying diffusion models for inverse problem-solving) which
is able to estimate the likelihood pt(y|xt). Note that at this
the time the measurement parameters ψ are unknown. This
auxiliary DNN will then be employed during the diffusion-
based inverse problem-solving process to adjust the reverse
diffusion path accordingly.

In the following sections, we fully discuss how to train
each of the components.

4.1. Training the Auxiliary DNN

To train the auxiliary DNN for likelihood estimation, we be-
gin by establishing a connection between CL and likelihood
estimation in the following subsection.

4.1.1 CL as Likelihood Estimation

First, note that using Bayes’ formula, the likelihood
pt(y|xt) can be expressed as

p(y|xt) =
p(y,xt)

p(xt)
=

p(y,xt)∫
p(ỹ,xt)dỹ

. (8)

To compute Eq. (8), we first obtain a numerical representa-
tion of its numerator, p(y,xt). Specifically, following [24,
29], we approximate p(y,xt) ∝ exp(⟨f(xt), f(y)⟩/τ),
where the neural network f produces a feature represen-
tation in a transformed space.

The denominator in Eq. (8),
∫
p(ỹ,xt)dỹ, is gener-

ally intractable. Thus, we rely on an approximation
method, using a summation as follows:

∫
p(ỹ,xt)dỹ ≈∑

ỹ∈Y p(ỹ,xt), where Y is a sufficiently large set. This
allows us to numerically approximate p(y|xt) as follows:

p(y|xt) ≈
exp(⟨f(xt), f(y)⟩/τ)∑
ỹ∈Y exp(⟨f(xt), f(ỹ)⟩/τ)

. (9)

Now the question is how the the DNN f should be trained
such that Eq. (9) is a good approximation for the likeli-
hood p(y|xt)? A natural method to this aim is to train a
DNN to directly maximize the log-likelihood log (p(y|xt))
or equivalently minimizes the negative log-likelihood loss:

Lp(y|xt) = − log
exp(⟨f(xt), f(y)⟩/τ)∑
ỹ∈Y exp(⟨f(xt), f(ỹ)⟩/τ)

. (10)

Comparing the loss function in Eq. (10) with the InfoNCE
loss in Eq. (21), we observe a resemblance: by setting q =
f(xt) and {ki}i∈[K] = Y , we can use the CL loss to train
a DNN to estimate the likelihood p(y|xt). Note that with a
sufficiently large number of keys K (as is typical in MoCo,
where K = 4096), the set {ki}i∈[K] serves as an effective
approximation for Y .

4.1.2 Incorporating Color Consistency Loss

As discussed in Sec. 4.1.1, the loss function in Eq. (10) can
be utilized to train a DNN for likelihood estimation. How-
ever, when using the objective function in Eq. (10) to train
the auxiliary DNN, we observe that the color information
in images is often lost, resulting in images with colors that
differ from the original. To address this, we introduce a
two-layer convolutional neural network head, referred to as
the color consistency head. This head ensures that features
extracted from the encoder retain sufficient color informa-
tion from the input, which is essential for the inverse prob-
lem. It does so by regressing the average color of the in-
put image using the mean squared error (MSE) loss, penal-
izing the DNN as follows: MSE(Hc(xt);AP(xt)), where
Hc(xt) represents the output of the color consistency head,
and AP(·) denotes the average pooling operation (Fig. 2b
depicts an overview of the color consistency head). Conse-



quently, we use the loss function for CL-DPS becomes

LCL-DPS = − log
exp(⟨f(xt), f(y)⟩/τ)∑
ỹ∈Y exp(⟨f(xt), f(ỹ)⟩/τ)

+ λ MSE(Hc(xt);AP(xt)), (11)

where the hyper-parameter λ balances the importance of
likelihood estimation and color consistency.

4.1.3 Training the Auxiliary DNN for DPS

To use Eq. (11) for training the auxiliary DNN, we assign
random parameters ψ to the measurement operator Aψ(·)
to generate y.

To obtain {xt}t∈[T ], we use the forward diffusion rep-
resentation for models like VP-SDE or DDPM (the fo-
cus of this paper), where xt =

√
ᾱx0 +

√
1− ᾱn, with

ᾱi ≜
∏i

j=1 αj (where 0 < αj < 1 denotes the noise
schedule) and n ∼ N (0,1) as standard Gaussian noise.
During auxiliary DNN training, we randomly sample an xt

from {xt}t∈[T ]. Additionally, only a small patch is cropped
from the original image, encouraging the model to focus on
learning low-level features (see Fig. 2a for more details).

4.2. Likelihood Estimation Using the Auxiliary
DNN

Once the auxiliary DNN is trained using the loss function
Eq. (11), it is used to estimate the likelihood p(y|xt) during
inverse problem solving. However, we know that in general,
the convolutional neural networks (CNNs) can impair low-
level vision details. Specifically, CNNs are well-known for
effectively compressing information from the input layer to
the output layer [4, 37, 42, 43]. In the next section we pur-
pose a new method to further improve the likelihood esti-
mation.

4.2.1 Overlapped Patch-Wise Inference

Here, we propose a post-training inference method, which
we refer to as overlapped patch-wise inference, which en-
courages the DNN to retain more information about the im-
age x in its output.

Specifically, given an image x ∈ R(N1,N2), we first
patchify it into Ls overlapped n×n patches {pxj }j∈[Ls] with
stride s < n, which yields Ls = ⌊N1−n

s + 1⌋⌊N2−n
s + 1⌋.

Next, instead of performing inference over the image x,
we parallely perform inference over the Ls patches, and
then concatenate the output of the DNN for these patches as
f({pxj }j∈[Ls]) = [fT(px1 ), . . . , f

T(pxLs
)]T. In order to an-

alytically show that such patchifying increases the informa-
tion of the DNN’s output about the image x, we first need
to quantify the information of DNN’s output f(x) about its
input x. To this end, we deploy mutual information quantity
I(x; f(x)) [11, 33], in that the higher this value is, the more

information f(x) has about x. Using this metric, the fol-
lowing theorem discusses that f({pxj }j∈[Ls]) contains more
information about x compared to the output f(x).

Theorem 1 For a given DNN f , and independent and iden-
tically distributed (i.i.d.) sampled input x ∈ R(N,N), we
patchify it into some overlapped patches. For U, V ∈
N, assume that we patchify x one time to U patches
f({pxj }j∈[U ]), and one time to V patches f({pxj }j∈[V ]).
Then, if U < V , we have

I(x, f({pxj }j∈[U ])) ≤ I(x, f({pxj }j∈[V ])). (12)

The proof for Theorem 1 is differed to the supplemen-
tary material. Theorem 1 states that if x is patchified
to more overlapping patches, then the output of the DNN
would have more information about the input x. We exam-
ine the effectiveness of overlapped patch-wise inference in
Sec. 8.1.

Algorithm 1 CL-DPS

1: Input: The number of iterations N , y, noise levels {σ̃},
pre-trained encoder f(·), and η > 0.

2: xN ∼ N (0, I)
3: for t = N − 1, N − 2, . . . , 0 do
4: ŝ← sθ(xt, t)
5: x̃0 ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

6: z ∼ N (0, I).
7: x′

t−1 ←
√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̃0 + σ̃tz.

8: Patchify xt and y to U ≥ 2 patches:
{pxt

j }j∈[U ] ← xt; {pyj }j∈[U ] ← y.
9: xt−1 ← x′

t−1 − η∇xt ⟨f({pxt
j }j∈[U ]), f({py

j }j∈[U ])⟩.
10: end for
11: Output: x0

Henceforth, during the likelihood estimation, we per-
form the same patchification for the measurement signal y,
and compute the likelihood probability as

p(y|xt) ∝ ⟨f({pxt
j }j∈[U ]), f({pyj }j∈[U ])⟩, (13)

where the proportionality ∝ accounts for the denominator
in Eq. (9) being nearly constant for large Y .

Finally, it is worth noting that only the encoder is re-
tained after the training phase.

4.3. Algorithm for CL-DPS

After training the auxiliary DNN, only the encoder will be
preserved and be used to estimate the posterior distribution.
Then, we incorporate the pre-trained encoder as a likelihood
estimator in to the DPS method [10] which leads to Algo-
rithm 1. Note that the only distinction between the CL-DPS
algorithm and unconditional sampling lies in lines 8 and 9
(highlighted in blue), where conditioning is introduced.



FFHQ (256× 256) AFHQ (256× 256)
Method Rotation Zoom Rotation Zoom

PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
CL-DPS (Ours) 22.74 33.66 0.302 20.68 42.61 0.435 21.46 36.96 0.319 19.63 57.54 0.468
BlindDPS [8] 16.87 343.76 0.552 16.39 292.91 0.780 13.25 200.46 0.674 11.75 279.57 0.607
FastEM [23] 15.96 268.43 0.597 18.68 303.25 0.623 11.57 289.19 0.680 15.60 310.06 0.797

GibbsDDRM [27] 18.43 236.55 0.565 15.45 327.42 0.802 15.24 263.49 0.628 14.57 280.54 0.549

Table 1. Non-linear blind inverse problems: Blind rotation and zoom deblurring results on the FFHQ and AFHQ datasets. CL-DPS
successfully restores the input images with high quality, whereas all other methods fail. Bold and underlined values denote the best and
second-best results, respectively.

FFHQ (256× 256) AFHQ (256× 256)
Method Motion Gaussian Motion Gaussian

PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
CL-DPS (Ours) 22.93 32.44 0.157 24.82 26.64 0.348 22.06 42.25 0.280 23.76 20.56 0.225
SelfDeblur [31] 10.83 270.0 0.717 11.36 235.4 0.686 9.081 300.5 0.768 11.53 172.2 0.662

DeblurGANv2 [22] 17.75 220.7 0.571 19.69 185.5 0.529 17.64 186.2 0.597 20.29 86.87 0.523
Pan l0 [30] 15.53 242.6 0.542 19.94 92.70 0.415 15.34 235.0 0.627 21.41 62.76 0.395

BlindDPS [8] 22.24 29.49 0.281 24.77 27.36 0.233 20.92 23.89 0.338 23.63 20.54 0.287
FastEM [23] 24.68 - 0.34 - - - - - - - - -

LatentDEM [40] 22.65 - 0.167 - - - - - - - - -
GibbsDDRM [27] 25.80 38.71 0.115 - - - 22.01 48.00 0.197 - - -

Table 2. Linear blind inverse problems: Blind motion and Gaussian deblurring results on the FFHQ and AFHQ datasets. CL-DPS achieves
competitive results compared to other benchmark methods.

5. Experiments

In this section we evaluate CL-DPS under blind inverse set-
tings for both linear and non-linear measurements.
Datasets. For our experiments, we use Flickr-faces-HQ
(FFHQ) 256 × 256 dataset [21] and animal faces-HQ
(AFHQ) 256 × 256 dataset [5]. Similar to the previous
works [8, 23, 27], for FFHQ, we randomly select 50k im-
ages for training, and sample 1k images of test data sepa-
rately. For AFHQ, we train our model using the images in
the dog category, which consists of about 5k images. Test-
ing was performed with the held-out validation set of 500
images of the same category.
• Pre-trained diffusion models. We leverage pre-trained
score functions as those used in [7].
• Evaluation metrics. For all experiments, we use Fréchet
inception distance (FID) [17], learned perceptual image
patch similarity (LPIPS) [44] and peak signal-to-noise ra-
tio (PSNR) between the original image and reconstructed
image as the evaluation metrics.
• Benchmarks. We compare the performance of CL-DPS
with the following seven benchmark methods which are de-
signed for solving blind inverse problems: SelfDeblur [31],
DeblurGANv2 [22], Pan l0 [30], BlindDPS [8], FastEM
[23], LatentDEM [40], GibbsDDRM [27]. Notably, the last
four methods use diffusion models in their methodology.
Non-linear deblurring. Non-linear deblurring is com-
monly encountered in real life, often resulting from phe-
nomena such as rotation, rolling shutter effects, and zoom
blur during image capturing. Here, we consider rotation
blur and zoom deblurring tasks as non-linear inverse prob-
lems. In particular, to generate rotation-blurred measure-

ments, we randomly select the center point among the in-
put images and set the rotation angle within the range of
[10◦ − 30◦] and applying a random weight to the rotation
trajectory. For zoom blur, we set the center of the image
as the focal point of the zoom, then apply a zoom factor
ranging [1− 3].

5.1. Results

The qualitative results for the rotation deblurring task us-
ing benchmark methods and CL-DPS are shown in Fig. 1.
As observed, CL-DPS is the only method capable of accu-
rately recovering the ground truth images, while all bench-
mark methods fail to do so. Qualitative results for the zoom
deblurring task are provided in the Appendix. Additionally,
the quantitative results are presented in Tab. 1. The results
on both datasets show the significant superiority of CL-DPS
over benchmark methods in restoring original images.
Linear deblurring. For linear deblurring, we consider
Gaussian and motion deblurring. Specifically, following
[23, 27, 40], we apply the Gaussian blur kernel with the
size of 61 × 61 and standard deviation of 3.0. Also, the
motion blur kernel is generated randomly using an open-
source code1, with kernel size of 61 × 61 and intensity of
0.5. These kernels are convolved with the ground truth im-
age to produce the measurement.

Tab. 2 summarizes the quantitative results for Gaussian
and motion deblurring tasks. Compared to state-of-the-art
methods, CL-DPS achieves competitive performance across
various metrics under blind linear inverse settings. No-
tably, CL-DPS outperforms all the other methods in terms

1https://github.com/LeviBorodenko/motionblur

https://github.com/LeviBorodenko/motionblur


of PSNR and FID score on the FFHQ dataset when sub-
jected to Gaussian blur.

6. Conclusion and Future Work
In this work, we demonstrated the potential of DMs for
solving blind inverse problems with unknown measure-
ments, extending their applicability beyond the limitations
of previous methods, which focused primarily on linear
measurements. We introduced CL-DPS, where an auxil-
iary DNN trained offline with a modified MoCo approach
as a likelihood estimator. This allowed us to estimate
p(y|x) without prior knowledge of the measurement oper-
ator, thereby adjusting the reverse diffusion process.
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7. Proof of Theorem 1

Figure 3. Example of patchifed image of a resolution 256 × 256,
with a stride size of 64 and a patch size of 128× 128.

We start the proof by writing the mutual information in
terms of entropy:

I(x, f({pxj }j∈[V ])) = H(x)− H(x|f({pxj }j∈[V ])) (14)

Now, denote by {pxj }j∈[V ] \ {pxi }i∈[U ] the set of all el-
ements in {pxj }j∈[V ] which do not present in {pxi }i∈[U ].
Note that since U < V , {pxj }j∈[V ] \ {pxi }i∈[U ] is a non-
empty set. Now, we have

{pxj }j∈[V ] =
{
{pxj }j∈[V ] \ {pxi }i∈[U ]

}
∪ {pxi }i∈[U ]

(15)

Next, using Eq. (15) in Eq. (14) we obtain

I(x, f({pxj }j∈[V ])) = H(x) (16)

− H
(
x|f

({
{pxj }j∈[V ] \ {pxi }i∈[U ]

}
∪ {pxi }i∈[U ]

))
(17)

≥ H(x)− H(x|f({pxj }j∈[U ])) (18)

= I(x, f({pxj }j∈[U ])), (19)

where Eq. (18) holds since conditioning reduces entropy.
Hence, the proof is concluded.

8. More Ablation Study
8.1. Overlapped Patch-Wised Inference and Global

Average Pooling

In this section, we analyze the impact of the global average
pooling (GAP) layer and overlapped patch-wise inference

(a) (b) (c)

(d) (e) (f)

Figure 4. Ablation study on different inference methods. (a) origi-
nal images, (b) measurement, and restored image (c) without GAP
and with patch-wise inference, (d) with GAP and without patch-
wise inference, (e) with GAP and with patch-wise inference, (f)
without GAP and without patch-wise inference.

on image restoration. Figure 4 illustrates the four possible
configurations combining the presence or absence of GAP
and patch-wise inference (refer to the figure caption for de-
tails on each setting). Among these, the configuration in
Figure 4(c)—where the GAP layer is excluded and over-
lapped patch-wise inference is applied—produces the most
visually accurate restored image.

8.2. Color Consistency Head

Figure 5. Ablation study on the effect of color consistency head.
(a) original image, (b) measurement, (c) restored image from the
model trained without color consistency head, (d) restored image
from the model trained with color consistency head.

In this section, we qualitatively assess the effect of the
color consistency head. Fig. 5 demonstrates its effect: the
restored image (Fig. 5 (c)) from the model trained without
the color consistency head fails to capture the original color,
resulting in a significant color mismatch, especially in the



shirt. This issue is resolved in Fig. 5(d), where the color
consistency head is incorporated in the training process.

9. Qualitative results on Zoom deblurring task
Zoom blur, a highly challenging non-linear blur in the con-
text of diffusion-based deblurring, presents substantial dif-
ficulties for existing techniques. The results, presented in
Figure 7, highlight this complexity. Among the bench-
mark methods, CL-DPS (ours) emerges as the sole approach
capable of reliably recovering the original signal without
catastrophic failure. This outcome demonstrates the ro-
bustness and adaptability of CL-DPS in addressing intricate
non-linear blurs where other benchmark methods fall short.

10. Denoising Process of CL-DPS
Here, we visualize the denoising process of CL-DPS over
1000 timesteps. To this end, we select a single image and
display the reconstructed images throughout the denoising
process, as illustrated in Fig. 7.

10.1. Momentum Contrast Learning

Contrastive learning (CL) is a method that teaches machines
to understand which data points are similar or different by
contrasting them with each other, helping them learn useful
representations without explicit labels [15, 36]. Kaiming
et al. proposed momentum contrast (MoCo) as an efficient
CL method to learn a feature encoder fθ from an unlabeled
dataset [16]. The core idea is to treat CL as a dictionary
look-up. To elucidate, imagine a dictionary where “keys”
are encoded representations of images. Given a “query”
(another image), the goal is to find the most similar key.
MoCo trains a model to do this, forcing it to learn meaning-
ful image representations.

MoCo uses two main components: (i) Queue: a large
queue stores encoded “keys” (image representations). New
keys are enqueued, old ones dequeued, keeping the dictio-
nary diverse and up-to-date. (ii) momentum encoder: in-
stead of directly using the query encoder (the model en-
coding the “query” image) to encode keys, MoCo uses a
separate encoder, updated with a momentum term:

θk ← mθk + (1−m)θq, (20)

where θk is the parameters of the key encoder θq is pa-
rameters of the query encoder, and m ∈ [0, 1) is the mo-
mentum coefficient. This means the key encoder evolves
more slowly, providing more consistent representations for
the keys in the dictionary.

Using the same encoder for queries and keys can lead to
oscillations in training. The momentum encoder smooths
out the updates, making the dictionary more stable. A large
dictionary is crucial, but updating all keys with the query
encoder for every batch is computationally expensive. The

momentum encoder allows for a large dictionary without
this overhead.

The model is trained with a contrastive loss function
called InfoNCE [29]:

Lq = − log
exp(⟨q, k+⟩/τ)∑K
i=0 exp((⟨q, ki⟩/τ)

, (21)

where q is encoded query representation, k+ is encoded rep-
resentation of the positive key (the matching image), ki is
encoded representations of the negative keys (other images
in the batch), K is the number of negative samples, and τ
is temperature parameter (controls the concentration of the
distribution). This loss function encourages the model to
maximize similarity between the query and its positive key
(q and k+) and minimize similarity between the query and
the negative keys (q and k−).

10.2. Limitation and Future Work

A limitation of CL-DPS is the need for back-propagating
gradients through the likelihood estimator. Developing a
more efficient and lightweight estimator is an area for future
exploration. Currently, we tested CL-DPS using the MoCo
framework, which may not be the optimal choice for CL in
the context of blind inverse problems. Investigating alter-
native CL frameworks better suited to this task is another
promising direction for future work.

10.3. Ablation Study

In this section, we conduct an ablation study to evaluate the
impact of each component comprising CL-DPS. To do so,
we incrementally introduce each component into the blind
inverse process and perform qualitative and/or quantitative
comparisons. Specifically, we analyze (i) the effect of ran-
dom patch-size in Sec. 10.3.1, (ii) overlapped patch-wise
inference and global average pooling in the Appendix, and
(iii) the color consistency head, also in the Appendix.

10.3.1 Effect of the Size of Random Patches on CL-
DPS

In this section, we examine the impact of the size of random
patches when training the auxiliary DNN (random patches
are illustrated by red rectangles in Fig. 2a). For this anal-
ysis, we remove the global average pooling and fully con-
nected layer from the model, apply motion blur to corrupt
the input images, and train the auxiliary DNN twice: once
using a patch size of 128 × 128 and once with a patch size
of 64× 64. The results for the motion deblurring task using
these two auxiliary DNNs are shown in Fig. 8.

As observed, the restored images using auxiliary DNN
trained by large cropped patch size 128×128 (Fig. 8 column
c) fail to produce the image with fine details. Such problem
can be solved by reduce the patch size to 64×64 (see Fig. 8
column d).



(a) (b) (c) (d) (e) (f)

Figure 6. Results of blind zoom deblurring, a challenging non-linear inverse problem: (a) ground truth image, (b) zoom blurred measure-
ment, and restored images using (c) BlindDPS [8], (d) FastEM [23], (e) GibbsDDRM [27], and (f) CL-DPS (ours). Notably, all methods
fail catastrophically except for CL-DPS.

...

Ground Truth

MeasurementT=1000T=800T=600T=400

T=200 T=100 T=50 T=0

Figure 7. The CL-DPS process of recover the zoom blurred measurement.



(a) (b) (c) (d)

Figure 8. Effect of patch size during auxiliary DNN training within
the CL-DPS framework for the motion deblurring task: (a) origi-
nal image, (b) measurement, (c) restored image using an auxiliary
DNN trained with a patch size of 128× 128, and (d) restored im-
age using an auxiliary DNN trained with a patch size of 64× 64.
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