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Abstract—With the rise of Neural Radiance Fields (NeRFs) enabling high-quality 3D scene representations as well as Gaussian
Splatting for real-time rendering and efficient modification of 3D scenes, there is growing interest in interactive methods for 3D scene
editing using Deep Learning. Such capabilities would allow artists to dynamically render and adjust 3D scenes with ease. In this work,
we present a novel approach for stylizing individual objects within a 3D scene. Using our model, users can select an object, specify a
desired style through textual input, and obtain a new Gaussian splatting representation of the scene in less than 2 minutes.

Index Terms—Gaussian Splatting, 3D Scene Stylization, Text-Based Stylization, 3D Object Segmentation, NeRF

✦

Fig. 1: Example of stylized 3D scenes: (a) ”Truck with flames” on truck object (b) ”Fire floor” on floor

1 INTRODUCTION

N EURAL Radiance Fields (NeRFs) [1] have revolution-
ized the way we represent real-world environments

as 3D virtual scenes by utilizing neural networks to encode
the scene’s information efficiently. Building on this research,
Gaussian Splatting [2] has enabled real-time rendering of
these 3D virtual scenes and has made the 3D rendering more
human-interpretable by using Gaussians to form the objects
of a scene.

Stylization of 2D images has also gained popularity,
notably with the emergence of generative adversarial
networks [3] [4] [5] and diffusion models [6] [7]. These
models allow users to generate images, and also to stylize
existing images (or objects within an image) according
to their preferences, either through image or text. The
intersection of these two research areas naturally leads to
the task of stylizing 3D scenes. This is most commonly done
using either an image or text to represent the target style.
We will be focusing on textual input in this
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project, as it has the advantage of conveying a user’s
ideas more precisely and efficiently thanks to technologies
such as speech-to-text [8], enabling real-time creative
possibilities for 3D object stylization. A user could for
example modify the floor of a 3D scene to resemble lava or
a flowery field.

The goal of our project is to develop a semantically
accurate 3D object stylizer that enables modifications to
objects in a scene based on textual input from the user. Our
project is also designed to run quickly enough to be viable
for real-time scene modification.

2 RELATED WORK

2.1 Scene Stylization with NeRFs
NeRFs allow us to represent 3D scenes using neural net-
works [1] to store the scene information in an incredibly
dense manner. They map 3D spatial coordinates and view-
ing directions to RGB values and density. When using NeRF
to stylize scene, their ability to synthesize photorealistic
views consistently across all perspectives enables easy ad-
justments to lighting or materials while preserving scene
coherence. However, their dense representation of the scene
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using ”black-box” neural networks makes it particularly
hard to stylize 3D transformations such as rotations or
translations.

NeRF-Art [9] employs multiple NeRFs as the basis for
text-based editing of a scene. A NeRF is trained on the
input images to serve as a ground truth and ensure edits
still preserve the structure of the original content. A second
NeRF is trained to perform stylization. This is done using
CLIP [10], which encodes text and images in the same
feature space. This allows losses to be generated between
the rendered images of different viewpoints of the scene
and the input text features.

The paper achieves good results, however, some issues
are prevalent with this method. Notably, due to the the
compute power needed for training and stylizing NeRFs,
the render and training time needed for inferences renders
real-time applications impossible. For instance, simply ren-
dering a pre-trained stylized NeRF using NeRF-Art on 100
viewpoints could take upwards of 10 minutes on a A6000
GPU. Given the time taken for inference and the number
of adjustable parameters used in the paper, this also limits
the amount of different scenes it can be applied to and how
extensively a scene can be edited. This paper also did not
focus on stylizing specific objects in a 3D scene, but rather
the entire scene all at once.

2.2 Scene Stylization with Gaussian Splatting
Due to the aforementioned issues that stem from using
NeRFs, Gaussian Splatting has become a preferred choice
for most 3D scene representation and stylization applica-
tions. Gaussian Splatting involves representing scenes by
projecting anisotropic 3D Gaussians onto a 2D plane for
efficient, high-quality rendering and view synthesis [2]. As
an extension to Gaussian Splatting, Gaussian Grouping [11]
reconstruct the 3D scene while also segmenting objects in
this 3D space, allowing Gaussian to be grouped according
to their object. In particular, Gaussian Grouping relies on re-
cent advancements with papers such as Segment Anything
[12] and Decoupled Video Augmentations [13].

Gaussian Grouping was employed in Style-Splat [14]
to allow for both segmentation and stylization of multiple
objects in an image separately. After training a Gaussian
Grouping instance on a 3D scene and choosing a segmenta-
tion object, Style-Splat stylizes that object based on a target
input image. It fine-tunes the Gaussians used to represent
the scene by comparing renders from views in the 3D scene
with the stylized image using a nearest neighbor feature
matching loss (NNFM). This method is robust and is able
to produce high quality stylizations of one or multitude of
objects in a 3D scene. However, this method is limited by
the need for an input image, which can be hard to produce
or source, and can often be an inaccurate representation of
the exact edit desired by a user.

2.3 Gaussian Based Scene Stylization
InstructPix2Pix [15] was a major milestone in the image
stylization research scene. By creating and using a custom
training dataset with GPT3 [16] and Stable Diffusion [17], it
trained a conditional diffusion model for image stylization
based on textual inputs. The results produced by this model

are of very high quality thanks to the use of diffusion
models, which have seen huge advancement in recent years.

This paper inspired InstructNeRF2NeRF [18], which al-
lows for stylizing NeRFs using text. It runs by passing
rendered views of a 3D scene through InstructPix2Pix and
training its NeRF to match the generated images. This model
performs very well, achieving better results than NeRF-Art
[9] in adaptability, replicability, ease of use, quality and ac-
curacy of edits. InstructGS2GS [19] then extended the same
pipeline using Gaussian Splatting [2] instead of NeRFs,
dramatically improving rendering times. However, because
of the use of diffusion models in these models, training
can quickly become both memory and time-intensive, and
in particular, the model cannot handle large image sizes.
In addition, the model’s overall segmentation process has
room for improvements, even on more recent versions of In-
structGS2GS. Our project looks to address these two issues,
by achieving results without the use of diffusion models and
by implementing precise object segmentation.

3 PROPOSED METHOD

After experimenting with multiple 3D stylization papers [1]
[20], we decided to focus on taking the Style-Splat paper [14]
as a basis, and expanding it to allow for both textual inputs
and fast training and rendering performance.

3.1 CLIP Loss
Inspired by NeRF-Art’s use of CLIP to compare images and
textual inputs, we decided to implement our own CLIP-
based loss to train our Gaussians to stylize to certain textual
inputs.

3.1.1 Initial Approach
Our initial approach for implementing a image-text loss
directly compares rendered images from viewpoints in the
3D Gaussian Splatting scene with a text input. To do this, we
evaluate the cosine similarity between the CLIP embeddings
of the textual input and our rendered images. Our loss is
opposite of that similarity. The algorithm used is described
in further detail in the appendix 2.

Unfortunately, this approach had difficulty producing
any modifications when training, regardless of training time
or learning rate. We decided to investigate this issue by
taking a closer look at cosine similarity values between an
object in our scene, and a list of words.

The results shown in table 1 helped us realize that co-
sine similarities between positive and negative associations
were very similar. If we wanted our object to stylize, we
would have to make our loss more robust to the inherent
uncertainty and noise in CLIP embeddings.

3.1.2 Finalized CLIP Loss
In order properly align our masked renderings with the
textual input we desire, we decided to add negative text
prompts unrelated to the initial textual input. This way, if
the rendered image becomes similar to this unrelated text,
it would negatively affect the CLIP loss. More precisely, we
compute the cosine similarity between our rendered image
and 10 different textual embeddings including the initial
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TABLE 1: Cosine Similarity between a segmented truck
object and different words

Word Cosine Similarity

truck 0.3105
flower 0.1862

concrete 0.2412
car 0.2556
tree 0.2087

water 0.2194
red 0.1976

computer 0.2169
history 0.2070

prompt. We then compute the negative log likelihood of the
softmax of these similarities as our loss. The algorithm used
is described in the appendix 2. The negative texts can be
chosen manually, but are randomly sampled from a 10000
word bank otherwise.

3.2 Regularization Loss
When we tested our model, we found that unfreezing the
Gaussian weights related to opacity, scaling and rotation
tended to reduce the fidelity to the original render of the
updated scene. In order to balance this, we decided to
implement a regularization loss. We implemented this by
comparing ground truth renders to updated renders using a
pre-trained VGG, a Deep Convolutional Networks special-
ized in evaluating the similarity of 2 images. We then added
that loss to our CLIP loss, alongside a scaling factor to adjust
its influence on the overall stylization result.

3.3 Diffusion Model Approach
In an effort to leverage the results of InstructGS2GS while
improving its ability to perform object segmentation, we
decided to combine it into the Style Splat pipeline. Instead
of relying on CLIP loss, this version of our code leverages
InstructPix2Pix to modify rendered scene viewpoints. We
then compute loss between the original and modified im-
ages using LPIPS and L1 loss. LPIPS ensures perceptual
similarity between the images, and L1 loss directly com-
pares both images’ pixels to capture finer details. Due to
the diffusion model’s high inference time, we had to make
certain optimizations to our pipeline, which are discussed
in the next section.

3.4 Optimizing Code
3.4.1 Batching
As discovered in 3.3 an issue with the initial implementation
was the time overhead for our training loop, as well as
the over-editing of images. As our current toolkit is not
designed for rendering multiple views at once, we designed
a custom Dataloader to mask and render viewpoints in
batches. Our Dataload also grabs all ground-truth images
once before the training loop.

The dataset class is then also used to store a dictionary of
edited images, this way edits can be made periodically and
previous edits can be trained against for multiple epochs.
This algorithm is broken down in the appendix 4.

3.4.2 Image sizes
We implemented a more efficient CLIP pipeline by resizing
the rendered output directly to 224x224 resolution, matching
the input size expected by the CLIP model. This adjustment
eliminated the need for post-processing interpolation, which
previously added computational overhead. Interestingly,
we observed that resizing the image at the render stage,
rather than during interpolation, resulted in less noise in
the final output, though the exact cause remains unclear.
Additionally, this resizing strategy provided a significant
reduction in backpropagation time, as we were now training
with 224x224 images instead of larger 500+ pixel images.
This reduction in backpropagation time proved to be a
key benefit, dramatically improving the efficiency of our
pipeline without worsening results.

4 ANALYSIS AND EVALUATION

4.1 Shape

We decided to unfreeze certain Gaussian parameters such as
scale, opacity and rotation when running stylization in order
to test the feasibility of multi-dimensional edits, a feature
previously not implemented in Style-Splat:

Results in figure 2 showed us that unfreezing parameters
could help significantly improve results for modifying 3D
attributes of an object. In particular, unfreezing rotation
was found to have little impact. Unfreezing opacity showed
major artifacts appearing beyond the objects boundaries
because of invisible Gaussians slowly appearing, and un-
freezing scaling was shown to have the most beneficial
impact, allowing for a successful ”Spiky Truck” result.

4.2 Regularization loss

We conducted experiments on the influence of the regular-
ization loss by scaling it with different factors relative to the
CLIP loss. As seen in figure 3, the regularization loss has a
quite significant impact, helping reduce overstretched or out
of position Gaussians. However, it either doesn’t completely
negate them on smaller scaling values, or leads to blurring
on higher scaling values. We hypothesize that this is due to
our algorithm not being able to further subdivide Gaussians
during stylization. This leads to the regularization loss ap-
plying blurring of Gaussians as the most efficient solution,
which provides an unsatisfying local minimum.

4.3 Diffusion Model results

After as tuning hyper-parameters and unfreezing the correct
Gaussian parameters, we were able to obtain results such as
in figure 4. It was found that training for more time resulted
in a reduction in overall quality caused by unnaturally
stretched Gaussians. This is also why 4 total edits were used,
to prevent over fitting leading to Gaussian expansion. The
edits are noticeable when looking at the loss graph in figure
4. The training was performed on an RTXA6000 using the
maximum batch size of 64, and took around 10 minutes in
total for the edit.

We initially encountered memory limitations when in-
creasing batch size in our training loop. To remedy this we
had to downsize the image rendering to 128x128. However,
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(a) Frozen Opacity, Scaling, Rotation (Just Color) (b) Unfrozen Opacity, Scaling, Rotation

(c) Unfrozen Opacity, Rotation (d) Unfrozen Scaling, Rotation

Fig. 2: Various combinations of Gaussian parameter unfreezing for the prompt ”Spiky Truck”

this modification could be the cause of reduced image
quality we obtain. In particular, interpolating the images
back to their original scale could be causing smearing and
Gaussian noise.

4.4 Speedup Comparison

In order to measure the effects of the optimization steps
outlined in 3.4, training time comparisons were done over a
series of tests using the same prompt with results as shown
in table 2.

TABLE 2: Comparison of Training Pipelines: With and With-
out Code Optimizations

Metric Without With
Prompt Truck with Flames
Hardware RTX A6000
Editing Epochs 20 (5020 Equivalent Iterations)
Batch Size N/A (1) 64
Average Training Time (seconds) 398 ± 1.5 101 ± 0.5

The resulting renders were then compared with no no-
ticeable degradation in image quality despite a fourfold
speed increase. The results are shown in figure 5.

4.5 Final Results

After all modifications to our training losses, tweaking
learning rates for all the different Gaussians parameters,
and adjusting global hyper-parameters, we obtained a few
interesting results which we show below in the appendix 6.

5 FUTURE WORK

One of the key possible improvements we identified is the
integration of Gaussian densification during the stylization
process. Currently, we do not remove or add Gaussians
during the stylization process, which leads to Gaussians
spreading and stretching to try and match the edit. This
in turn causes artifacts and blurriness to appear in the
image, which might correspond to local minima in our loss
because of the lack of densification. Adding densification
could address these current limitations, leading to more
refined and visually appealing results.

Another key improvement would be adding automatic
object selection. By enabling the method to automatically
identify and select objects within a scene, we can signifi-
cantly improve both the efficiency and user-friendliness of
the system, reducing the need for manual intervention.

Optimizing rendering speed and reducing overall run
time are also priorities for future work on this paper. This
could be done through more efficient storage or better
parallelization processes. Furthermore, work could be done
to enable coherent post- processing of the images after
rendering to reduce artifacts without the need of future
training.

6 DISCUSSION AND CONCLUSION

Our project explored the current state of 3D scene stylization
research. By re-implementing foundational papers in 3D
scene stylization, we identified a central research question:
how can we achieve efficient, close to real-time, text-based
stylization of objects within a 3D scene.
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(a) Scale Factor: 0.01 (b) Scale Factor: 0.1

(c) Scale Factor: 0.4 (d) Scale Factor: 1

Fig. 3: Various scaling factors for Regularization Loss on ”Van Gogh” prompt

(a) ”Truck with flames” prompt (b) Loss plot

Fig. 4: Diffusion Model pipeline results on truck stylization prompt

One of our main contributions was modifying the Style-
Splat paper to incorporate a CLIP-based loss for text-based
stylization of 3D object. We also tested various modifica-
tions to enhance the original paper’s performance, including
selectively freezing or unfreezing specific Gaussian param-
eters and introducing a regularization loss using a VGG
model.

We also experimented with integrating a pixel-to-pixel
approach similar to GS2GS into our pipeline. However,
through this process, we concluded that relying on diffu-
sion models for stylization would require too much com-
putational cost for use real-time applications, despite the
significant quality improvements.

This motivated us to optimize the Style-Splat pipeline,
by implementing batching and adjusting the image resizing
process. This helped us achieving a 4 times improvement in

model speed without sacrificing results.
Despite not having quite achieved real-time editing

speed of a few seconds, our model can produce encouraging
results in less than a minute, with highly accurate object seg-
mentation. Potential improvements to our training pipeline
could allow for more fine-detailed edits and run times even
closer to real-time editting.
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APPENDIX

VARIOUS RESULTS

(a) ”black hole” on manhole cover (b) ”Truck with flames” on truck

(c) ”Fire floor” on floor (d) ”Galaxy” on truck

Fig. 6: Various result using our model (FastText2Object Style)
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ALGORITHMS IMPLEMENTED FOR OUR PROJECT

Algorithm 1 Updated Pipeline for CLIP Loss

1: Initialize scene v, textual input T .
2: Compute textual CLIP embedding: Et ← CLIP (T )
3: for each iteration do
4: Render the current view: Ir ← render(v).
5: Generate object mask: M ← generate object mask(v).
6: Mask image: IMr ← Ir ⊙M .
7: Compute Image CLIP embedding: Ei ← CLIP (Ir)
8: Compute loss using cosine similarity:
9: LCLIP TEST ← −COS SIM(Et, Ei).

10: Backpropagate against LCLIP TEST , ensuring updates only affect masked object features:
11: backpropagate(LCLIP ,M).
12: end for
13: Finalize training.

Algorithm 2 Pipeline for CLIP Loss

1: Initialize scene v, textual input T , negative texts N0, ..., N9, temperature t.
2: Compute textual CLIP embeddings: Et ← CLIP (T ), EN0

← CLIP (N0), ...
3: for each iteration do
4: Render the current view: Ir ← render(v).
5: Generate object mask: M ← generate object mask(v).
6: Mask image: IMr ← Ir ⊙M .
7: Compute Image CLIP embedding: Ei ← CLIP (Ir)
8: Compute similarity weights: Wt = exp(CS(Et, Ei)/t), W0 = exp(CS(EN0

, Ei)/t), ...
9: Compute negative log likely-hood loss:

10: LCLIP ← − log
(

Wt

Wt+
∑9

i=0 Wi

)
11: Backpropagate against LCLIP , ensuring updates only affect masked object features:
12: backpropagate(LCLIP ,M).
13: end for
14: Finalize training.

Algorithm 3 Pipeline for Object Segmentation and Editing using Style Splat and InstructGS2GS

1: Initialize pipeline parameters.
2: for each iteration do
3: Render the current view: Ir ← render(v).
4: Retrieve ground truth image for the view: Ig ← get ground truth(v).
5: Generate object mask: M ← generate object mask(v).
6: Mask image: IMg ← Ig ⊙M , IMr ← Ir ⊙M .
7: Generate edited image using InstructPix2Pix:
8: Ie ← instruct pix2pix(Ir, IMg , text input).
9: Compute losses:

10: LLPIPS ← compute lpips loss(Ie, Ir).
11: LL1 ← compute l1 loss(Ie, Ir).
12: LRGB ← compute rgb loss(Ie, Ir).
13: Combine losses: Ltotal ← LLPIPS + LL1 + LRGB .
14: Backpropagate against Ltotal, ensuring updates only affect masked object features:
15: backpropagate(Ltotal,M).
16: end for
17: Finalize training.
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Algorithm 4 Diffusion Object Style Transfer Batching Training Loop

1: Initialize training parameters: num_epochs, edit_freq, dataloader,
previously_edited_images.

2: for epoch = 1 to num epochs do
3: for batch in dataloader do
4: Load batch of rendered images Ir ← load batch(v), ground truth images Ig ←.
5: if epoch % edit freq == 0 then
6: Edit batch images using current model:
7: Ie ← edit images(Ir, Ig).
8: Update edited images dictionary:
9: edited_images[epoch] ← Ie.

10: Append indices of processed batch images to seen indices: seen_indices.append(indices).
11: else
12: Load previously edited batch images from data:
13: Ie ← previously edited images[indices].
14: end if
15: Compute losses:
16: LPIPS loss:
17: LLPIPS ← compute_lpips_loss(Ie, Ir).
18: textttL1 loss:
19: LL1 ← compute l1 loss(Ie, Ir).
20: RGB loss:
21: LRGB ← compute rgb loss(Ie, Ir).
22: Total loss: Ltotal ← LLPIPS + LL1 + LRGB .
23: Back-propagate loss for batch: back-propagate(Ltotal) and update model weights.
24: end for
25: end for
26: Finalize training.
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