
1

A Deep Learning Approach to JPEG Colour
Restoration Without Ground Truth

Michael Barrack

Abstract—Deep learning methods have seen growing use in the field of image denoising. While traditionally used alongside large
datasets of paired clean and noisy images, novel unsupervised techniques have been introduced that work without clean ground truth
data. These approaches successfully leverage the structure of these networks to act as a prior for a noisy image. This paper focuses
on the effectiveness of these existing methods at recovering colour content lost during JPEG compression with low quality factors, and
how they can be augmented with this goal in mind. Specifically, a focus on smoothing the distribution of values in each colour band of
the reconstruction is implemented using Kullback-Liebler Divergence as a component of model loss.

Index Terms—Computational Imaging, JPEG, Chroma Subsampling,

✦

1 INTRODUCTION

ADVANCEMENTS in deep learning have enabled inno-
vative approaches to the classic problem of image

denoising. With the growing accessibility of computational
resources, experimentation with convolutional neural net-
works (CNNs) for denoising continues to expand. Tradi-
tional supervised learning approaches to this problem rely
on large datasets of paired noisy and ground truth im-
ages—typically generated by corrupting clean images with
a known noise distribution. Recently, there has been grow-
ing interest in unsupervised and self-supervised methods,
where models learn to denoise images without relying on
clean ground-truth data. [1] [2]

These novel techniques leverage the inherent structure
of CNNs, allowing them to achieve strong results without
the need for large datasets. As these methods continue to
advance, there is growing potential to explore their effec-
tiveness on various types of noise and image artifacts. In
particular, through applying these approaches to heavily
compressed JPEG images, they can be evaluated on their
ability to to mitigate loss of colour information caused by
chroma subsampling.

Chroma subsampling is a process used in JPEG com-
pression that reduces the resolution of colour content in
an image. It does this by averaging the colour values over
multiple pixels, and is designed to exploit the human eye’s
weaker ability to notice differences in colour than in lumi-
nance. [3]

JPEG compression allows for the selection of a quality
factor in the range 0-100, with lower quality factors resulting
in smaller files but more distortion in the reconstruction. At
these lower qualities, chroma subsampling becomes more
pronounced, and the image may show more noticeable
colour degradation, especially in areas with subtle colour
gradients or high detail. [3]

This colour degradation is illustrated in Figure 1, where
a small section of an image from the Kodak Dataset is
compared against JPEGs with low quality factors. Note that
in the lowest quality images, blocking artifacts are more
prominent and the colour gradients are much harsher.

(a) Original (Raw) Image (b) JPEG, Quality = 25

(c) JPEG, Quality = 15 (d) JPEG, Quality = 10

Fig. 1: Comparison of colour loss due to chroma subsam-
pling at various low quality factors.

2 RELATED WORK

The foundation of this investigation comes from results pre-
sented in two papers. The first, “Deep Image Prior” works to
show that a randomly-initialized neural network can serve
as a prior for denoising with strong results. [2] The second,
“Unsupervised Learning with Stein’s Unbiased Risk Estimator”
builds off this work by replacing the loss function.



2

2.1 Deep Image Prior

This paper introduces a framework in which a randomly
initialized neural network is optimized to denoise a single
noisy image. In their experiments on JPEG restoration they
use an UNet-like CNN equipped with skip connections.
They explain that the benefit of such hourglass architectures
with skip connections is that they “impose self-similarity at
multiple scales, making the corresponding priors suitable
for the restoration of natural images” [2] [4].

Their approach is implemented as follows: For a sin-
gle, noisy RGB image x0 ∈ R3×H×W , a CNN is initial-
ized with parameters θ. This network defines a mapping
fθ : R3×H×W → R3×H×W . An array of noise z ∈ R3×H×W

is independently sampled from U(0, 0.1) to serve as the
constant input to the network.

At every iteration t the noise z is passed through the
network resulting in output fθt(z) = xt ∈ R3×H×W . This
output xt and the noisy image x0 are used to compute mean
squared error loss MSE(xt, x0). Finally, the gradient of the
loss with respect to the parameters θ is calculated and used
to update the model. [2] This process is depicted below in
Figure 2 from [2, Fig. (2)].

Fig. 2: Depiction of optimization process for single noisy
image. [2, Fig. (2)]

The primary limitation of this approach is that the op-
timal number of iterations is unknown,—if allowed to run
indefinitely—the network eventually overfits to the noisy
image. The solution proposed is to average recent network
outputs using an exponential sliding window. [2] This al-
lows for easier selection of a stopping time. However, it can
still only be determined through experimentation.

2.2 Unsupervised Learning with Stein’s Unbiased Risk
Estimator

This paper aims to solve the stopping-time problem from
Deep Image Prior by replacing MSE loss with Stein’s Unbi-
ased Risk Estimator (SURE). SURE is designed to provide
an estimate of MSE with respect to ground truth without
access to the ground truth itself. By assuming properties of
the noise in the available noisy image, it estimates the MSE
from just the noisy image and the model’s reconstruction.
[5]

The SURE loss function is presented as follows: Let
x∗ denote the ground truth image. Assume that the noisy

image x0 can be modelled by x0 = x∗ + w, where w ∼
N (0, σ2I). Assume also that instead of inputting noise to
the network fθ as is done in the previous approach, the
noisy image x0 is input. From [5, eq. (1)], the expectation of
MSE with respect to w can be expressed as

E
[
1

n
∥x∗ − fθ(x0)∥2

]
= E

[
1

n
∥x0 − fθ(x0)∥2

]
− σ2

w +
2σ2

w

n
divx0(fθ(x0)).

(1)

where div(·) is the divergence (from [5, eq. (2)]) defined as

divx0
(fθ(x0)) =

N∑
n=1

∂fθn(x0)

∂x0n

(2)

The idea here is that while the first term minimizes the
difference between the noisy image and its reconstruction,
the second term “penalizes the denoiser for varying as the
input is changed” [5]. Note that the divergence term cannot
be easily expressed analytically, so a Monte Carlo method is
used to give an estimate. [5]. Further details about how the
for this is derived and implemented can be found in [6]

To evaluate the effectiveness of using SURE in place
of MSE, two networks were optimized for the same noisy
image: One model was optimized using MSE and the other
using SURE. The normalized MSE (NMSE), training loss,
and network divergence were recorded for each model
after each iteration. The results are shown in Figure 3 as
presented in the [5, Fig. (1)]:

(a) MSE Training Loss

(b) SURE Training Loss

Fig. 3: Comparison of training metrics between MSE and
SURE training loss [5, Fig. (1)]

The results show that when using MSE loss, there is
a point after which NMSE and divergence increase with
each iteration, while training loss continues to decrease.
However, when using SURE loss, NMSE and training loss
decrease in tandem and quickly approach an asymptote. [5]



3

3 PROPOSED METHOD

Equipped with the approaches detailed above, we can turn
our attention to the effectiveness of these methods at restor-
ing colour content, and how they might be improved upon
with this goal in mind.

3.1 Effects of Chroma Subsampling
This process begins by further considering the impact of
chroma subsampling on the distribution of colour values.
Figure 4 below uses histograms to compare the distribution
of values in each colour channel of the images shown in
Figure 5a (the original image) and Figure 1d (compressed
with Quality = 10).

(a) Comparison of Red channel distribution

(b) Comparison of Green channel distribution

(c) Comparison of Blue channel distribution

Fig. 4: Comparison of colour value distributions in uncom-
pressed and JPEG (Quality = 10) images.

Representing the data this way makes clear why chroma
subsampling has such a significant effect on areas with
subtle colour gradients. It also provides motivation to ex-
periment with techniques that can smooth the colour distri-
butions in the reconstructed images. We propose that this
can be accomplished via the inclusion of an additional term
in the loss function.

3.2 KL-Divergence

Kullback-Liebler divergence, often denoted as DKL(P∥Q)
measures how different a modelled distribution Q is from a
true distribution P . [7] For distributions P and Q with the
same support X , the formula for KL-divergence is given by

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3)

The value it returns can be loosely thought of as the
distance between two distributions. However, it does not
satisfy the symmetry property and thus it is not a metric.
Despite this, it can still be used as a loss function since it is
non-negative and DKL(P∥Q) = 0 ⇐⇒ Q = P . [7]

To implement a loss term that uses KL-divergence, we
must first identify the distributions that can be compared.
Since the focus of this investigation is on methods that do
not require ground truth data, we must use distributions
approximated from a compressed image. We do this by as-
suming that the distribution of colour values in each channel
can be sufficiently modelled by a Gaussian distribution with
the same mean and variance as the JPEG. That is, for a
given colour C ∈ {R,G,B} and compressed image x0, let
xC
0 denote the set of values in the C colour channel. From

this set we calculate the variance σ2
C = Var(xC

0 ) and the
mean µC = E

[
xC
0

]
. We then model a distribution for this

colour channel as QC ∼ N (µC , σC). To actually perform
divergence calculations with this distribution, the density
function of QC is converted to a mass function by sampling
at each of the 256 possible pixel values and normalizing.

Letting PC similarly denote the mass function for values
in the C colour channel of the model’s output xt, we can
compute divergence between these distributions as either
DC = DKL(PC∥QC) or DC = DKL(QC∥PC). Note that
to ensure that the divergence formula converges, we add a
value of ε = 1× 10−10 during calculation. Finally, choosing
to weight each colour channel equally, we arrive at two
possible KL-divegence loss terms given by:

LP
KL =

1

3

∑
C∈{R,G,B}

255∑
i=0

(PC(i) + ε) log

(
PC(i) + ε

QC(i) + ε

)
(4)

and,

LQ
KL =

1

3

∑
C∈{R,G,B}

255∑
i=0

(QC(i) + ε) log

(
QC(i) + ε

PC(i) + ε

)
(5)

3.3 Loss Functions

Equipped with a method for determining KL-divergence
loss, we can define a set of loss functions of the form,

L(x0, xt) = LKL + λd(x0, xt) (6)



4

where LKL ∈ {LP
KL, L

Q
KL}, and d ∈ {MSE, SURE} are

weighted by a non-negative scalar λ ∈ R+. We can eval-
uate this class of functions by experimenting with different
combinations of KL-divergence and distortion loss terms,
and different relative weightings.

3.4 Testing Methodology
We seek to identify if these loss functions can outperform
the existing approaches identified in Section 2. To do this,
a total of ten loss functions must be compared: MSE as
implemented in [2], SURE as implemented in [5], and eight
implementations of our novel loss functions. These eight
consist of each possible pair of loss terms, with λ = 10 and
λ = 100.

Since the implementation of SURE in [5] was done by
modifying the source code provided in [2], we choose to
implement our loss functions in the same way to allow for
direct comparison. We test each loss function across three
model architectures with different levels of complexity. Each
of these models has a symmetric “hourglass” architecture:
This means corresponding pairs of downsampling and
upsampling layers have the same kernel size, and number
of filters. [2] Each of these models is also equipped with
skip connections between some or all of these pairs of
layers. In the model descriptions below nu[i], nd[i] and
ns[i] correspond to the number of filters at depth i in
the downsampling layers, upsampling layers, and skip-
connections respectively. [2]

Low Complexity Model: This model is identical to the
example used in [2] for JPEG artifact removal.

• nu = nd = [8, 16, 32, 64, 128]
• ns = [0, 0, 0, 4, 4]
• Upsampling Method: Bilinear at each layer
• Activation Function: Leaky ReLU

Medium Complexity Model: This model is designed to fill
the gap in complexities between the other two models.

• nu = nd = [8, 16, 32, 64, 128, 256]
• ns = [6, 6, 4, 4, 6, 6]
• Upsampling Method: Bilinear at each layer
• Activation Function: Leaky ReLU

High Complexity Model: This model is identical to the
implementation in the source code from [5].

• nu = nd = [128, 128, 128, 128, 128, 128, 128, 128]
• ns = [15, 13, 11, 9, 7, 5, 3, 1]
• Upsampling Method: i ≤ 4: Nearest, i > 4: Bilinear
• Activation Function: Leaky ReLU

To enable broad comparison of performance, we test
each loss function and model complexity with and without
skip connections enabled, and record their performance
across a set of images.

4 EXPERIMENTAL RESULTS

The Kodak dataset is a collection of 24 images commonly
used for evaluation in the field of image processing. [8]

For testing using the models outlined above, each image
in the dataset was compressed to quality factors of 10, 15,
and 25 using the Python Imaging Library (PIL). The models
for each image were trained using a variety of hardware
including NVIDIA’s T4, L4, and 4080 GPUs.

4.1 Quantitative Results

It became immediately clear during testing that models
without skip connections performed worse than those with
skip connections in all cases. As a result the PSNR and
MS-SSIM values for these models are not included in the
tables below. However, we can report that including skip
connections increased PSNR by 0.996 dB on average.

Similarly, averaging network outputs via an exponential
sliding window as proposed in [2] improves both PSNR and
MS-SSIM in models using MSE loss. While the benefit of this
choice is less significant than the use of skip connections,
PSNR increases by an average 0.176 dB, and thus only the
smoothed outputs are included for these models.

Tables 1 and 2 below show the PSNR and MS-SSIM
results for each loss function, JPEG quality, and model com-
plexity. For each pair of loss terms, the λ value that yielded
the best results was selected. This was not constant across
each quality and model complexity, and is left arbitrary in
the table headings.

TABLE 1: Restored JPEG PSNR with respect to ground truth.

Complexity Quality M
SE

SU
R

E

L
P K

L
+

λ
M

SE

L
Q K

L
+

λ
M

SE

L
P K

L
+

λ
SU

R
E

L
Q K

L
+

λ
SU

R
E

High
10 27.20 26.84 27.20 27.26 26.82 26.82
15 28.01 27.85 28.34 28.32 27.84 27.88
25 28.75 28.71 29.31 29.37 28.76 28.66

Medium
10 26.51 25.55 26.53 26.54 25.47 25.52
15 26.76 26.19 27.12 27.13 26.26 26.35
25 27.03 26.62 27.54 27.47 26.87 26.88

Low
10 26.83 23.66 26.85 26.83 23.57 23.64
15 27.15 23.59 27.53 27.52 23.77 23.87
25 27.49 23.77 28.00 27.98 23.85 24.01

TABLE 2: Restored JPEG MS-SSIM with respect to ground
truth.

Complexity Quality M
SE

SU
R

E

L
P K

L
+

λ
M

SE

L
Q K

L
+

λ
M

SE

L
P K

L
+

λ
SU

R
E

L
Q K

L
+

λ
SU

R
E

High
10 0.911 0.899 0.914 0.914 0.900 0.900
15 0.926 0.922 0.934 0.933 0.922 0.922
25 0.937 0.938 0.947 0.947 0.938 0.938

Medium
10 0.892 0.887 0.892 0.893 0.887 0.888
15 0.897 0.905 0.905 0.905 0.908 0.908
25 0.901 0.918 0.913 0.912 0.919 0.920

Low
10 0.901 0.826 0.901 0.901 0.824 0.827
15 0.908 0.828 0.916 0.915 0.829 0.832
25 0.912 0.834 0.925 0.924 0.833 0.836



5

To put these values in context, the average PSNR and
MS-SSIM values of the JPEGs used to create each model are
given below in Table 3.

TABLE 3: PSNR and MS-SSIM values for JPEGs created from
Kodak dataset.

Quality PSNR MS-SSIM

10 26.67 0.894
15 28.14 0.927
25 29.89 0.956

4.2 Quantitative Analysis

4.2.1 SURE Loss Functions

From the PSNR results, we can see that loss functions
using MSE for distortion outperformed those using SURE
across the board. The difference in PSNR between the two
distortion measures appears to be inversely proportional to
model complexity, indicating that methods using SURE loss
may benefit from larger models with more skip connections.

It should be noted that the high complexity model archi-
tecture was copied directly from the source code provided
in [5], and yet MSE loss performed better with this archi-
tecture across all JPEG qualities. The only instances where
SURE loss functions improved PSNR or MS-SSIM above the
baselines given in Table 3, are with the high complexity
model and JPEGs with a quality factor of 10. Even in these
exceptions the PSNR changes were small, improving by
only 0.17 dB and 0.15 dB.

The impact of including a KL-divergence term was
inconsistent across quality factors and complexities. For
images with a quality factor of 10, neither the PSNR or
MS-SSIM results improved. This is also the case for all
quality factors using the high complexity model. Across all
other quality-complexity combinations, the inclusion of a
Kl-divergence term increased PSNR by an average of 0.13
dB. However, none of these methods resulted in PSNR or
MS-SSIM above those of the source JPEGs.

These observations suggest that using SURE is not opti-
mal for this specific testing approach. Likely, this is in large
part due to the assumption that the image being restored
has been corrupted by noise with a known distribution.

4.2.2 MSE Loss Functions

For JPEGs with a quality of 25, none of the models was
able to improve the PSNR or MS-SSIM. Using the low and
medium complexity models this was also the case for a
quality of 15. However, the high complexity model using
KL-divergence terms LP

KL and LQ
KL improved PSNR by

0.20 dB and 0.18 dB, and MS-SSIM by 0.76% and 0.65%.
It should be noted the model that used MSE loss without a
KL-divergence term did not improve either metric.

Models using MSE loss were most effective on JPEGs
with a quality of 10, seeing improvements over the baseline
with both low and high complexities. The high complexity
results were the strongest: The model using no divergence
loss, and the one using LQ

KL improved PSNR by 0.53 dB,
and 0.59 dB and MS-SSIM by 1.9% and 2.3%.

4.2.3 Comparison of LP
KL and LQ

KL

Ultimately the data suggests that the two KL-divergence
loss terms perform very similarly. When used alongside
both MSE and SURE distortion terms, the average absolute
difference in PSNR is 0.05 dB, and in MS-SSIM is 0.0009.

Including one of these terms in a loss function alongside
MSE improved PSNR by 0.29 dB and MS-SSIM by 0.73%
on average. This is a positive result that suggests use of Kl-
divergence terms can improve performance in JPEG restora-
tion under the right circumstances.

4.3 Qualitiative Results
Shown in Figure 5 are two example reconstructions of a
JPEG with quality 10, along with the JPEG itself and the
original image. The loss functions used to restore these
images are the best performing for each distortion loss type
as identified in the Section 4.2; both use the high complexity
architecture.

(a) Original (Uncompressed) Image

(b) JPEG, PSNR = 28.87, MS-SSIM = 0.883

(c) L = LQ
KL+λMSE, PSNR=29.97, MS-SSIM=0.925

Fig. 5: JPEG Reconstruction Comparison



6

(d) L = SURE, PSNR=28.83, MS-SSIM=0.899

Fig. 5: JPEG Reconstruction Comparison (cont.)

We can see in both reconstructions that the blocking
artifacts are less noticeable than in the JPEG. Focusing on
the upper middle third of the image we can also see that
the colour gradients appear smoother. However, the colour
in these regions is still clearly different than in the original
image.

The SURE reconstruction in Figure 5d appears visibly
noisy, similar to what would be expected when corrupting
an image with Gaussian noise. This is likely a consequence
of the assumption noted in Section 4.2.1, and could be im-
proved by experimenting with different noise distributions,
or incorporating traditional denoising techniques.

Ultimately, the reconstruction in Figure 5c shows sig-
nificant improvement from the JPEG used to create it, ef-
fectively improving image quality in regions where colour
distortion is most apparent.

5 CONCLUSION

The results presented above reveal several limitations in our
experimental approach. To properly evaluate the effective-
ness of SURE as a loss function, further experimentation
is essential. Without additional investigation, the impact
of modifying the assumed noise distribution or increasing
model complexity can only be theorized.

While positive results were achieved with MSE dis-
tortion in a handful of cases, we did not meaningfully
address the overfitting limitations that SURE was proposed
to prevent. The stopping time for models using MSE was
determined by optimizing for more iterations than was
necessary, and identifying the average best epoch to stop
at after the fact, using ground truth for this evaluation.

It should also be noted that the models were designed
without any consideration of image size, and were only
evaluated on one size of image. These, among other limi-
tations, prevent strong conclusions from being drawn using
the results we’ve presented.

However, the reported instances where improvement in
PSNR and MS-SSIM values can only be attributed to the
inclusion of the a KL-divergence loss term justify further
investigation. In this report we only evaluated one method
of modelling the source distribution. It is reasonable to
believe that improving this model could have a significant
impact on results. As could novel approaches to computing

the divergence term, such as averaging divergence from
multiple smaller regions within an image, or weighing the
divergences differently for each colour band.

This report highlights the potential benefit of considering
the specific effects of chroma subsampling when designing
models to restore JPEG images without access to ground
truth data. In conclusion, we have laid a foundation from
which better approaches can be designed to solve this classic
problem in image processing.

REFERENCES

[1] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras,
M. Aittala, and T. Aila, “Noise2noise: Learning image restoration
without clean data,” CoRR, vol. abs/1803.04189, 2018. [Online].
Available: http://arxiv.org/abs/1803.04189

[2] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,”
arXiv:1711.10925, 2017.

[3] D. Issue, “Chrominance subsampling in digital images,” The Pump-
kin, vol. 1, 01 2009.

[4] X. Mao, C. Shen, and Y. Yang, “Image restoration using
convolutional auto-encoders with symmetric skip connections,”
CoRR, vol. abs/1606.08921, 2016. [Online]. Available: http:
//arxiv.org/abs/1606.08921

[5] C. A. Metzler, A. Mousavi, R. Heckel, and R. G. Baraniuk,
“Unsupervised learning with stein’s unbiased risk estimator,”
CoRR, 2020. [Online]. Available: https://arxiv.org/abs/1805.10531

[6] S. Ramani, T. Blu, and M. Unser, “Monte-carlo sure: A black-box
optimization of regularization parameters for general denoising
algorithms,” Trans. Img. Proc., vol. 17, no. 9, p. 1540–1554, Sep. 2008.
[Online]. Available: https://doi.org/10.1109/TIP.2008.2001404

[7] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. Burlington, MA, USA: Morgan Kaufmann, 2011.

[8] Eastman Kodak Company, “Kodak lossless true color image suite,”
2010, available at: http://r0k.us/graphics/kodak/ [Accessed Dec.
6, 2024].


