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Mambagym: Comparing Low-Dose CT
Reconstruction Denoisers with Optimizing Priors

John Lin, Yukthi Wickramarachchi, Steven Yuan

Abstract—Computed Tomography (CT) is a diagnostic medical imaging technique using X-rays to produce internal images of the
human body. However, the utility of CT scans are balanced by the adverse effects of using X-rays, which are a form of ionizing radiation
that may induce cancer, due to the damage they cause to DNA. In order to reduce patient risk, low-dose CT is a newer technique that
reduces ionizing radiation exposure. However, it comes at the cost of CT image quality, as low-dose CT produces less-detailed images
compared to conventional CT, since lower radiation results in lower signal collected. At the same time, increasing the signal by
increasing image gain results in a similar increase in background noise. Is it possible, therefore, to improve low-dose CT image quality
through computational imaging techniques, while preserving the benefits of low-dose CT on patient radiation exposure? Here, we
explore a novel denoising method based on state-space modeling, DenoMamba, using an Alternating Direction Method of Multipliers
(ADMM) plug-and-play prior, on resolving low-dose CT images. We show that compared to state-of-the-art and status-quo denoisers,
DenoMamba with ADMM performs better at resolving low-dose CT images, with similar subjective image resolution compared to
conventional CT. This work highlights the role of advanced computational imaging techniques in addressing trade-offs in technical
outcomes and patient risk in diagnostic medical imaging, and sets the foundation for further innovations in this field.

Index Terms—Computational Imaging, Low-Dose Computed Tomography, Denoising, Convolutional Neural Networks, State-Space
Machines
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Fig. 1. Anatomical planes as seen in magnetic resonance imaging (MRI)
[1].

1 INTRODUCTION

CONVENTIONAL computed tomography (CT) techniques
are the norm nowadays to resolve relatively high-

resolution, high-quality images of the internal structures of
the human body. Indeed, with today’s advances in medical
imaging technology, it’s possible from a single scan to con-
struct images in any of the three anatomical planes: axial,
coronal, and sagittal and construct a 3D volume of the target
organs (Fig. 1).

However, conventional CT is not without drawbacks.
Primarily, the ionizing radiation that CT generates increases
the risk of cancer, particularly in children [2]. Thus, in order
to reduce radiation exposure, low-dose CT was introduced.

Nevertheless, simply reducing radiation exposure in CT is
not without its own problems. Namely, with lower radiation
dosages comes a proportional deterioration in image quality
[3]. This can be somewhat mitigated by increasing image
gain, but also results in excessive noise and artifacts upon
reconstruction [4]. Thus, the goal of reducing clinical radia-
tion exposure while still obtaining high-quality CT images
is an area of active research.

The typical flow for CT imaging involves constructing
X-ray projections into sinograms, which are then converted
into the image domain (Fig. 2). Traditional algorithms used
for this task include filtered back projection (FBP) and
Feldkam-Davis-Kress, which are notable for their compu-
tational efficiency and reconstruction speed, especially in
conventional CT scans. However, since these algorithms
rely on high quality projection data, low-dose CT scans
are not suitable for these algorithms. Alternatively, itera-
tive reconstruction is another technique that benefits from
advances in computing power and robustness to diverse
scanning conditions and noise levels. In other words, it is an
improvement on FBP and Feldkam-Davis-Kress especially
in the realm of noise reduction. However, Chen et al. state
that despite its benefits, iterative reconstruction suffers from
slow speed due to multiple iterative optimizatization and
intricate setup, which restrict its use in clinical practice [4].

The current state-of-the-art for low-dose CT imaging
instead involves deep learning in various modalities. Chen
et al. [4] categorize these modalities into four broad
groups: projection domain preprocessing, image domain
post-processing, hybrid projection and image domain pre-
and post-processing and direct reconstruction using DL
alone (Fig. 3). Some of these methods that we will explore
include Residual Encoder-Decoder Convolutional Neural
Network (RED-CNN) [5], which is an image domain DL
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Fig. 2. CT projection to image flow

Fig. 3. Four domains of DL-based low-dose CT reconstruction.

model which has shown promising results in the past.
In addition to these approaches, iterative optimization

algorithms can be employed to solve the low-dose CT linear
inverse problem. In this paper we will focus on this type of
approach, exploring algorithms such as ADMM and Fixed-
Point iteration in order to obtain higher quality reconstruc-
tions.

Finally, we intend to explore DenoMamba, a novel image
domain denoiser that uses state-space modeling (SSM) to
capture short-and long-range context in order to improve
on the status quo of low-dose CT reconstruction algorithms
[6]. By evaluating these cutting-edge techniques, we hope
to push the boundaries of what is possible with low-dose
CT, balancing image quality and radiation reduction while
maintaining computational feasibility for real-world clinical
use.

2 RELATED WORK

2.1 Inverse Image Problems
The primary objective of this work lies in the domain of
inverse image problems, where the goal is to recover an un-
known image x from noisy measurements y. In CT imaging,
measurements are typically modeled as being corrupted by
two primary types of noise: quantum noise and detector
noise [7]. Quantum noise is commonly modeled as Poisson
noise, while detector noise is typically modeled as Gaussian
noise.

At lower radiation doses, the effect of the Poisson noise
becomes more pronounced relative to detector noise. Con-
sequently, the low-dose CT inverse problem is generally
modeled as a Poisson inverse problem of the form:

y = Ax+ ϵ(Ax), (1)

where:

• y represents the noisy sinogram measurements,

• x is the true image to be reconstructed,
• A is the system matrix (in the CT case, a Radon

transform) [8],
• ϵ(Ax) represents a data-dependent noise distribu-

tion modeled by:

ϵ(Ax) = −Ax− ln

(
Ñ1

N0

)

where, Ñ1 ∼ Poisson(N0 exp(−Ax))

However, numerical stability issues arose when explic-
itly solving for the poisson objective. As a result, we found
that modeling the noise as additive Gaussian noise and sub-
sequently optimizing a Gaussian-based objective function
led to better results. Thus, in this paper, the inverse problem
is modeled using the form:

y = Ax+ ϵ, (2)

where ϵ ∼ N(0, σ2) represents additive Gaussian noise.
This formulation corresponds to what is commonly referred
to as the linear inverse imaging problem.

Due to the presence of noise corrupting the measure-
ments, direct inversion of the system matrix A is not
feasible. Therefore, alternative optimization techniques are
required to address this ill-posed inverse problem.

2.2 Regularization by Denoising (RED)

Regularization by Denoising (RED) is a framework that
utilizes denoising algorithms to regularize general inverse
problems in image processing [9]. This method defines a
regularization term as the cross-correlation between the
image and its denoising residual, aiming to minimize this
correlation. RED incorporates a denoising engine iteratively
within the regularization term, making the overall optimiza-
tion task clearer and better defined. The flexibility of RED
allows for various optimization methods and is capable of
achieving state-of-the-art results in image deblurring and
super-resolution.

E(x) =
1

2σ2
||Hx − y||22 +

λ

2
xT (x − f(x))

2.3 Alternating Direction Method of Multipliers (ADMM)

The alternating direction method of multipliers (ADMM) is
an algorithm that solves convex optimization problems by
breaking them down into smaller, easier-to-handle subprob-
lems [10], [11]. The algorithm achieves this by alternating
between minimizing the objective function with respect to
different subsets of variables, while also incorporating a
dual variable update to enforce constraints. ADMM has a
wide range of applications but is particularly useful for
denoising since it allows us to mix and match various
algorithms to assess their performance, especially in the
Plug-and-Play Prior (P 3) framework [12].

Lρ(x, z, y) =

f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
||Ax+Bz − c||22
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Fig. 4. RED-CNN Architecture

P 3 with ADMM is a framework built on top of ADMM,
with the core idea being that the explicit prior is replaced
with a denoiser, which decomposes the inverse problem into
simpler subproblems [9].

2.4 Residual Encoder-Decoder Convolutional Neural
Network (RED-CNN)

The residual encoder-decoder convolutional neural network
(RED-CNN) is a deep learning model designed to improve
low-dose CT imaging [5]. Its architecture comprises ten lay-
ers, including five convolutional and five deconvolutional
layers arranged symmetrically, with shortcuts connecting
matching layers (Fig. 4). RED-CNN’s performance has been
shown to be superior to other state-of-the-art methods in
both simulated and clinical cases [5]. The model’s robust-
ness allows it to handle different noise levels with a com-
putational cost significantly lower than other methods. As
such, it is a promising solution for denoising low-dose CT
imaging and a good benchmark for comparing to our target
framework.

2.5 Sequence Modeling for Images

A recently the use of sequence modeling architectures such
as Vision Transformers [13] have been used for various
computational imaging tasks. These use self-attention [14]
operators in order to capture spatial contextual relationships
within the image. These architectures process images as
sequences of non-overlapping patches embedded into a
higher dimensional space. There have been several success-
ful uses of transformer architectures for LDCT denoising
[15] [16], however due to the quadratic complexity of atten-
tion at training time, there are computational constraints to
the use of this method.

2.6 Selective State-Space Models

Selective state space models (SSMs) are a class of neural
architectures originally developed for modeling sequential
data, such as time-series or text [17]. They employ a linear
state-space system coupled with learnable gating mecha-
nisms to selectively control the flow of information across
input sequences.

For image processing, information flow is captured in
a hidden state which is updated at each time step (in the
case of images, each subsequent patch embedding). This
hidden state captures the short and long range context

without the need for self-attention, significantly reducing
the computational complexity.

The selective state-space mechanism is defined as fol-
lows:

ht+1 = Aht +Bxt, yt = Cht,

where:

ht ∈ Rd hidden state at time t,

xt ∈ Rm input at time t (e.g. an image patch),
yt ∈ Rn output at time t,

A ∈ Rd×d state transition matrix,

B ∈ Rd×m input mapping matrix,

C ∈ Rn×d output mapping matrix.

Selective gating mechanism:

ht+1 = gt ⊙ (Aht) + (1− gt)⊙ (Bxt),

where gt ∈ [0, 1]d is a learned gating vector.
In the image context, the selective input gating allows for
selection of both long range and short range spatial features
to contribute to the state transition.

Fig. 5. Selective State-Space Mechanism.

2.7 DenoMamba

Öztürk et al. [6] proposed Denomamba, a state-space
model based LDCT denoiser which leveraged a U-Net style
encoder-decoder structure with each stage containing a se-
quence of ”FuseSSM” blocks. Each FuseSSM block takes a
sequence of image non-overlapping patches as an input and
consists of 3 pathways which are pooled (or fused) together
to obtain the an output. .

Fig. 6. FuseSSM Block
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Fig. 7. DenoMamba Architecture

3 PROPOSED METHOD

3.1 Motivation

In recent years, convolutional neural networks (CNNs) have
primarily been the state-of-the-art in deep learning based
LDCT denoising [18]. However, CNNs are inherently con-
strained by their limited receptive field, which may hinder
their ability to capture long-range dependencies and global
context in CT images. To address this limitation, we wanted
to explore the use of an alternative architecture capable of
capturing both short and long range contextual features.
We hypothesized that this could better preserve complex
tissue and structure details, resulting in better denoising and
reconstruction.

3.2 Our Method

We propose incorporating Denomamba into the RED frame-
work as a de-noising prior for low-dose CT image recon-
struction task. We experimented with using both ADMM
and Fixed Point iteration algorithms to perform reconstruc-
tions. For our ADMM solution we chose to use a conjugate
gradient solver to solve for the data fidelity term, and used
a fixed point iterative solution to solve for the regularization
term.

Algorithm 1 Denoising with ADMM
1: Input: Supply the following inputs:

• DenoMamba fDM (·)
• Forward and adjoint system matrices H and HT

• Regularization parameter λ
• Log-Likelihood parameter: σ
• ADMM coefficient ρ
• Number of outer and inner iterations: N , m

2: Initialization: Set x̂0 = 0, v̂0 = 0, and û0 = 0
3: for k = 1, 2, . . . , N do
4: Part 1: Solve x̂k = argminz

1
2∥Hz − y∥2

2 + ρ
2 ∥z − v̂k−1 + ûk−1∥2

2
Solve via Conjugate Gradient Method

5: Part 2: Solve v̂k = argminz λz⊤(z− fσf
(z))+ ρ

2 ∥z− x̂k − ûk−1∥2
2

6: Initialization: z0 = v̂k−1, and define z∗ = x̂k + ûk−1

7: for j = 1, 2, . . . ,m2 do
8: Apply DenoMamba z̃j = fDM (ẑj−1)
9: Compute the gradient zj = 1

ρ+λ (λz̃j + ρz∗)

10: end for
11: Set v̂k = zm

12: Part 3: Update ûk = ûk−1 + x̂k − v̂k

13: end for

Algorithm 2 Denoising with Fixed Point Iteration
1: Input: Supply the following ingredients and parameters:

• DenoMamba fDM (·)
• Forward and adjoint system matrices H and HT

• Regularization parameter λ
• Log-Likelihood parameter: σ
• Number of outer and inner iterations: N and m

2: Initialization: x̂0 = 0
3: for k = 1, 2, . . . , N do
4: Run DenoMamba forward pass: x̃k = fDM (x̂k−1)
5: Solve Az = b for A = 1

σ2 H⊤H + λI and b = 1
σ2 H⊤y + λx̃k

6: Initialization: z0 = x̃k

7: for j = 1, 2, . . . ,m do
8: Compute the residual: rj = Azj−1 − b
9: Compute the vector: ej = Arj

10: Compute the optimal step size: µ =
r⊤j ej

e⊤
j

ej

11: Update the solution: zj = zj−1 + µ · rj
12: end for
13: Set x̂k = zm

14: end for

4 EXPERIMENTS

To evaluate Denomamba as a denoising prior within the
RED framework, we compared it to another deep denoiser,
RED-CNN. In addition to this, we evaluated the perfor-
mance of DenoMamba in standard Plug-and-Play ADMM,
as well as some classical CT reconstruction techniques for a
baseline comparison.

4.1 Evaluation Metrics
We evaluated performance on commonly used measures
such as Peak Signal-to-Noise Ratio (PSNR) and structural
similarity index measure (SSIM).

PSNR is the most commonly used metric for evaluating
the quality of reconstructions. It is computed as:

PSNR = 10 log10

(
MAX2

I

MSE

)
,

where:

MSE =
1

N

N∑
i=1

(Iref(i)− Itest(i))
2
,

where MAXI denotes the maximum possible pixel value of
the image. PSNR is expressed in decibels (dB) and a higher
PSNR indicates better reconstruction quality.

SSIM is a perceptual metric that evaluates the similarity
between two images by considering their structural infor-
mation, luminance, and contrast [19].

4.2 Datasets
We evaluated the performance of each method using the
LoDoPaB-CT reconstruction dataset [7]. This dataset con-
sists of parallel-beam projection CT images generated from
thoracic slices of 800 patients at full dose. To simulate low-
dose CT conditions, the projections were corrupted with
Poisson noise.

The dataset includes projections captured at 1,000
equidistant angles with 513 equidistant detector bins, result-
ing in 1000×513 noisy projection data. The corresponding
”ground truth” images have a resolution of 362×362.

For training of DenoMamba and RED-CNN we used
the 2016 Low-Dose CT Grand Challenge dataset [20]. This
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dataset consisted of 512x512 paired image examples taken
from 30 patient scans. Each image pair contained a full dose
”ground truth” image and a quarter dose image simulated
by adding poisson noise.

4.3 Training details
We trained DenoMamba for 60 epochs with a learning rate
of 5e−5 on an Nvidia RTX-A4500 GPU on the UofT GPU
Clusters. We trained RED-CNN for 100 epochs on an Nvidia
RTX-4090 with a learning rate of 1e−5.

4.4 Experiment Details
For the ADMM Plug-and-Play and RED+ADMM
experiments with DenoMamba, we ran for 50 ADMM
iterations and 5 fixed-point iterations at each z-update step
with parameters λ = 0.1 and ρ = 0.1.

For the RED+ADMM experiment using RED-CNN we
ran for the same number of iterations but used parameters
λ = 0.1 and ρ = 1.0.

For the RED-Fixed-Point experiment with Denomamba
we ran for 50 outer iterations and 25 inner iterations per
sample with parameters σ2 = 0.3 and λ = 0.5.

For the RED-Fixed-Point experiment with RED-CNN
we ran for the same number of iterations with parameters
σ2 = 1.0 and λ = 0.1.

For the ADMM with a Total-Variation prior experiment
we ran for 75 ADMM iterations with parameters λ = 0.1
and ρ = 1.0.

For our experiment with the SART reconstruction algo-
rithm we ran for 100 iterations per sample with ω = 1.

5 RESULTS AND DISCUSSION

We evaluated eight reconstruction algorithms on 1,000 test
examples using three metrics: PSNR, SSIM, and RMSE.
Our method, Fixed-Point Iteration with DenoMamba Prior,
achieved the best results across all metrics (Table. 1). With a
PSNR of 35.62 dB, our method indicates superior reconstruc-
tion quality and noise suppression, as PSNR is inversely
related to reconstruction error. The SSIM of 0.77 demon-
strates that our method can retain image details better than
other methods that we have tested, displaying the highest
structural fidelity to the reference images. The low RMSE
further substantiates our method’s precision - the lowest
error was produced in pixel intensity reconstruction.

5.1 Qualitative Analysis of Reconstruction Perfor-
mance
In Fig. 8, ADMM + DenoMamba and Fixed-point + De-
noMamba produce clearer and more detailed structures in
the lung region compared to the other methods. Both of
these methods use a learned denoising model that is trained
to handle the kind of noise and artifacts that appear in
low-dose CT scans. We observe that these algorithms are

TABLE 1
Evaluation of Reconstruction Algorithms on 1000 Test Examples Using

PSNR, SSIM, and RMSE Metrics

Reconstruction Algorithm PSNR (dB) SSIM RMSE

FBP 27.70 0.40 0.22
ADMM TV 33.51 0.64 0.11

SART 33.59 0.71 0.11
ADMM + RED-CNN 31.20 0.69 0.15

Fixed-Point + RED-CNN 29.28 0.60 0.18
P 3 + DenoMamba 35.04 0.74 0.10

ADMM + DenoMamba 35.20 0.74 0.09
Fixed-Point + DenoMamba 35.62 0.77 0.08

better able to remove noise while keeping subtle anatomical
details intact. The DenoMamba model likely learns pat-
terns specific to lung structures, such as fine vessel details,
thin boundaries, and soft texture variations that traditional
models or generic priors fail to preserve. This leads to a
higher PSNR and SSIM, as seen in the provided metrics,
because the final reconstructed image more closely matches
the underlying true anatomy without introducing smooth
or blocky artifacts.

However, In Fig. 9, we observe that RED-CNN has better
performance. The smoother boundaries and higher SSIM
value indicate that RED-CNN preserved structural details,
such as the curved and high-contrast regions, better than
other algorithms. This aligns with the strength of RED-
CNN, which is great at capturing hierarchical features and
retaining spatial coherence in noise suppression [3]. For
homogeneous areas in the image, such as regions with lower
intensity variation, ADMM + RED-CNN avoided excessive
smoothing while preserving global consistency, whereas the
fixed-point strategy introduced more artifacts among these
regions.

5.2 Analysis of RED-CNN

The RED-CNN method showed surprisingly lower perfor-
mance, with a PSNR of 31.47 dB and SSIM of 0.71 in the
ADMM configuration. This discrepancy can be attributed to
multiple factors. The RED-CNN implementation we used
was an off-the-shelf implementation last updated in 2020,
and not optimized for the current environment [21]. Ac-
cording to the original RED-CNN paper by Chen et. al. [5],
the model was initially implemented in MATLAB, which in-
volves dependencies and methodologies that may no longer
be compatible or optimal in modern frameworks such as
PyTorch. The reliance on older computational environments
potentially led to discrepancies in performance when port-
ing the code to newer tools. A complete rewrite would
be required to faithfully replicate the original RED-CNN
performance, which was outside the scope of this project
due to time constraints.

6 CONCLUSION

In this work, we investigated the potential of DenoMamba
as a novel approach to low-dose CT denoising and evalu-
ated its performance compared to the current SOTA meth-
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Fig. 8. Visual comparison of denoised low-dose CT scans by 8 reconstruction algorithms (sample 500) compared to ground truth.

ods. The results indicate that DenoMamba achieves com-
petitive performance, outperforming several established de-
noisers in key metrics such as PSNR and SSIM. However,
assessing its true impact also requires more comprehensive
comparisons to other DL-based denoisers, some of which
are not CNNs but rather are transformers or generative
adversarial networks as well [15], [16], [22].

From a computational performance perspective, the
computational feasibility of DenoMamba plays a pivotal
role in its potential for real-world application. While its
training demands are quite high, its inference speed sug-
gests it could integrate into clinical workflows with appro-
priate hardware support. Still, further optimization may be
necessary to reduce resource costs without compromising

performance. Although we did not set out to evaluate train-
ing or inference speed, our implementation DenoMamba
took roughly 18 hours to train and over 24 hours to evaluate
on 1000 samples. By comparison, RED-CNN took roughly
40 minutes to train and approximately 2 hours to evaluate
the same samples.

Importantly, the impact on patient outcomes by reducing
radiation exposure cannot be overstated. DenoMamba and
other low-dose CT reconstruction algorithms are necessary
for continuing to improve safety in medical imaging, partic-
ularly in vulnerable populations.

Future work exploring additional denoisers and hybrid
models may also yield valuable insights. By integrating
advanced optimization strategies such as ADMM and lever-
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Fig. 9. Visual comparison of denoised low-dose CT scans by 8 reconstruction algorithms (sample 0) compared to ground truth.

aging emerging architectures like state-space models and
transformers, we may continue to advance the medical
imaging field by enhancing both the quality and efficiency
of low-dose CT reconstruction such that it becomes the new
standard-of-care for CT imaging, ultimately enabling safer,
more accurate diagnostic imaging for patients worldwide.
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