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Abstract—Static 3D head avatars are essential for augmented reality (AR), virtual reality (VR), and gaming applications, yet achieving
high fidelity and efficient initialization under lightweight setups remains challenging. Gaussian Splatting has proven effective for general
scene representation, but it struggles with robust initialization and fidelity when modeling smooth human head geometries. To address
these challenges, we propose a hybrid approach that combines random point initialization guided by head avatar masks with iterative
point refinement through addition and pruning, thereby eliminating reliance on Structure-from-Motion (SfM). For rendering, we enhance
Gaussian Splatting by integrating a fully connected neural network inspired by NeRF to predict Gaussian attributes such as color and
opacity from encoded spatial features. This integration achieves smoother transitions and slight improvements in rendering fidelity,
addressing some of the known limitations. Experiments on the RenderMe-360 dataset demonstrate that our approach provides modest
but meaningful advancements in quality and efficiency for lightweight static head avatar modeling and novel view synthesis.

Index Terms—Static 3D Head Avatars, Gaussian Splatting, Novel View Synthesis
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1 INTRODUCTION

S TATIC 3D head avatars are crucial for applications in
augmented reality (AR), virtual reality (VR), gaming,

and digital telepresence, offering immersive and interac-
tive experiences. While Neural Radiance Fields (NeRFs) [1]
excel in novel view synthesis, their reliance on implicit
representations and dense neural networks makes them
inefficient for real-time rendering. 3D Gaussian Splatting
(3DGS) [2], an emerging alternative, utilizes explicit point-
based representations to enable faster training and render-
ing with a lightweight and continuous structure. However,
applying Gaussian Splatting to static head avatar modeling
faces challenges in initialization and in representing smooth
human head geometries.

Dynamic head avatar modeling has seen significant
progress, but many existing approaches [3], [4], [5], are
not well-suited for static, high-fidelity 360-degree novel
view synthesis. These methods often prioritize animated
expressions and real-time flexibility, which may come at the
expense of computational efficiency and generalizability for
static settings.

This project addresses these challenges with a
lightweight and robust framework for static head avatar
modeling. We propose a random point initialization method
refined through image masks to replace computationally
expensive techniques like Structure-from-Motion (SfM). For
rendering, we integrate a hash-encoded neural network
inspired by NeRF to predict Gaussian attributes such as
color and opacity, enhancing rendering fidelity and address-
ing artifacts like popping and floating points. Our method
achieves a balance between quality and computational effi-
ciency, making it practical for novel view synthesis tasks.

The contributions of this work are as follows:
• Proposed a novel random point initialization method

with mask-based refinement for static head avatars,
replacing the reliance on SfM.

• Integrated a NeRF-like neural network to improve qual-
ity for unseen views and address Gaussian Splatting

artifacts like popping and floating effects.
• Demonstrated the practicality and efficiency of the ap-

proach for 360-degree novel view synthesis of static
head avatars.

Code is available:
https://frankjc2022.github.io/static-head-avatar/.

2 RELATED WORK

Recent advancements in head avatar modeling have primar-
ily focused on dynamic representations, addressing chal-
lenges such as expression animation and real-time render-
ing. Several notable methods have emerged in this domain,
each offering unique contributions and limitations relevant
to our task of static head avatar reconstruction.

MonoGaussianAvatar [3] utilizes a point-based initial-
ization strategy tailored for monocular portrait videos. This
method places points on a sphere surrounding the subject,
simplifying initialization while effectively handling portrait
setups. By leveraging temporal consistency in monocular
videos, MonoGaussianAvatar achieves robust geometry rep-
resentation for dynamic facial movements. However, its de-
sign inherently limits its applicability to monocular portrait
setups, as the point-based sphere initialization does not
generalize well to multi-view setups. Additionally, while it
captures complex geometries such as hair and accessories,
it cannot handle full 360-degree coverage required for novel
view synthesis across static head avatars.

Gaussian Head Avatar [4] builds on Gaussian Splatting
by employing Signed Distance Functions (SDF) and Deep
Marching Tetrahedra (DMTet) [6] for high-precision initial-
ization. This strategy generates detailed 3D head representa-
tions, including intricate facial features and smooth surfaces,
making it suitable for high-fidelity animated expressions.
Gaussian properties, such as color and opacity, are predicted
using a multi-layer perceptron (MLP), ensuring realistic
appearance even in dynamic scenarios. Furthermore, an

https://frankjc2022.github.io/static-head-avatar/
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Fig. 1. The overview of the whole pipeline. The process begins with a randomized initial point cloud refined using image masks. An MLP with hash-
encoded positions predicts the color and opacity of the Gaussians. The remainder of the process follows the original Gaussian Splatting pipeline.

additional MLP models deformation fields, allowing ac-
curate representation of expression-dependent changes in
geometry. This pipeline excels at capturing fine details,
such as accessories, hair, and other non-facial structures,
due to the robust initialization and deformation modeling
provided by the SDF and DMTet frameworks. However,
the computational demands of this approach are significant,
and its primary focus is on dynamic animation rather than
static, full 360-degree novel view synthesis of head avatars.
This makes it less optimized for applications that prioritize
static modeling over dynamic flexibility.

PSAvatar [5] introduces a point-based morphable shape
model designed for real-time high-fidelity head avatar ani-
mation. By utilizing discrete geometric primitives, PSAvatar
effectively models complex geometries such as eyeglasses
and hairstyles, addressing limitations of traditional 3DMM-
based methods. It employs 3D Gaussian representation for
fine detail modeling and high-fidelity rendering, enabling
detailed reconstructions of surface-like and intricate struc-
tures. However, PSAvatar primarily focuses on expression-
dependent deformations and real-time animation. While it
achieves impressive fidelity and real-time performance for
dynamic expressions, it lacks comprehensive support for
static 360-degree novel view synthesis, limiting its applica-
bility in scenarios requiring detailed reconstructions of non-
visible regions, such as the side of the head or accessories
beyond facial regions.

3 PROPOSED METHOD

The pipeline for reconstructing static head avatars is illus-
trated in Fig. 1, including point cloud initialization, color
and opacity prediction, and the Gaussian Splatting pipeline.
The goal is to reconstruct a static 3D head avatar from a
set of multi-view RGB images of a subject. Our method
introduces two main improvements to 3D Gaussian Splat-
ting. First, we replace the reliance on Structure-from-Motion
(SfM) techniques like COLMAP for initial point cloud gen-
eration with a random point initialization approach refined
using image masks. Second, we enhance the Gaussian at-
tributes’ prediction by introducing a fully connected neural

network combined with hash encoding for RGB color and
opacity.

3.1 Point Cloud Initialization

In the original Gaussian Splatting pipeline, SfM tools like
COLMAP are used to generate a point cloud. The positions
of the extracted points are used as Gaussian means, and
their RGB values initialize the spherical harmonic (SH)
coefficients for color. While effective, this process is compu-
tationally intensive and prone to failure when dealing with
smooth human head geometries. Our approach eliminates
the dependency on SfM by introducing a random point
initialization method refined using image masks.

To initialize the point cloud, we randomly sample 50,000
points within a cube centered at the calculated scene center,
with the edge length determined by the scene’s radius. Both
the center and radius are derived from the training camera
parameters. The sampled points are projected onto the 2D
image plane and filtered based on their inclusion within a
provided mask, which is generated using BackgroundMat-
tingV2 [7]. Points outside the mask are pruned, and new
points are iteratively resampled and reprojected until the
final set is fully contained within all masks. This iterative
refinement ensures a robust 3D representation of the head,
capturing complex features such as hair, shoulders, and
accessories. The illustration of this process is shown in
Fig. 2. The process completes within seconds, bypasses the
limitations of SfM by not relying on key point detection
across images, and provides a robust initialization without
its computational overhead.

The remaining Gaussian properties—opacity, rotation,
and scale—are initialized following the conventions of the
original Gaussian Splatting method. However, unlike the
original approach, which uses the RGB color of the extracted
point cloud for initialization, our method assigns random-
ized colors to the points due to the lack of explicit color
information in the random sampling.
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Fig. 2. Illustration of the iterative process of pruning points on a cube
and refining them into the shape of a head using masks.

3.2 Color and Opacity Prediction
To predict Gaussian attributes, we replace the SH-based
method of the original Gaussian Splatting pipeline with
a neural network inspired by NeRF. This approach incor-
porates multi-resolution hash encoding from Instant Neu-
ral Graphics Primitives (NGP) [8] to efficiently encode
the Gaussian’s spatial positions into compact embeddings.
Hash encoding is particularly effective in representing high-
frequency details, allowing for efficient and accurate predic-
tions.

The neural network architecture consists of two stages.
In the first stage, a MLP predicts the opacity and a feature
vector based on the encoded spatial position, rotation, and
scale of the Gaussian. The second stage uses the predicted
feature vector, concatenated with the viewing direction,
to predict the RGB color through another MLP. The MLP
architecture for this process is illustrated in Fig. 3.

The neural networks are implemented using the Tiny-
CUDA-NN [9] framework, ensuring fast training and infer-
ence. The position encoding utilizes a hash grid with four
levels, eight features per level, a logarithmic hash map size
of 19, and a base resolution of 16. Both the opacity and color
networks feature two hidden layers with 64 neurons each,
ReLU activation functions, and specific output activations
(Sigmoid for opacity and linear for RGB color). The feature
vector size is 64 dimensions, balancing efficiency and qual-
ity.

This architecture addresses key artifacts of Gaussian
Splatting, such as popping and floating effects, and en-
hances the quality of unseen views in novel view synthesis.
By leveraging hash encoding and efficient neural networks,
our method achieves real-time rendering performance while
maintaining high visual fidelity.

4 EXPERIMENTAL RESULTS

Dataset and Preprocessing. We utilize the RenderMe-360
dataset [10], which offers comprehensive multimodal data
for each subject, including synchronous multi-view im-
age frames, audio, calibrations, and annotations. For our
experiments, we extracted 60 multi-view images at the
same frame ID along with corresponding masks generated
using BackgroundMattingV2. Each image, originally sized
at 2448×2048, was resized to 1600×1338 during training,
maintaining high resolution while reducing computational
overhead. Consistent with the original Gaussian Splatting
pipeline, we followed its train-test split strategy, using 52
views for training and 8 views for testing.

Point Cloud Initialization. We experimented with dif-
ferent numbers of initial points, testing 20,000, 50,000, and

Fig. 3. MLP architecture for predicting color (RGB) and opacity (σ) using
position (hash encoded), rotation, scale, and camera view direction (d)
as inputs. The intermediate output is a 64-dimensional feature vector
that encodes spatial and geometric properties of the input.

100,000 points. The configuration with 50,000 points pro-
duced slightly better results across the tested subjects. The
iterative pruning and projection process, ensuring all points
fall within the masks across all views, typically converges
within 500 iterations. However, we set a maximum of 1000
iterations to ensure completion. This process is highly effi-
cient, completing within seconds.

While this initialization method ensures robust cover-
age of the head geometry, its quality heavily depends on
mask accuracy. Deformable accessories or inconsistencies in
masks across views may result in missing regions in the
point cloud, as shown in Fig. 4. Nonetheless, the Gaussian
Splatting densification step compensates for missing parts
by generating additional points. Furthermore, our method
effectively eliminates floating points caused by inaccurate
masks in the original Gaussian Splatting pipeline. These
floating points, often resulting from the inclusion of non-
head regions in masks, are pruned during our iterative
refinement process, as demonstrated in Fig. 5.

Fig. 4. Effect of mask accuracy and deformable accessories on point
cloud initialization. Missing regions caused by mask errors or de-
formable elements are compensated by Gaussian Splatting densifica-
tion.

Impact of Random Initialization. Our random initial-
ization method addresses the limitations of SfM-based point
cloud generation, particularly for subjects where SfM fails.
However, inaccuracies in point placement—where some
points do not align with the geometry surface—introduce
artifacts during unseen view rendering, as shown in Fig.
6. These artifacts are propagated through the Gaussian
Splatting densification step, highlighting the importance of
accurate initial point distribution.

Despite these limitations, random initialization signif-
icantly reduces the number of Gaussians compared to
COLMAP-generated point clouds. The evenly distributed
random points efficiently cover the subject geometry, elim-
inating the need for densification in regions with insuffi-
cient initial points. For example, SfM often fails on smooth
surfaces like facial regions, leading to gaps filled through
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Fig. 5. Elimination of floating points caused by inaccurate masks in the
original Gaussian Splatting pipeline. Non-head regions included in the
masks are pruned during the iterative refinement process.

Fig. 6. Artifacts caused by random initialization, with points inside the
body instead of on the geometry surface, resulting in noticeable errors
in unseen views.

densification from nearby points. This process increases the
total number of Gaussians. In contrast, our method achieves
comprehensive coverage with fewer Gaussians, reducing
training time and enabling faster rendering, as shown in
Table 1, with higher FPS values.

Neural Network Design for Color and Opacity Pre-
diction. To ensure efficiency, we designed a fully connected
neural network with two hidden layers of 64 neurons each,
a common practice balancing complexity and performance.
For spatial encoding, we employed hash encoding with a
grid search of configurations on two subjects, testing 4 or 8
features per level, 4 or 8 levels, and a per-level scale of 1.5.
Minimal differences were observed, and the optimal con-
figuration of 4 levels and 8 features per level was selected.
Feature vector sizes of 32 and 64 were also tested, with 64
providing slightly better results.

Our network uses ReLU activation between layers and
sigmoid activation for opacity output, consistent with the
original Gaussian Splatting opacity model. No activation
function is applied to the RGB output. This network op-
erates on updated Gaussian properties, including position,
rotation, and scaling, immediately prior to rendering. Addi-
tionally, we removed the opacity reset step in the original
Gaussian Splatting pipeline since opacity is now predicted
directly by the neural network.

Strategy Comparison and Results. We performed
extensive comparisons to evaluate the impact of our neural
network on rendering quality, as well as its influence on
training time and performance. Four subjects were used for
testing, with configurations varying by:

Input Variations:
• Position only (similar to NeRF).
• Position, rotation, and scale combined.

Prediction Targets:
• Direct prediction of RGB color and opacity.
• Modifiers for SH coefficients (for color) and opacity

values.

Fig. 7. Comparison of color and opacity predictions without using ran-
dom point initialization. Top: Our method produces smoother predictions
compared to 3DGS in unseen views. Bottom: Our approach captures
finer details in unseen views, such as the gems, missed by 3DGS.

Prediction Scope:
• Predict color only.
• Predict opacity only.
• Predict both color and opacity.

The detailed comparison results are shown in Table 2.
Using SfM-based initialization, direct prediction of RGB
color and opacity with position, rotation, and scale as input
yielded slightly better rendering quality than other config-
urations. However, with random initialization, predicting
opacity only appeared to achieve better results compared
to predicting color or both color and opacity. This could be
due to the enhancement of opacity values for points that are
not accurately positioned on the surface geometry, which
improves the overall quality by reducing the visual impact
of poorly placed points.

The detailed comparison results for four subjects are
shown in Table 1, evaluating four methods: the original
3DGS, 3DGS+MLP (using full input of position, rotation,
and scale to directly predict color and opacity), random ini-
tialization, and random initialization + MLP prediction. Ad-
ditionally, the visual comparison for these methods across
the four subjects is illustrated in Fig. 8, highlighting qualita-
tive differences in rendering quality, particularly in unseen
views.

As shown in Table 1, random initialization with masks
achieves the highest FPS, significantly outperforming the
original 3DGS, and also demonstrates the fastest training
times. This method results in fewer Gaussians—nearly half
compared to the original 3DGS. This reduction is due to
our initialization points evenly covering the geometry of the
face, unlike SfM-based initialization, which fails to extract
points on smooth surfaces such as facial regions. Conse-
quently, the original 3DGS relies on densification (cloning
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Fig. 8. Comparison of ground truth images from training views and test views across different methods: original 3DGS, 3DGS with our MLP
prediction, random point initialization, and random point initialization with MLP prediction.
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TABLE 1
Comparison of methods on rendering quality, training time, and performance across four test subjects.

Method Subject 1 Subject 2

SSIM↑ PSNR↑ LPIPS↓ FPS Train # Gauss. SSIM↑ PSNR↑ LPIPS↓ FPS Train # Gauss.

3DGS 0.9211 22.6394 0.1035 182.3 0:56:50 453,940 0.9314 24.2927 0.0782 116.5 1:05:45 807,494
3DGS+MLP 0.9212 22.7136 0.1062 21.4 1:46:52 687,393 0.9306 24.1268 0.0831 17.3 2:18:37 1,078,950
Random 0.9156 22.2716 0.1124 270.4 0:51:35 247,139 0.9223 23.7712 0.0936 205.7 0:56:20 377,845
Random+MLP 0.9092 21.6873 0.1227 51.1 1:06:18 243,852 0.9159 23.3672 0.1007 40.5 1:13:45 312,940

Method Subject 3 Subject 4

SSIM↑ PSNR↑ LPIPS↓ FPS Train # Gauss. SSIM↑ PSNR↑ LPIPS↓ FPS Train # Gauss.

3DGS 0.9344 24.6257 0.0897 170.4 0:56:24 495,993 0.8727 22.5021 0.1127 159.3 0:59:43 554,340
3DGS+MLP 0.9340 24.3393 0.0948 18.5 1:48:16 824,544 0.8837 22.6146 0.1155 20.0 1:53:24 815,818
Random 0.9298 24.3231 0.0995 263.0 0:50:39 243,983 0.8598 22.1335 0.1295 232.2 0:58:41 309,872
Random+MLP 0.9304 24.1596 0.1017 53.9 1:03:47 222,757 0.8601 22.1613 0.1337 40.7 1:18:45 314,444

Fig. 9. Illustration of masked images and their impact on generated
results. The ground truth image misses deformable accessories due to
mask inaccuracies, as shown in the top column. However, the generated
images correctly include these accessories because they are present in
other images, though the inaccuracies in this image negatively impact
training and lower the calculated metric values.

and splitting existing points) to fill these gaps, increasing the
total number of Gaussians. However, the random nature of
our initialization means that points are not always correctly
aligned with the surface geometry, leading to lower overall
quality compared to SfM-based initialization.

It is also important to highlight the characteristics of the
four subjects in our dataset. Subject 1 contains deformable
accessories, while Subject 4 features shiny surfaces and
accessories, such as gems. In these cases, our MLP-enhanced
methods performed better than the original 3DGS, achiev-
ing higher fidelity in rendering fine details. Conversely, for
Subject 2 and Subject 3, which lack complex or reflective fea-
tures, the original 3DGS outperformed our method slightly.
This highlights that while the MLP method shows potential
for high-detail scenarios, its performance varies depending
on the subject’s characteristics.

The MLP-enhanced methods show slight improvements
in rendering fine details, particularly in unseen views, but
come at the cost of longer training times and reduced
rendering speed. As shown in the Table 1, FPS is signif-
icantly lower and training times are much higher due to

the involvement of neural networks. Additionally, the MLP
methods result in a higher number of Gaussians because the
neural network influences the original Gaussian Splatting
densification step to create more points, ensuring fine details
are represented more accurately.

In summary, while the random initialization approach
provides significant efficiency gains in terms of FPS and
training time, it sacrifices some rendering quality due to
the randomness of point placement. The MLP-enhanced
methods improve detail and quality in complex scenarios,
especially with shiny surfaces or deformable accessories, but
at the cost of reduced performance and increased training
overhead. These results underscore the trade-offs between
efficiency and quality in head avatar modeling, with the
choice of method depending on the specific application
requirements.

Observations and Limitations. Our experiments
showed that point clouds initialized with COLMAP consis-
tently achieved better quality than those generated through
random initialization. This result is expected, as random
points are not accurately aligned with the subject’s sur-
face geometry. However, random initialization allows us
to handle subjects where SfM fails entirely. Additionally,
the significant reduction in the number of Gaussians with
random initialization leads to faster training and higher FPS
values, offering a practical trade-off.

For images, we use masked images with the background
removed. This reduces the number of Gaussians required
for the background, which could otherwise add millions of
Gaussians, significantly increasing training and rendering
times. Since our focus is on the head avatar, removing the
background is both efficient and practical. However, this
process makes the ground truth images less accurate due
to mask inaccuracies, especially for deformable accessories
or elements like hair, as shown in Fig. 9. These inaccuracies
in the masked images, which are used to generate the 3D
head avatar, may introduce errors in the 3D head avatar
and affect the accuracy of evaluation metrics. This issue is
more pronounced for subjects with deformable accessories.

Finally, our approach demonstrated fewer artifacts in
unseen views for color and opacity prediction compared
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TABLE 2
Comprehensive comparison of neural network configurations on rendering quality, training time, and performance. The table evaluates variati ons
across input types (Position only vs. Position with rotation and scale), prediction strategies (Direct vs. Modifier for SH coefficients and opacity), and

prediction scopes (Color only, Opacity only, and both Color and Opacity). Results are reported for one test subject, highlighting the top three
values per metric: red (1st), orange (2nd), yellow (3rd). Training times are presented in hours, minutes, and seconds.

Initialization Input Type Prediction Task SSIM↑ PSNR↑ LPIPS↓ FPS Train # Gauss.

SfM (COLMAP) Position only Direct Color Only 0.9167 22.4095 0.1091 43.2 1:12:01 586,503
Opacity Only 0.9157 22.5662 0.1087 36.0 1:26:59 709,628
Color + Opacity 0.9168 22.5655 0.1095 21.8 1:45:24 711,292

Modifier Color Only 0.9158 22.5674 0.1090 34.2 1:21:31 619,143
Opacity Only 0.9205 22.6249 0.1066 50.5 1:05:58 461,292
Color + Opacity 0.9153 22.5575 0.1110 21.6 1:22:14 434,688

Position + R/S Direct Color Only 0.9176 22.5502 0.1068 38.2 1:14:08 613,178
Opacity Only 0.9161 22.6530 0.1079 32.1 1:27:44 712,826
Color + Opacity 0.9212 22.7136 0.1062 21.4 1:46:52 687,393

Modifier Color Only 0.9153 22.5229 0.1093 32.6 1:22:29 613,837
Opacity Only 0.9163 22.6085 0.1124 48.4 1:06:44 450,545
Color + Opacity 0.9170 22.6100 0.1105 28.2 1:26:05 419,684

Random (Mask) Position only Direct Color Only 0.9078 21.4516 0.1227 75.6 1:00:53 300,597
Opacity Only 0.9113 22.2256 0.1155 85.2 1:00:01 255,394
Color + Opacity 0.9107 21.9751 0.1214 53.9 1:06:37 243,442

Modifier Color Only 0.9069 21.7876 0.1212 66.0 1:03:15 284,708
Opacity Only 0.9140 22.1509 0.1158 95.6 0:55:15 217,653
Color + Opacity 0.9079 21.9493 0.1205 50.9 1:05:23 223,044

Position + R/S Direct Color Only 0.9099 21.6186 0.1210 70.3 1:00:04 308,336
Opacity Only 0.9111 22.2250 0.1161 86.4 1:01:46 224,450
Color + Opacity 0.9092 21.6873 0.1227 51.1 1:06:18 243,852

Modifier Color Only 0.9040 21.5487 0.1218 63.1 1:03:24 287,068
Opacity Only 0.9110 21.9271 0.1154 84.0 0:58:41 235,770
Color + Opacity 0.9067 21.9491 0.1200 50.8 1:05:34 215,934

to the original Gaussian Splatting pipeline, as shown in
Fig. 7. Note that this comparison focuses on the prediction
of color and opacity, not on random point initialization.
Random point initialization generally results in lower qual-
ity compared to accurate SfM point clouds. By leveraging
neural networks for color and opacity prediction, combined
with efficient initialization, our method effectively balances
rendering quality and computational efficiency for novel
view synthesis.

5 CONCLUSION AND DISCUSSION

In this work, we presented an improved pipeline for static
head avatar reconstruction using 3D Gaussian Splatting.
By introducing a random point initialization method re-
fined through image masks, we eliminated the reliance on
Structure-from-Motion (SfM) techniques, addressing chal-
lenges related to smooth human head geometries and failed
point extractions. This fast and robust approach ensures
comprehensive point coverage, including complex features
such as hair, shoulders, and accessories, while reducing the
number of Gaussians and improving rendering efficiency.
Additionally, we integrated a NeRF-inspired neural network
for predicting Gaussian properties like color and opacity,
utilizing hash encoding and Tiny-CUDA-NN to maintain
computational efficiency.

Our experiments demonstrated that while random ini-
tialization provides a practical alternative to SfM, it pro-
duces lower-quality results due to inaccuracies in point
positioning on the subject’s surface. However, the reduced

number of Gaussians accelerates training and rendering, of-
fering a compelling trade-off. Moreover, our neural network
configurations yielded slight improvements in rendering
fidelity, particularly in unseen views, compared to the orig-
inal Gaussian Splatting pipeline. The approach shows some
improvement in addressing artifacts such as floating points
and popping effects, though it comes at the cost of increased
rendering time due to the neural network predictions.

For future work, improving the random initialization
process to ensure points better conform to the subject’s
surface could significantly enhance rendering quality while
preserving efficiency. Additionally, fine-tuning the MLP
configuration and exploring optimizations for hash encod-
ing could help mitigate bottlenecks in rendering speed,
enabling a better balance between quality and performance.
By addressing these areas, we aim to advance static head
avatar modeling toward real-time, high-fidelity virtual rep-
resentations suitable for AR/VR and related applications.
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