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Abstract—Learning from a single instance, known as internal learning,
has enabled diverse image processing tasks by leveraging patch statis-
tics within a single image. Some deep generative methods, such as
SinGAN [1], have demonstrated the ability to learn single-image patch
distributions for tasks like super-resolution and image harmonization.
However, these methods primarily focus on sampling individual images
and do not address the challenge of generating consistent image se-
quences. In this work, we propose a novel training-sampling approach
for single-image multi-scale diffusion models that enables consistent
and joint sampling of image sequences. Our method bypass the tra-
ditional cascaded conditional super-resolution supervision by directly
learning a patch-level prior across all scales of the training image
parallelly in an image pyramid. At inference, we introduce a Laplacian-
recomposition sampling algorithm to enforce multi-scale consistency
and extend this framework to generate image sequences, such as infi-
nite zoom-ins. We demonstrate the effectiveness of our approach in both
single-image unconditional sampling and consistent image sequence
generation.

1 INTRODUCTION

A recurring theme in machine learning is to learn from a
large dataset of instances in an attempt to generalize. On
the other hand, there has also been extensive research in
learning from a single instance, a concept explored for
over two decades. Referred to as internal learning, it uses
only the patch statistics from a single instance, e.g., an im-
age, to accomplish various tasks. There are non-parametric
regimes that boil down to searching for nearest neighbor
patches within a single image using a distance metric like
L2 distance. For example, non-local means methods [2]
search for similar patches within an image and average
them to denoise it, and super-resolution can be achieved
by searching across image scales [3]. More generally, it has
been shown that any natural image contains an extensive
amount of patch recurrence [4], making the distribution
of small patches from a single image a favorable subject
of study. The concept of internal learning was later com-
bined with advancements in deep learning. SinGAN [1]
and InGAN [5] propose learning the patch distribution of a
single image using a type of generative model—generative
adversarial networks (GANs) [6]. In particular, SinGAN
demonstrated the ability to learn a patch level prior from
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Fig. 1. Some fractal-like image from natural world.

a single image, allowing for unconditional sampling from
that image. Furthermore, these methods replicated success
in tasks handled well by classical search-based methods,
such as super-resolution [1] and image retargeting [5], etc..

All previous internal learning methods, however, have
only studied sampling a single image (e.g., a denoised,
super-resolved, style-transferred, or harmonized image,
etc.) with the single-image prior. A question remains un-
resolved is: How can we sample a sequence of images,
jointly and consistently, from a single-image prior? To be
more specific, an exciting task, for instance, is learning from
a fractal-like image (some examples in fig. 1) that exhibits
patch recurrence at all scales, with the goal of sampling a
(pseudo-) infinite zoom-in sequence from it.

Previous single-image generative models could poten-
tially be adapted for this new problem setting of image
sequence sampling, but some problems exist. Following
SinGAN [1], GPNN and SinDDM [7], [8], and several other
works [9], [10], these methods are largely based on cascaded
conditional super-resolution, where the generative model
is supervised to conditionally and recursively scale up the
sample from the coarsest to the finest scale of an image.
Moreover, these methods do not inherently support generat-
ing a sequence of images in parallel. For tasks involving the
sampling of a sequence of images, this type of conditional
prediction within a single image (progressing over scales)
as well as across different images falls short in ensuring
consistency across images as well as preserving the patch
statistics at all scales for each sampled image.

We propose a new training-sampling of diffusion models
on a single image that enables consistent image sequence
sampling. Specifically, our approach can be discussed in
three stages. First, we learn the single image diffusion
model. To sample an image such that its overlapping small
patches are coming from the real distribution, our neural
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network is of very small receptive field. We learn this over
all-scales of the training image, by constructing an image
pyramid with some scale factor (e.g., 1/2) between every
two scales. Second, at inference time, we exploit the iterative
sampling nature of the diffusion model to make possible
jointly sampling frequency of all scales with consistency.
Specifically, we use Laplacian decomposition to take only
the corresponding frequency for each scale and from there
we reconstruct an image. This is done at every iteration
of the diffusion sampling. Last, we extend our sampling
technique to work for sequence of images, by further in-
corporating the structure of the problem. For instance, our
method makes sure that the sampled zoomed-in images are
consistent with the corresponding regions of the original
image. Overall, our contributions are several-folds:

• We explore the problem of extending single image
prior to tasks of image sequence sampling, e.g.,
zoom-in.

• We propose a simple learning framework for single
image patch-level prior of all scales.

• We design and experimented with our sampling
techniques to sample from our trained model that
can achieve great single image unconditional sam-
pling as well as joint and consistent sampling of an
images sequence.

2 RELATED WORK

Learning Single Image Prior. Several recent works have
demonstrated that generative modeling can be used to
capture the distribution of patches from a single image.
SinGAN [1] and InGAN [5] were the first to propose this
approach using generative adversarial networks (GANs) [6].
In particular, SinGAN shows results on unconditional sam-
pling, where the patch statistics at every scale in the sampled
image obey those of the training image. Furthermore, these
methods can be applied to various vision tasks, such as
super-resolution [1] and image retargeting [5], etc. Subse-
quently, researchers have explored other types of generative
models to replace GANs, including the use of diffusion
models in several recent works [8], [11], [12]. The works clos-
est to ours are [8], [11], [12], as they also employ diffusion
models for generative modeling. However, our method does
not require conditional super-resolution modeling across
scales of an image. Specifically, our method allows for
sampling different scales of an image, as well as sampling
a sequence of images, all in parallel. We also achieve high
consistency across images, while each sample still retains
faithful patch statistics at all scales. Most importantly, none
of these works explore using learned single-image prior to
sample a sequence of images, jointly and consistently.

Consistent Sampling From Diffusion Models. Diffu-
sion models [13], [14], [15], [16], [17] are a type of generative
model trained by denoising noise-perturbed data at dif-
ferent noise levels. During inference, samples are obtained
by iteratively denoising from random noise. This iterative
sampling nature is particularly favorable for jointly sam-
pling consistent content, as exemplified by many existing
works [18], [19], [20], [21], [22], [23]. MultiDiffusion [18]
and its variants [20], [23] consistently denoise overlapping
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Fig. 2. Learning patch prior for multiple scales.

spatial regions of a large image canvas to achieve sam-
pling mega-pixel images from a diffusion model trained on
much smaller resolutions. DiffCollage [19] explores consis-
tent sampling from general factor graphs, enabling more
downstream applications with different structured proba-
bilistic graphs. Generative Power of Ten demonstrates fas-
cinating zoom-consistent sequence sampling from a large
text-conditioned model, while [22] applies a similar idea
to sample hybrid images perceived differently at varying
viewing distances. Our sampling techniques are based on
this line of work. In particular, we are largely inspired
by Factorized Diffusions [22] for our single unconditional
sampling and Generative Powers of Ten [24] for the zoom-in
application. However, while these works explore diffusion
priors trained on large internet-scale datasets, our diffusion
prior is focused on a single image, at a patch level.

3 METHOD

3.1 Training Diffusion Models on Multi-scale Patch Dis-
tributions

Objective. Given a single image x ∈ RH×W×C , there is a
collection of small P × P patches that forms a dataset of
interest, D = {p(i)}i with p ∈ RP×P×C . This provides us
with an empirical distribution pD(p) = 1

N

∑
i δ(p − p(i)).

Our goal is that at inference time, a sampled image xsample
contains its collection of all P × P patches sampled from
pθ(p) ≈ pD(p), where pθ(p) is a learned distribution
parametrized by θ.

We want to capture patch statistics from multiple scales
in order to unconditionally sample a single image. The
intuition is that for the same patch size P , the small P × P
patches at the coarse scale of the image represents the layout
and structure, while the P × P patches at the fine scale of
the image captures the textures. In order to unconditionally
sample an image, we are required to capture all-scale patch
distribution of the original image. Specifically, given a single
image x, we construct an image pyramid {xs}N−1

s=0 with
some relative scale factor ρ between two consecutive scales,
e.g., ρ = 1/2, where xs=0 = x. Each scale now has a
corresponding patch distribution to be learned.

Diffusion models. We use Diffusion models [13], [14],
[15], [16], [17], [25] for this generative learning task. In
the plain formulation of diffusion models [25], the forward
process adds different amount of noise t ∈ [0, 1] to the clean
signal x ∼ pD(x) and create a noisy signal xt = αtx+ σtϵ,
where ϵ ∼ N (0, I) and the variance-preserved schedules αt,
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σt are smooth functions chosen such that α0 = σ1 = 1 and
α1 = σ0 = 0. Then, a neural network denoiser xθ is trained
to reconstruct the clean signal, given the noisy image and
the scale of noise. Specifically, the training objective is

Ex∼pdata,t∼U(0,1),ϵ∼N (0,I)

[
wt∥xθ(αtx+ σtϵ, t)− x∥22

]
, (1)

where the wt is some weight depends on the noise level t. At
inference time, one first sample from the prior distribution (a
gaussian noise) x1 and use the trained denoiser xθ with an
ODE/SDE sampler to iteratively get a clean sample x0 = x.

Neural network architecture for denoiser xθ . To capture
the distribution of patches, instead of explicitly gather patch
datasets, we use a convolutional neural network of small
P × P receptive field on an entire image x ∈ RH×W×C .
Specifically, our first convolutional layer has a kernel size
P × P and all the later convolutional layers use a kernel
size 1× 1. We apply the forward process to the entire image
and the objective used is to reconstruct the clean image
with the objective in eq. (2). We claim that this achieves
the objective stated, i.e., if we use this trained denoiser to
iteratively denoised an image canvas starting from noise,
the collection of overlapping patches are sampled from the
desired P × P patch distribution from the clean image x.

Our diffusion training scheme. We adopt this described
CNN as our denoiser for patch distribution learning. Since
we learn from multi-scale dataset, our denoiser xθ(xs,t, s, t)
is then additionally conditioned on a scale signal s ∈
{0, . . . , N − 1}. In a training iteration, we randomly sample
a pair of scale signal and the image at that scale (s,xs) with
s ∼ Unif{0, . . . , N−1} for gradient decent. So the modified
training objective is

Ex∼pdata,s∈Unif{0,...,N−1},t∼U(0,1),ϵ∼N (0,I)[
wt∥xθ(αtxs + σtϵ, s, t)− xs∥22

]
. (2)

The full training algorithm is in algorithm 1. Our training
algorithm is simple, where each scale condition captures
the patch distribution at only the correponding scale. If one
iteratively sample a image for each scale, respectively, it is
expected that these images each only captures a certain scale
patch distribution (see fig. 2). In the next section, we discuss
how to sample a image with all-scales patch distributions.

Algorithm 1 Training
1: repeat
2: s ∼ Unif{0, 1, ..., N − 1}
3: t ∼ U(0, 1)
4: ϵ ∼ N (0, I)
5: Take gradient descent step on
6: ∇θwt∥xθ(αtxs + σtϵ, s, t)− xs∥22
7: until converged

3.2 Unconditional Single Image Sampling

We propose a sampling technique to communicate and
seemlessly combine the patch distribution sampled from
all scales at every sampling iteration, and thus the goal of
unconditional image generation.

(2) Lap. Decomp. (3) Recomp. (4) Lap. Recon.(1)

Fig. 3. The laplacian “re-composition” algorithm described in section 3.2,
used in every iteration of diffusion sampling.

Commonly, with a denoiser xθ trained, at some iteration
of a diffusion sampler, e.g., ddpm [14], starting at a noise
level t and stepping by ∆t, we have

x̂t ← xθ(xt, t) (3)
xt−∆t ← DDPM-UPDATE(x̂t,xt,∆t) (4)

where x̂t is the prediction of clean image x0 at noise level
t, and the updated xt−∆t is just an linear interpolation
between x̂t and xt with a small noise added as a result of
ddpm update. Here, note that this x̂t in prediction space
is agnostic to the diffusion parametrization and can be
obtained in, e.g., the noise ϵ-parametrization [14] and veloc-
ity v-parametrization [26], via a simple re-parametrization
calculation.

Considering that these x̂t predictions can be thought of
as blurry approximations of the clean image x0, we can
apply meaningful image operators as if we were working
with clean images. Based on this insight, our Laplacian
recomposition algorithm, at every step of diffusion sampling,
performs the following steps (illustrated in fig. 3): (1) a pre-
diction space pyramid {xs,t}N−1

s=0 is given by querying the
denoiser individually for each scale from the last iteration,
(2) decompose each scale into a Laplacian pyramid [27],
(3) extract only the highest-frequency Laplacian layer from
each scale (except for the coarsest scale, which retains the
original image), and use these to recompose a new Laplacian
pyramid, and (4) finally reconstruct the pyramid to produce
the updated predicted pyramid {xs,t}N−1

s=0 . Subsequently,
the DDPM update is performed on this updated pyramid for
each scale individually. Intuitively, this algorithm isolates
the highest frequencies captured at each scale (those not
captured by coarser scales) and combines them using a
straightforward Laplacian reconstruction. The full sampling
algorithm is provided in algorithm 2.

Algorithm 2 Unconditional Single Image Sampling

1: {xs,t=1}N−1
s=0 ∼ N (0, I) ▷ initial a noise pyramid

2: {x̂s,t=1}N−1
s=0 = {0}N−1

s=0 ▷ initial “predicted” pyramid
3: for t in finite step sampling schedule do
4: for s = 0, . . . , N − 1 do
5: x̂s,t = xθ(xs,t, s, t)
6: end for
7: {x̂s,t}N−1

s=0 = LAPLACIAN-RECOMP({x̂s,t}N−1
s=0 )

8: for s = 0, . . . , N − 1 do
9: xs,t = DDPM-UPDATE(x̂s,t,xs,t, t)

10: end for
11: end for
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Fig. 4. Illustration of the zoom-scale space with diagonals consistency.

3.3 Zoom-in Sequence Sampling

Our formulation can also easily extend to sample a sequence
of images. We show how to sample a zoom-in sequence of
images. Suppose we are dealing we zoom-in by some factor
every time, we denote the sequence of M zoom levels as
x(0), . . . ,x(M−1). Note that by definition, these zoom levels
should have a consistency across different scales of different
zoom levels. For example, the central crop of the scale 0 of
the zoom 0 should be consistent with the scale 1 of zoom 1,
and so on. And this zoom consistency can be illustrated in
a zoom-scale space, where all the diagonals has a chain of
consistency (see illustration in fig. 4).

We will enforce this consistency by simple averaging the
crops on the diagonal and replace them with the averaged
results in the x̂-prediction space, and we apply this at every
iteration. During each iteration, this consistency constrain
is imposed first, then the laplacian recomposition for each
zoom level, respectively.

4 EXPERIMENTS

4.1 Unconditional single image generation

We unconditionally sample individual images from the
single image prior according to the technique described in
section 3.2. Specifically, we set the relative factor between
two scales to ρ = 1/2 and we trained the single image prior
on mostly images of resolution 250 pixels on the longer side.
We construct a pyramid for 4 scales and set the receptive
field to be P = 11 so that the coarsest scale is around twice
as large as the receptive field. We set batch size to be 16 over
t ∼ U(0, 1) once a scale s is chosen. Our denoiser comprises
of around 4×106 parameters, We train the model for 3×105
steps, which takes around 12 hours on a A6000 gpu.

Results. We show results for several images in fig. 5.
These sampled images are uncurated and share patch distri-
butions of the original images. However, it lacks some high
frequency details and contain some regions of blurriness.
We also compare ours with a baseline method [8] in fig. 6.
And in terms of the visual fiedlity the baseline seems to
perform better. However, we expect our algorithm can work
better with some other improvements. It is very excited to
see for the first time a method not using conditional super-
resolution supervision during the training can work almost
on par with those using, and our training algorithm is much
easier not modifying the original diffusion models training
at all.

4.2 Zoom-in sequence generation
We use the algorithm specified in section 3.3. The model
is trained the same way as specified in section 4.1 Specif-
ically, we choose the zoom factor to be the inverse of the
relative factor 1/ρ = 2. We test our method on fractal-like
photographs and expect to get every zoom level looks like
the original image and with the perfect zoom-consistency.

Results. Our sampled zoom sequence, shown in fig. 7
though have perfect zoom-consistency due to the nature of
the sampling algorithm, each zoom level does not look like
the original image in terms of frequency spectrums.

5 CONCLUSION

We propose a newly proposed training-sampling techinique
for diffusion models that is trained on a single image.
We also enable image sequence sampling such as zoom-
in sqeuence. We experimentally found that even without
the conditional super-resolution supervision, we could still
do unconditional image generation with high fidelity. We
also experimented on the zoom-in sequence sampling with
a sampling algorithm proposed.

Limitations. Our single image unconditional generation
results are not as good as some other baseline methods. Our
zoom-in sequence sampled are of low fidelity.

Future works. We will improve our single image un-
conditional generation quality as well as the zoom-in se-
quence sampling. Primarily, we need to study why some
high frequency details are not captured and why regions of
blurs occurs, which almost looks like some disagreements
of overlapping patch generations. We will also explore
other consistent sampling task and not restricted to only
“sequence”, but any collection of contents, e.g., trained two
single image diffusion priors and mixing the two together.
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Fig. 5. Comparison between real images and sampled images uses the consistent sampling technique described in ??.
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Fig. 7. Zoom in sequence sampling with 5 zoom levels for two fractal-like photographs.


