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Abstract—Computer-generated optical illusions represent an intriguing area of research, reaching beyond straightforward image
generation and accordingly providing a basis for the analysis of perception in generative models. This study aims to explore the abilities
of diffusion models to produce artwork in the form of illusions and reveal correlations between machine-generated and human-made
art. A semi-automated evaluation pipeline preprocesses illusions generated from a pre-trained diffusion model at a large scale,
followed by a manual qualitative analysis. Additionally, the conceptual and computational limitations of the existing approach are
explored through the implementation of additional transformation types and an ablation study of parallel denoising.
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1 INTRODUCTION

R ECENT years have seen a considerable upturn in the use
of text-to-image generation with popular models such

as Imagen and DALL-E seeing widespread application [1–
6]. Images synthesised from a natural language input can be
utilised for data visualisation, image editing, and evidently
for creative expression or ”AI art”. This growing demand for
machine-based image generation raises questions regarding
its similarity to human-made art as well as ethical implica-
tions of its application [4].

Diffusion models are a subtype of image generation
models that produce an image by starting with a sample
from a Gaussian noise distribution and iteratively denoising
it to approximate an instance from the target distribution
[7, 8]. The focus of this study is to examine the relationship
between perception in diffusion models and human percep-
tion.

The task of clear-cut image generation has been subject
to extensive research and noteworthy results have been
accomplished in this field [9]. A more rigorous test of the
capabilities of diffusion models lies in the generation of
optical illusions, which engage with the viewer’s perception
and more closely resemble the inspired talent of an artist
[10].

Geng et al. propose a methodology for creating optical il-
lusions using a pre-trained diffusion model. Their approach
involves estimating the noise corresponding to two or more
target images under specified image transformations and
subsequently averaging these estimates. Resulting images
depict different targets depending on the transformation
from which they are viewed [7]. These illusions present an
opportunity for analysing the differences and similarities of
perception in humans and artificial intelligence.

Besides evaluating the analogy of AI art and human art,
this study aims to explore the boundaries of applicability
and performance of the method proposed by Geng et al.

Fig. 1: Example of a visual anagram. Input configuration
consists of targets people at a campfire and an old man with
style oil painting under transformations identity and flip.

One such exploration is the addition of elaborate trans-
formations. For this purpose, two new transformations, a
colour channel permutation and a non-cardinal rotation, are
implemented and probed.

The investigation of performance limits involves mod-
ifying the model architecture so that denoising is directed
towards a single target at each step, with targets alternating,
rather than averaging parallel noise estimates. This aspect
is addressed in the original work, but the present study
aims to further explore the effect of this modification on
time complexity and quality of the resulting illusion.1

2 RELATED WORK

Visual anagrams or multi-view optical illusions is the name
that is given by Geng et al. to images which depict differ-
ent targets depending on the transformation under which
they are viewed [7] (see Figure 1 for an example using

1. The source code is publicly available at https://github.com/
flaviamacovei/visual anagrams



2

Fig. 2: Visual anagrams algorithm. All transformations are
denoised simultaneously and their estimates averaged, re-
sulting in a unified noise estimate at each inference step.

the identity and flip transformations). The authors present
a model that generates these illusions by leveraging an
adapted pre-trained diffusion model. At each inference step,
the model evaluates the noise within the context of every
specified transformation. These individual estimations are
then inverted back to identity and combined through av-
eraging, yielding a unified result for that step. Repetition
of this parallel denoising method results in an image that
resembles each specified target under the corresponding
transformation.

Transformations provided by the authors include ro-
tations and flips, skews, so-called poly-morphic jigsaws
with more than one solution, and image negation. For a
transformation to be deemed valid within this framework,
it must satisfy the criteria of linearity and statistical consis-
tency. That is to say, if a transformation v(.) of an image
x can be expressed as Ax for an orthogonal matrix A, the
transformation is suitable.

The authors demonstrate that this model excels in pro-
ducing high-quality illusions across a diverse range of trans-
formations. One plausible cause is a fundamental similarity
of perception in generative models and humans. It is stated
that ”generative models may process optical illusions in a
way similar to humans”, drawing on research performed
on convolutional neural networks [10], generative classifiers
[11], and large vision-language models [12].

From a quantitative standpoint, the success of an illusion
is measured with the so-called alignment and concealment
scores derived from the score matrix provided by CLIP
[7]. CLIP or Contrastive Language-Image Pre-training is a
method for image representation learning which at infer-
ence time can be used for predicting the probability of
specified captions given an image [13, 14]. In the present
context it is used to compute a score matrix S ∈ RN×N

where each entry represents the normalised probability of a
particular caption (or target) belonging to a particular image
(or transformation):

Sij = ϕimg (vi(x))
⊤
ϕtext(pj),

where x is the image, vi one of the N transformations
applied to it, and pj one of the N text prompts. ϕimg and
ϕtest are the CLIP visual and textual encoders, respectively.

This study enhances the evaluation framework by incor-
porating metrics and establishing relationships that directly
correlate with observed errors. This facilitates a more de-
tailed exploration of types and causes of errors, building
upon the underlying insights provided in the original work.

3 PROPOSED METHOD

When reviewing the characteristics of machine generated
content, a quantitative analysis can give insights into the
efficiency and accuracy of a method in the form of statistical
data. Yet for a creative task such as image generation,
empirical metrics alone can not be relied upon to correctly
illustrate output quality in every instance. Therefore a com-
bination of quantitative and qualitative analysis can offer a
more accurate representation [13].

The capacity of generative models to produce content at
scale and with relative efficiency can be utilised in a quan-
titative evaluation step, where outputs are systematically
preprocessed. Subsequent interpretation of the preprocessed
data is carried out manually, introducing a qualitative view
of the results. This approach is employed both for negative
evaluation, to detect errors, as well as for positive evaluation
of more complex generation tasks, to identify successful
outputs. In particular, this constitutes a means for assessing
the applicability of the colour channel permutation and
non-cardinal rotation transformations. Figure 3 illustrates an
overview of the evaluation pipeline.

With respect to computational efficiency, the feasibility of
an alternating approach, rather than the current averaging
method, is previously considered in the original work. The
authors conclude that this method reduces output quality,
especially for more elaborate generation tasks. This study
deviates from the strict separation of the two approaches
and endeavours to find a combination which balances sam-
pling time and performance level.

Semi-Automated Evaluation Pipeline

Prior to conducting any evaluation, it is essential to de-
fine the criteria which distinguish successful illusions from
unsuccessful ones. The following evaluation metrics build
upon the metrics proposed in the paper by Geng et al.

Evaluation Metrics

Aligning prompts and transformations in the score matrix
with their input order in the generator, a successful illusion
is defined by large diagonal values in S and small off-
diagonal values. Intuitively, this indicates that each trans-
formation accurately depicts its corresponding target and
suppresses other specified targets. The following metrics
serve for a numerical interpretation of these characteristics:

The alignment score A measures the degree of association
between corresponding transformation-prompt pairs:

A(x) = min diag(S).

A high alignment implies that each target is well discernible
in its respective transformation.

The concealment score C also accounts for off-diagonal
values and is calculated as follows:

C(x) = 1

N
tr

(
softmax

(
S

τ

))
where τ is the temperature parameter of CLIP. As a result,
a higher concealment score indicates the suppression of
undesirable targets when compared with the observation of
the named target.
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Fig. 3: Structure of the semi-automated evaluation pipeline. Input configurations comprising N prompts, N transforma-
tions, and a style are processed by the generative model to produce an illusion. The score matrix of the generated image is
computed using CLIP. In the negative evaluation mode, configurations are filtered based on threshold values for C(x)/A(x)
and D(x) to identify errors. Conversely, in positive evaluation mode, configurations are filtered using thresholds for A(x),
C(x), and D(x) to detect successful illusions. In both modes, automated preprocessing is followed by a manual analysis for
further interpretation.

Finally, an additional metric is introduced within the
scope of this study. The dispersion score D measures the
variation in the most likely target across all transformations:

D(x) =
1

N
Var (argmax (Si∗))

where Si∗ is the i-th row of S. Contrary to the concealment
metric, this score disregards the index of the most likely
target so long as the indices are dispersed. Simply put, a
low dispersion score suggests the domination of one target
across multiple transformations. This metric is in particular
associated with the dominant synthesis error.

Negative Evaluation

The primary objective of this study is to identify the similar-
ities between perception in diffusion models and in humans.
Analyzing the failure cases of the model proposed by Geng
et al., particularly the input configurations that result in
unsuccessful illusions, offers valuable insights into patterns
of discordance between machine-generated and human per-
ception.

The first step of the negative evaluation pipeline consists
of automated preprocessing. An input configuration com-
prised of N prompts, N transformations and an image style
is passed into the model. The score matrix and A, C, and
D scores are computed for the generated image. The con-
figuration is flagged as erroneous if the values determined
by C(x)/A(x) and D(x) fall behind specified thresholds,
which are determined through manual experimentation.
This process is repeated for each combination of prompts,
transformations and styles drawn from predefined lists until
all possible configurations with N ≤ 4 have been evaluated.

The components of a configuration can be viewed as
features of the resulting illusion and accordingly, the above
described procedure produces a characterisation of the con-
ditions that lead to unsuccessful outcomes. A manual in-
spection of these results reveals patterns related to features
or feature combinations that exhibit a heightened suscep-
tibility to errors, as well as those that appear to mitigate
them. These patterns offer insights into the characteristics

of perception in diffusion models and serve as a basis for
interpretation.

Positive Evaluation

Similarly to the error detection method, the evaluation
pipeline can be used to identify successful illusions by
adjusting the flagging condition. A result is considered
successful when its alignment, concealment and dispersion
score exceed predefined threshold values. A method for
filtering successful configurations is particularly beneficial
when analysing more complex inputs. For configurations
incorporating the newly introduced colour channel permu-
tations, non-cardinal rotations, or involving three or more
transformations, the space of successful illusions is antici-
pated to be sparse. In such cases, the positive evaluation
pipeline functions as a semi-automated mechanism for sys-
tematically exploring this constrained space.

Colour Channel Permutations

In the original work by Geng et al., transformations chiefly
involve repositioning pixels to alternative locations within
the spatial domain of the image. An exception is the negation
transformation, in which pixel values are multiplied by −1
to produce the negative of the image. This transformation
represents a type of illusion where diffusion models have
the potential to surpass human artists in executing the same
task, as visualising an image negative is inherently more
challenging than a spatial transformation.

The rearrangement of the colour channels follows a sim-
ilar intention by preserving pixel location and only altering
their colour information. The validity of this transformation
is conditioned on its linearity and statistical consistency:
An image can be regarded as a three-dimensional tensor
x ∈ RH×W×3 where H and W are height and width respec-
tively and the final dimension defines the colour channels.
A colour channel permutation can be expressed as

vcc permute(x) =
(
Px⊤

)⊤
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where the inner transposition converts x to a 3 × H × W
tensor and the outer transposition converts the result back
to the original dimensions of H ×W × 3. The permutation
is performed by multiplying x⊤ with an orthogonal permu-
tation matrix P ∈ R3×3 that rearranges the colour channels.
Given that both transposition and multiplication operations
are linear and P is orthogonal, it follows that the permuta-
tion of colour channel constitutes a valid transformation.

In practice, this type of transformation is implemented as
a permutation to blue-red-green and one to green-blue-red.
It is presumed that experimentation with two transforma-
tions is sufficient to ascertain the merit of the concept.

Non-Cardinal Rotation

Early experimentation with three transformations, specif-
ically identity, 90 ◦clockwise rotation and 180 ◦rotation led
to the observation that a difference of 90◦ between two
rotations may not be sufficient to promote distinct targets.
This motivated the implementation of a 120 ◦rotation and a
240 ◦rotation transformation, in the expectation that a greater
degree of separation between the transformations facilitates
more specific synthesis.

Because the diffusion model operates within a square
layout, rotations of 120◦ or 240◦ disrupt this framework, re-
sulting in invalid images. To address this limitation, images
are first masked into a circular shape before applying the
transformation.

The resulting transformation can be considered valid, as
it bears similarities to the 45 ◦inner circle rotation described in
the original study. This transformation is associated with an
error known as correlated noise, suggesting that a similar er-
ror may arise with the newly implemented transformation.

Alternating Denoising

In its current configuration, the model estimates the noise
for all transformations and targets at each inference step. It
is established by Geng et al. that an alternating approach
diminishes output quality, an observation that is based on
experimentation with a prototype which does not fully
capitalise on the potential of this concept [7]. While the
observed reduction in quality concurs with the findings
of the present study, the conclusion omits any effects that
this concept has on sampling time. This evaluation seeks to
either support or challenge this insight by incorporating the
factor of complexity into the analysis.

Instead of performing all N estimates and disregarding
all but one, the modified model selects the appropriate
target and transformation for the current iteration and per-
forms a singular noise estimation.

In order to find a balance between quality of the illu-
sions and computational cost, a hybrid approach of alter-
nating and averaging is implemented. A sampling process
consisting of K inference steps in total is divided into a
first stage of alternating comprising the first ℓ steps and a
subsequent stage of averaging for the remaining K−ℓ steps.
By adjusting ℓ and observing the mean sampling time and
alignment score over numerous instances, an ideal point can
be identified.

4 EXPERIMENTAL RESULTS

The core focus of this study is to analyse optical illusions
generated by diffusion models and draw conclusions about
perception in artificial intelligence compared to human per-
ception. Erroneous illusions highlight a disparities, arising
when the model deems a result satisfactory, yet human
evaluation judges it as flawed. Consequently, identifying
patterns in configurations which lead to errors can provide
insights into the reasons behind the observed differences.

Error Types

Geng et al. identify three types of errors arising from their
model: independent synthesis, noise shift, and correlated noise
[7]. The first is arguably the most insightful for this analysis,
as it emerges independently of the model’s implementation
and hints at fundamental traits of diffusion models. Fur-
thermore, experimentation uncovers a fourth type of error,
termed dominant synthesis, which occurs in illusions that
generate only one target. Figure 4 shows examples of each
error.

Noise Shift
The noise shift error is linked to the white balancing transfor-
mation. This transformation does not to meet the criterion
of statistical consistency and thus always results in an error.
The authors hypothesise that this arises as a consequence of
the model misinterpreting the scaled noise as signal.

Correlated Noise
Most transformations specified in the spatial domain map
pixels between integer coordinates. However, when this
is not the case — such as with non-cardinal rotations —
interpolation methods are required, which can introduce
correlations in the noise. These correlations disrupt the
inference process, preventing the successful synthesis of
targets. This error type is similarly restricted to a particular
class of transformations and can thus be attributed to the
specifics of the model’s implementation.

Independent Synthesis
The phenomenon of independent synthesis warrants par-
ticular focus in this analysis. It describes a scenario where
the generated image depicts the targets as individually
synthesized elements, missing the integration into a unified
illusion. This error is linked to a low ratio between C(x) and
A(x).

A notable pattern observed in associated configurations
involves the combination of targets that are animals, partic-
ularly those identifiable by their heads. Figure 4 provides an
example of this phenomenon, featuring the specified targets
a rabbit and a duck. Similar results arise from combinations
involving a cat, a dog, a pigeon, and other animals. This type
of error also occurs with human targets, such as a young
woman and an old woman or a prince and a princess.

Another pattern that seems to promote independent
synthesis is that of an object and an environment, provided
the transformation preserves the majority of relative pixel
positions. For a configuration containing targets such as a
kitchen and houseplants, the model places the object (house-
plants) inside the environment (kitchen).
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(a) Noise shift error with targets a candle and a wood fire.
Error is caused by the white balancing transformation

which does not preserve Gaussian noise statistics.

(b) Correlated noise error with targets a kitten and
houseplants. Error is caused by the 120◦rotation

transformation that introduces correlation into the noise
estimate through pixel value interpolation.

(c) Independent synthesis error with targets a rabbit and a
duck. The combination of targets where both animals are

identifiable by their heads leads to this error.

(d) Dominant synthesis error with targets Elvis and a
motorbike. This error is likely a consequence of the

semantic difference of the targets.

Fig. 4: Error types with associated configurations

Transformations that largely preserve the relative ar-
rangement of pixels, such as rotations or flips, tend to be
more prone to this type of error. In contrast, more disrup-
tive transformations like jigsaw rearrangements or skewing
exhibit a notable resilience.

An intriguing aspect of this error is that it cannot be
strictly categorised as a flaw in the model itself. The model
successfully accomplishes its task of synthesizing the spec-
ified targets but lacks an inherent understanding of what
constitutes an illusion. Similar to humans, diffusion models
appear to recognize objects primarily by shape [11], making
it unsurprising that a partial result, such as a head, suffices
for the guidance mechanism to identify the target within the
image. The distinction from human perception, therefore,
lies not in the ability to detect targets but in the capacity to
comprehend the essence of an illusion.

These observations suggest that a creative task such as
this requires a genuine grasp of what art truly entails. In
this instance, it is ultimately humans who manipulate the
diffusion model to produce illusions, and assign meaning to
the resulting imagery.

Dominant Synthesis
A frequently encountered error during experimentation is
referred to as dominant synthesis. This phenomenon occurs
when one target becomes significantly more prominent than
the others. A low dispersion score is indicative of this error
type.

It should be noted that dominant synthesis is a fre-
quent occurrence when automatically evaluating illusions.
It appears to be the result of a semantic disparity between
the targets. Combinations like a penguin and a giraffe can
successfully create an illusion; however, when the prompts
differ greatly in meaning — such as Elvis and a motorbike

— one is typically favored during the diffusion process.
It is therefore to be expected that this phenomenon occurs
frequently, as most target combinations from the predefined
list are essentially semantically dissimilar.

In contrast to independent synthesis, transformations
that promote dominant synthesis act on a more complex
level. Colour negation and pixel permutation appear partic-
ularly susceptible. This could be an indication that nuanced
transformations such as these require thoughtful target se-
lection to permit a successful illusion.

The high frequency with which this error type is encoun-
tered during automated generation implies that illusions
cannot be produced autonomously or at a large scale. AI-
generated art, though heavily reliant on machine assistance,
still necessitates the involvement of a human operator to
make critical design decisions.

Three Transformations

Experiments involving three transformations and targets
produce a limited number of favourable outcomes. For this
task, the choice of transformations is crucial to the success
of the illusion. When the transformations are contextually
different, the model has greater potential at synthesising
all three targets. Figure 5 shows a success case with three
transformations. In many other instances, one or, at most,
two targets predominate.

Colour Channel Permutations

For a transformation involving the rearrangement of color
channels, selecting the appropriate targets is essential. An
interesting occurrence with this type of transformation is
the generation of a largely greyscale image when the targets
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Fig. 5: Success case using three transformations. This illusion
contains the targets a girl, a young boy, and a dog with
transformations identity, inner circle rotation, and jigsaw. The
inherent differences of the views result in the success of the
illusion.

(a) Success case. Targets are a
waterfall and a sunset

(b) Example of greyscale
phenomenon observed. Targets

are a hut and a mountain

Fig. 6: Examples of success and failure cases for the colour
channel permutation transformation.

cannot be reconciled, as can be seen in Figure 6b.

Alternating Denoising

Figure 7 illustrates the effect that the length of the alter-
nation period has on sampling time and alignment. As
anticipated, longer alternation periods tend to decrease
computational costs. In contrast to the findings of Geng et
al., these results do not provide sufficient evidence to draw
conclusions regarding the impact on output quality.

The effects on both metrics are minimal, with negligible
impact observed. This is likely because the sampling stage
represents only a small portion of the overall generation
process, while the majority of the time is taken up by the
upsampling stage, which is required in all cases.

5 FUTURE WORK

The evaluation of illusions mainly depends on numerical
results, which may inherently reflect the same limitations as
the diffusion model itself. An additional layer of abstraction
could be achieved by implementing scoring or error detec-
tion through a large multimodal model, either by leveraging
a pre-trained model with tailored prompts or by training
the model specifically for this task. This approach would
require careful consideration of optimisation techniques, as
the extended inference time of large multimodal models
currently renders their use impractical.

With respect to the sampling time of the diffusion model,
the alternating approach yielded unfavourable results. An
interesting path for further research is the exploration of
different optimisation methods.

Finally, although the implementation of non-cardinal
rotation transformations directly led to issues, the underly-
ing concept remains worthy of exploration. Developing an
approach that eliminates the need for interpolation could
enable the successful application of this transformation.

Fig. 7: Effect of length of alternating stage on processing
time in seconds and alignment score.

6 CONCLUSION

Image generation with artificial intelligence has experienced
rapid advancement in recent times and diffusion models
in particular show great potential. When perception is pre-
sumed to refer to surface level tasks such as object detection,
the findings of this study align with previous research —
there appear notable similarities between diffusion models
and humans [7, 11, 12].

The fundamental difference then lies not in perception
but in understanding the purpose of an artwork. Diffusion
models can produce images at large scales, but human
artists comprehend the meaning of an image on an abstract
level of which an artificial intelligence model is not capable.

Future advancements in this domain may enable gen-
erative models to more effectively emulate aspects of what
is often considered sentience, potentially expanding into the
creative realm of artistry. This development would undoubt-
edly spark ethical debates, raising questions about whether
machine-generated art can truly be deemed creative and
whether the autonomy of such processes might intrude
upon the uniquely human joy of creative expression — a
domain that some might argue should remain untouched.

A more optimistic prognosis is that generative models
will follow an evolution similar to that of the photo camera,
in that they become a tool for a novel creative discipline, si-
multaneously sparking diverging movements in traditional
art forms. A first indication of this development is work by
artists such as MrUgleh who use generative models as an
instrument for creative expression [15].
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