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Abstract—Real-time processing of multi-view data in wireless sensing networks is challenging due to communication bottlenecks and
limited channel resources. To address this, we propose a multi-view over-the-air aggregation framework that integrates split learning
and over-the-air computation (AirComp). In this framework, the neural network is split into sensor-side feature extraction and
server-side classification, enabling efficient transmission of compressed and aggregated feature representations instead of raw data.
AirComp further enhances real-time performance by simultaneously aggregating signals over shared channels, significantly reducing
communication overhead. Experimental results on the ModelNet40 dataset demonstrate the effectiveness of the proposed approach,
achieving low latency and high classification accuracy under noisy conditions. This framework offers a scalable and robust solution for
real-time processing in large-scale multi-view systems.

Index Terms—Multi-view Images, Machine Learning, Convolutional Neural Networks
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1 INTRODUCTION

MULTI-VIEW learning is an advanced machine learning
paradigm that jointly leverages data collected from

multiple views or measurement methods. Each view offers
a distinct set of features for the same underlying data
instance, capturing complementary information to improve
overall learning performance [1]. Multi-view learning has
been widely adopted in diverse applications, ranging from
computer vision and natural language processing to bioin-
formatics and wireless communication systems.

In recent years, the proliferation of modern multi-device
sensing wireless networks has introduced new opportuni-
ties and challenges for multi-view classification tasks. These
networks, equipped with various sensors and communica-
tion devices, collect heterogeneous data from different views
or modalities, providing a rich foundation for advanced an-
alytics. Multi-view classification in this context is considered
a promising objective detection and recognition technology,
offering the potential to improve system reliability, adapt-
ability, and efficiency.

Traditional approaches to multi-view classification often
involve deploying AI models either on edge devices or on
a central server. While on-device inference avoids trans-
mission delays, it imposes substantial computational over-
head, especially when dealing with resource-intensive deep
neural networks. Conversely, on-server inference alleviates
computational constraints on devices but incurs significant
communication overhead, as the high-dimensional raw data
must be transmitted to the server. This trade-off between
computation and communication represents a major bottle-
neck for practical deployment in wireless networks, espe-
cially under stringent latency and bandwidth constraints.
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To address these limitations, there is an urgent need for
an efficient and scalable multi-view classification framework
tailored to the characteristics of multi-device sensing wire-
less networks. This framework must minimize communi-
cation overhead while maintaining high inference accuracy
and robustness, particularly in environments with noisy
channels and limited resources.

In this paper, we tackle these challenges by proposing a
novel multi-view over-the-air aggregation framework that
synergizes split learning and over-the-air computation (Air-
Comp). Our framework leverages the unique properties
of AirComp to perform data aggregation directly within
the wireless medium, significantly reducing communication
costs while preserving data integrity. Furthermore, the in-
tegration of split learning enables efficient model training
and inference across distributed devices without the need
for transmitting raw data.

In summary, the main contributions of our work are as
follows:

1) A novel multi-view over-the-air aggregation
framework: We propose a hybrid approach that
combines split learning and AirComp to address
the communication bottlenecks in wireless sensing
networks. This framework is designed to be scal-
able, efficient, and adaptable to various network
conditions.

2) Tunable aggregation for robust and efficient learn-
ing: We introduce a flexible aggregation method
that allows for adjustable trade-offs between noise
robustness and pooling efficiency, enabling better
performance under diverse channel conditions.

3) Extensive evaluation on real-world datasets: Our
experiments demonstrate significant reductions in
communication costs and high classification accu-
racy on the ModelNet40 dataset, even in the pres-
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Fig. 1. Multi-view CNN for 3D shape recognition [1].

ence of noisy wireless channels. The results high-
light the potential of our approach for practical
deployment in multi-device sensing systems.

2 RELATED WORKS

2.1 Multi-view learning

The foundational concept of multi-view learning, known
as co-training, was introduced by Blum and Mitchell [2].
Co-training involves training two classifiers on different
views of the data to improve performance by leveraging
complementary information. Xu et al. [3] later formalized
the core principles of multi-view learning as consensus and
complementary. The consensus principle seeks to maximize
agreement between different views, while the complemen-
tary principle emphasizes leveraging unique knowledge
provided by each view. Together, these principles enhance
the generalization and robustness of multi-view models.

In recent years, the integration of multi-view learning
with deep learning has gained traction due to the latter’s
ability to learn powerful representations. Pioneering works
have applied deep learning techniques to multi-view tasks,
such as multi-view canonical correlation analysis [4], mul-
timodal feature extraction [5], and joint learning from mul-
tiple views [6]. These advancements enable more effective
and scalable multi-view systems, laying the foundation for
state-of-the-art applications in areas like 3D shape recogni-
tion, image classification, and multimodal sensor fusion.

2.2 AirComp

Over-the-air computation (AirComp) is an emerging tech-
nique that exploits the waveform-superposition property of
multi-access wireless channels. This allows for simultaneous
aggregation of features transmitted by multiple devices,
enabling efficient data fusion without requiring dedicated
communication channels [7]. By leveraging this property,
AirComp reduces communication overhead and latency,
making it particularly suitable for large-scale, resource-
constrained systems. However, the approach faces chal-
lenges such as signal interference, noise amplification, and

limited scalability under high device densities. Recent ad-
vancements focus on optimizing aggregation strategies and
mitigating noise to enhance its robustness in practical de-
ployment.

2.3 Split inference
Split inference addresses the computational and energy
constraints of edge devices by dividing an AI model into
two parts [8]. The sensor-side sub-model is deployed on
resource-limited devices to perform lightweight feature ex-
traction, while the server-side sub-model handles computa-
tionally intensive tasks, such as classification or prediction,
at an edge server. This paradigm reduces the volume of
data transmitted over the network by sending compressed
feature representations instead of raw data. Recent devel-
opments in split inference explore adaptive partitioning
strategies, dynamic task allocation, and optimization for
heterogeneous network conditions. This approach is partic-
ularly effective for real-time applications, where latency and
communication cost are critical considerations.

3 PROPOSED METHOD

To address the communication bottleneck problem in multi-
view sensing wireless networks, we propose a multi-view
over-the-air aggregation model, as illustrated in Figure 2.
This model integrates split learning and AirComp to ef-
ficiently process multi-view data in a distributed man-
ner, significantly reducing communication overhead while
maintaining high classification accuracy.

3.1 Split Learning
In this system, the entire pretrained classification neural
network is divided into two distinct parts: the sensor-side
sub-model for feature extraction and the server-side sub-
model for classification.

At the sensor side, K sensors are responsible for captur-
ing continuous images from different views of the same ob-
ject. Each sensor processes its input image using the sensor-
side sub-model, producing feature tensors {fk} ∈ RN

+ . These
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Fig. 2. Multi-view over-the-air aggregation and classification system model.
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• Background: In the context of modern 
muti-device sensing wireless networks, 
multi-view classification relying on the 
fusion of image features from multiple 
cameras is considered a promising 
objective detection technology.

• Challenge: Most recent methods deploy 
the AI models either on the edge devices 
or on the central server. However, on-
device inference causes huge 
computation overhead especially for deep 
neural networks, while on-server 
inference causes huge communication 
overhead by transmitting the high-
dimensional raw data.

• Goal: Develop an efficient multi-view 
classification approach that can be 
deployed in muti-device sensing wireless 
networks.

• System model:

• MVCNN (Multi-View Convolutional Neural 
Network) is a deep learning model that 
extracts features from multiple 2D views 
of a 3D object using CNNs, aggregates 
these features through methods like 
pooling, and performs classification [1,2].

• Split inference paradigm divides an AI 
model into two parts: one deployed on 
resource-limited devices for feature 
extraction, and the other at an edge 
server for completing the remaining 
computation-intensive inference task [3].

• AirComp (Over-the-air computation)
exploits the waveform-superposition 
property of a multi-access channel to 
realize over-the-air aggregation of 
extracted features simultaneously 
transmitted by multiple devices [4].
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Fig. 3. System model for AirComp.

feature tensors, which are significantly lower in dimension
compared to the original images, are pre-processed to gen-
erate transmitted signals {sk}. This compression drastically
reduces the communication overhead while preserving the
essential discriminative information of the data.

At the server side, the transmitted signals from all
sensors are received as aggregated signals y through a
shared wireless channel. After applying post-processing
techniques, the server reconstructs the aggregated feature
tensors g, which are then fed into the server-side sub-model
for classification. By avoiding the direct transmission of
raw data, split learning ensures privacy preservation and
computational efficiency at the sensor side.

3.2 AirComp
AirComp is a key enabler of the proposed framework,
allowing signals from multiple sensors to be transmitted
simultaneously over a single wireless channel, as illustrated
in 3. Unlike conventional methods that require dedicated
channels for each sensor, AirComp exploits the natural
superposition property of wireless signals, resulting in sig-
nificant communication efficiency gains.

During transmission, the signals from each sensor over-
lap, producing an aggregated signal directly in the wireless
channel:

y =
K∑

k=1

sk + z, (1)

where z ∼ N (0, σ2) represents additive white Gaussian
noise (AWGN).

This process effectively realizes over-the-air pooling dur-
ing transmission, combining the contributions from all sen-
sors into a single aggregated representation. Unlike tradi-
tional approaches that require a separate pooling layer at
the server side, AirComp eliminates the need for explicit
pooling operations by performing aggregation implicitly in
the wireless medium. This feature not only reduces com-
putational overhead at the server but also ensures efficient
utilization of channel resources.

Although the overlap introduces some information loss
due to noise and interference, the proposed framework
is designed to tolerate and compensate for such distor-
tions. The pre- and post-processing steps further enhance
the quality of the aggregated features, ensuring that the
classification performance remains robust even under noisy
conditions.

3.3 Pre- and Post-processing
To implement a generalized over-the-air pooling method,
we introduce a tunable exponential parameter α ≥ 1 to
pre-process the features {fk}. Specifically, each element of
transmitted signals at sensor k is generated as

sk = fα
k . (2)

Correspondingly, each element of the aggregated features is
calculated as

g =

[
(y)

+
] 1

α

β
=

[(
K∑

k=1
fα
k + z

)+
] 1

α

β
(3)
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where the ramp function is defined as (·)+ = max{·, 0}. β
is a scaling factor to ensure that the aggregated feature g
retains the same scale as the original feature {fk}.

Obviously, the value of β depends on the selection of
the exponential parameter α. To calculate β, we assume a
noise-free wireless channel and employ max-pooling as the
reference, minimizing the pooling error:

β∗ = argmin
β

E


 1

β

( K∑
k=1

fα
k

)+
 1

α

− fmax


2


= argmin
β

1

β2
E


( K∑

k=1

fα
k

)+
 2

α


− 2

β
E


( K∑

k=1

fα
k

)+
 1

α

fmax

+ E
[
f2

max

]

=

E

[( K∑
k=1

fα
k

)+
] 2

α


E

[( K∑
k=1

fα
k

)+
] 1

α

fmax

 (4)

When channel noise is negligible, by tuning the expo-
nential parameter α, we can realize both average-pooling
and max-pooling as follows:{

α = 1, =⇒ average-pooling
α → ∞, =⇒ max-pooling

(5)

However, when the channel noise is non-negligible,
max-pooling becomes more susceptible to noise than
average-pooling. This is because max-pooling amplifies the
contribution of the largest feature values, which are more
likely to be significantly distorted by noise. In contrast,
average-pooling aggregates information from all features,
making it inherently more robust to noise. Consequently,
there is a trade-off between max-pooling and average-
pooling, which can be controlled by adjusting the parameter
α, as discussed in the next section.

4 EXPERIMENT

We evaluate the proposed method using the ModelNet40
dataset [9] and the ResNet18 model for training and testing
within an MVCNN architecture. The total number of sensors
is set to K = 12. The ResNet18 model is first trained without
considering the impact of wireless channels and then split
into two parts before the linear classifier. The classifier is
deployed at the server side, while the remaining compo-
nents are deployed at each sensor for feature extraction. As
a result, the number of transmitted features at each sensor
is N = 512.

In the following, we will present the classification per-
formance of the proposed method.
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Fig. 4. Classification accuracy versus noise level σ.

4.1 Classification Accuracy vs. Noise

Figure 4 shows the classification accuracy as a function of
the noise level σ. It can be observed that as the noise level
increases, classification performance is indeed degraded.
However, by adjusting the exponential parameter α, the
proposed method can effectively enhance classification per-
formance under high noise conditions, achieving results that
are even close to the classification accuracy of lossless trans-
mission. This demonstrates the robustness and adaptability
of the proposed method.

4.2 Classification Accuracy vs. Exponential Parameter
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Fig. 5. Classification accuracy versus exponential parameter α.

Figure 5 shows the classification accuracy as a func-
tion of the exponential parameter α. It can be observed
that increasing α under high noise conditions effectively
enhances classification performance. However, as α contin-
ues to increase, the classification accuracy drops sharply.
This decline occurs because larger α values approach max-
pooling, which is more sensitive to noise due to its reliance
on the largest feature values. This demonstrates the trade-off
between average-pooling and max-pooling in the context of
noisy transmission.
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4.3 Communication Latency

We consider a wireless channel with a communication band-
width of B = 20 MHz, which is a typical bandwidth for Wi-
Fi systems. According to the Shannon theorem, the channel
capacity, i.e., the maximum achievable lossless transmission
rate, can be expressed as:

C = B log2(1 +
P

σ2
) (6)

where P represents the signal power and σ2 denotes the
noise power. Here, the signal power P has been normalized
to simplify the expression.

The minimum communication latency for traditional
lossless transmission can then be calculated as:

Llossless =
image size × number of sensors

channel capacity
(7)

where the size of each image in the ModelNet40 dataset is
approximately 12 kB.

In contrast, for our proposed method, since the sensors
transmit signals over the same channel simultaneously, the
required communication overhead for each classification
task is the number of transmitted features per view, i.e.,
512. Therefore, the communication latency of our proposed
AirComp method is given by:

LAirComp =
feature size
bandwidth

(8)
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Fig. 6. Communication latency versus noise level σ.

Figure 6 illustrates the communication latency as a func-
tion of the noise level σ. It can be observed that the commu-
nication time required for traditional lossless transmission
is significantly higher than that of our proposed method,
which is based on split learning and AirComp. Furthermore,
as the noise level increases, the communication overhead
for traditional lossless transmission also grows, whereas the
communication overhead for the proposed method remains
constant.

4.4 Classification Accuracy vs. Quantization Level

To reduce the communication overhead of lossless transmis-
sion, a common approach is to quantize each pixel of the
image data to a specified bit level. However, quantization
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Fig. 7. Classification accuracy versus quantization level (bits).

introduces distortion to the original images, which can
adversely affect classification performance.

Figure 7 shows the classification accuracy as a function
of the quantization bit level. It can be observed that the
reduction in quantization bit level leads to a severe degrada-
tion in classification performance. Moreover, despite the fact
that lower bit levels allow for more effective data compres-
sion and significantly reduce communication requirements,
the communication overhead still exceeds the efficiency
achieved by the proposed AirComp method.

5 CONCLUSION

In this work, we proposed a multi-view over-the-air ag-
gregation framework that integrates split learning and Air-
Comp to address the communication bottleneck in multi-
view sensing wireless networks. By splitting the ResNet18
model into sensor-side feature extraction and server-side
classification, our method significantly reduces communi-
cation overhead while maintaining high classification ac-
curacy. Experimental results on the ModelNet40 dataset
demonstrate the effectiveness and robustness of our ap-
proach under noisy conditions.

Future work will focus on extending the framework to
more complex datasets, exploring advanced denoising tech-
niques, and further optimizing the split learning strategy
to improve real-time performance in dynamic multi-view
systems.
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