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High-Speed Multi-Camera Depth Estimation
Hao Yang, and Chu King Kung

Abstract—The integration of high-speed imaging and depth estimation for real-time applications remains underexplored, despite
significant advancements in both fields. This study introduces a novel approach using pixel-wise coded exposure cameras to address
challenges in high-speed depth estimation, including computational complexity, hardware constraints, and synchronization issues. By
enabling pixel-level exposure configuration and employing cost-effective techniques like temporal multiplexing, the proposed system
facilitates the seamless integration of high-speed imaging with conventional depth-estimation algorithms. Results from both static and
dynamic scenes demonstrate subframe-level disparity map generation, showcasing the system’s capability for agile, real-time depth
estimation. The source code implementing the proposed methodology is publicly available at
https://github.com/Hao111y/passive-high-speed-stereo.

Index Terms—High-speed Imaging, Depth Estimation, Pixel-wise Coded Exposure, Passive Stereo

✦

1 INTRODUCTION

H IGH-SPEED depth estimation is a cornerstone of mod-
ern autonomous navigation and robotics, enabling

rapid decision-making and precise maneuvering in dynamic
environments. As these fields continue to advance, the need
for efficient, accurate, and scalable depth perception systems
has become increasingly critical. However, several chal-
lenges must be addressed to achieve real-time performance
and reliability in high-speed applications.

One significant obstacle is computational complexity.
Traditional frame-based stereo methods often struggle to
meet the real-time demands of dynamic scenarios, such as
obstacle avoidance or high-speed navigation. The intensive
processing requirements of these methods can lead to un-
acceptable delays, undermining their effectiveness in fast-
paced environments.

Hardware limitations further complicate high-speed
depth estimation. High-speed cameras, while capable of
capturing rapid movements, are often bulky, expensive, and
resource-intensive. These constraints make them impractical
for applications like drones and mobile robotics, where re-
ducing weight, size, and power consumption is paramount.

Synchronization poses another critical challenge. Ac-
curate depth estimation requires precise synchronization
across multiple cameras, particularly at elevated frame
rates. However, many modern high-speed devices rely on
asynchronous readout mechanisms to enhance speed, lead-
ing to potential timing discrepancies that degrade depth
estimation accuracy and compromise autonomous system
functionality. Alternative approaches, such as time-of-flight
cameras and active sensors, offer promising solutions but
are often limited by range and cost.

To address these challenges, this work proposes the
use of pixel-wise coded exposure cameras integrated into
a synchronized dual-camera setup. This configuration,
paired with off-the-shelve imaging processing and depth-
estimation techniques, offers the potential to deliver high-
speed, cost-effective depth estimation. Figure 1 highlights
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Fig. 1. Illustration of the proposed high-speed depth estimation setup,
featuring two synchronized cameras and a rotating fan to simulate
dynamic motion.

the proposed system’s design, featuring a fan to create
dynamic motion and two synchronized cameras capturing
high-speed depth information. This visualization under-
scores the system’s ability to tackle computational, hard-
ware, and synchronization challenges effectively.

2 RELATED WORK

Research in stereo vision has historically emphasized ac-
curacy over speed. For example, one method enhances
depth measurement accuracy by analyzing error patterns
and employing weighted least squares for 3D reconstruc-
tion, achieving a 3% improvement [1]. Similarly, another
approach integrates semantic segmentation with stereo cal-
ibration for depth estimation across multiple cameras [2].
Recent advancements, such as those presented in [3] and
[4], apply deep learning techniques to improve multi-
camera depth estimation. However, the challenge of real-
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Fig. 2. Temporal Multiplexing: Operational Principles and Experimental Results from High-Speed Imaging Scenarios.

time, high-speed stereo vision integration remains largely
unaddressed.

Efforts to achieve high-speed depth estimation have pri-
marily focused on event-driven systems, which demonstrate
real-time efficiency and outperform traditional methods [5],
[6]. Despite these advantages, such systems encounter sig-
nificant challenges, including motion-induced asynchrony,
timestamp inaccuracies, and variability in event rates, limit-
ing their practical utility.

Active sensors like time-of-flight cameras provide pre-
cise depth measurements but are constrained by limited
operational range, rendering them less effective in dynamic,
high-speed environments with rapid changes.

Conventional frame-based methods remain prevalent
due to their established reliability and ease of use. How-
ever, they exhibit latency issues and struggle to manage
rapid movements, resulting in diminished performance in
applications requiring quick responses.

Despite advancements across various approaches, a no-
table gap persists in integrating high-speed imaging with
depth estimation, particularly in cost-sensitive and resource-
constrained applications. Addressing this gap represents a
critical avenue for future research and innovation.

Fig. 3. Hardware setup for passive stereo imaging, designed to capture
hybrid scenes featuring both static and dynamic objects.

3 PROPOSED METHOD

This proposed method leverages pixel-wise coded exposure
cameras and sophisticated processing techniques to signif-
icantly enhance high-speed depth estimation capabilities
while addressing common limitations faced by other meth-
ods. It incorporates several key features that enhance both
performance and efficiency.

3.1 Hardware setup

Figure 3 illustrates the hardware and environment used in
this project. The two cameras, sourced from the Intelligent
Sensory Microsystems Laboratory (ISML) at the University
of Toronto, support high-speed coded exposures. We can
synchronize the stereo camera pair at rates up to 10 kHz.
However, maintaining such a high frame rate necessitates
extremely strong illumination and a rapidly moving scene to
fully demonstrate our system’s high-speed stereo imaging
capabilities.

This approach imposes certain trade-offs. Implementing
high-speed burst imaging with the CEP sensor reduces spa-
tial resolution and can cause subframe-by-subframe shifts
in object position. To achieve a practical balance between
temporal resolution and image quality, we selected a 3×3
super-pixel tile size. At this configuration, we attain an
exposure rate of approximately 350 Hz, offering a good
compromise between speed and clarity.

3.2 System Workflow

The images in this project were captured using a pair of syn-
chronized cameras. To ensure precise alignment and mini-
mize differences between the two cameras (such as fabrica-
tion inconsistencies or vibrations during capture), checker-
board calibration was performed at the sub-exposure level.
This process produces rectified images, improving overall
system accuracy. These rectified images were then subjected
to conventional Lanczos upscaling to restore their original
resolution, which had been reduced to accommodate high-
speed imaging requirements. Non-local means denoising
was subsequently applied to improve image quality. Finally,
the rectified images were processed using Semi-Global Block
Matching (SGBM). We also verify the result with a state-
of-the-art MoCha-Stereo [7] matching algorithm recently
introduced at CVPR.
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Fig. 4. A block diagram illustrating a high-speed depth estimation system utilizing a conventional image processing pipeline.

3.3 Pixel-Level Exposure Configuration
A fundamental aspect of this method is the pixel-level expo-
sure configuration, which allows for the implementation of
various techniques, including temporal multiplexing [8], as
shown in Figure 2. This technique enables a strategic trade-
off between spatial resolution and speed, facilitating faster
image capture without necessitating extensive hardware
upgrades. By optimizing exposure settings at the pixel level,
the system can effectively manage hardware constraints
while maintaining cost-effectiveness.

3.4 SubFrame-Level Disparity Map Generation
The proposed system employs a depth-estimation pipeline
designed to process high-speed images, utilizing either
traditional methodologies or advanced deep learning tech-
niques. This integration ensures compatibility with existing
algorithms, thereby facilitating seamless incorporation into
current workflows and making it particularly well-suited for
cost-effective, high-speed applications. As illustrated in Fig-
ure 4, the proposed dual-camera system can be effectively
integrated with a conventional image processing pipeline to
achieve high-speed depth estimation.

Among traditional algorithms, Semi-Global Block
Matching (SGBM) is widely recognized for its effectiveness
in depth estimation tasks. SGBM extends the conventional
block-matching approach by optimizing disparity maps
through a cost function that balances local and global con-
straints [9]. An implementation of SGBM is readily avail-
able in OpenCV, which slightly diverges from the original
algorithm in terms of its cost function, providing a practical
solution for many applications.

3.5 Synchronization Techniques
To achieve precise synchronization during high-speed op-
erations, two cameras are configured in a master-slave ar-
rangement. This configuration is facilitated through hard-
ware methods, made possible by our custom-designed cam-
eras. Such a setup enables accurate timing coordination at
the subframe level, which is essential for capturing dynamic
scenes without motion blur or artifacts. The synchronization
techniques implemented ensure cohesive operation among
all cameras.

4 EXPERIMENTAL RESULTS

4.1 Static Scene
Figure 5 demonstrates a representative outcome of this
study, highlighting the disparity map generated from a

static scene. The generated disparity maps with SGBM
show excellent correspondence between the left and right
grayscale images, with clear delineation of depth levels.
The system successfully achieved subframe-level disparity
generation, a testament to its efficiency and precision.

4.2 Dynamic Scene

The system’s capability to handle rapid movements was
evaluated using three dynamic scenarios, as shown in Fig-
ure 6. Notably, the fan depicted in the first row of the figure
was rotating at a speed of 300 revolutions per minute (rpm).
Despite the rapid changes occurring within the scene, no
motion blur was detected. The cameras effectively captured
these fast-paced dynamics, enabling precise depth estima-
tion of the environment. The second row shows a toy car
being pushed forward with some initial speed, while the
last row features a candle rolling on the desktop. Both scenes
are hybrid, containing static elements (the desk and a box)
alongside dynamic ones (a hand, the moving toy car, and
the rolling candle). Despite the motion, the outlines of all
objects—both stationary and moving—remain well-defined
and exhibit no motion blur.

4.3 Verification Results with a State-of-the-Art Stereo
Algorithm

To further demonstrate the capabilities of passive stereo
imaging in high-speed scenarios, we evaluated our sys-
tem using the state-of-the-art MoCha-Stereo algorithm [7],
recently published at CVPR 2024. To highlight the rapid
motion in the scene, we present an image sequence cap-
tured within a single frame, subdivided into nine subframes
(achieved using a 3×3 tile size).

Figures 7 and 8 show the rectified images from the
left and right cameras, respectively. Figure 9 illustrates the
disparity maps produced by the SGBM method for compar-
ison, while Figure 10 presents the disparity maps for each
subframe generated by MoCha-Stereo.

4.4 Results Discussion

The experimental results highlight our system’s effective-
ness in handling both static and dynamic scenes. It achieves
high-speed, cost-effective, and low-latency depth estimation
with a high degree of accuracy. Its robustness under rapid
motion makes it well-suited for real-time applications in
robotics, autonomous vehicles, and augmented reality.



4

Fig. 5. Disparity map of a static scene: The sequence from left to right includes the left grayscale image, the right grayscale image, the corresponding
disparity map, and the disparity map overlaid on the right grayscale image.

Fig. 6. Dynamic Scene Results: The top row displays a fan rotating at
300 RPM, the middle row features a toy car approaching the camera,
and the bottom row depicts a candle rolling toward the camera.

Fig. 7. Image sequence captured within a single frame using a 3×3
super-pixel tile size, resulting in nine subframes. The sequence pre-
sented here is from the left camera.

Using the SGBM method, most subframes exhibit clearly
defined blade edges of the dynamic object (a fan) and main-
tain recognizable details of static elements. Although some

Fig. 8. Image sequence captured within a single frame using a 3×3
super-pixel tile size, resulting in nine subframes. The sequence pre-
sented here is from the right camera.

Fig. 9. Calculated disparity map obtained using Semi-Global Block
Matching (SGBM). Subframe indices are marked to facilitate matching
between left and right views.

subtle segmentation challenges arise—for instance, the tem-
porary appearance of unexpected black regions representing
ambiguous areas—the overall disparity maps remain coher-
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Fig. 10. Calculated disparity map obtained using MoCha-Stereo [7].
Subframe indices are marked to facilitate matching between left and
right views.

ent, demonstrating the strong general performance.
By contrast, when integrated with a state-of-the-art

method like MoCha-Stereo [7], our high-speed stereo imag-
ing system demonstrates even more refined object delin-
eation across multiple sub-exposures. Certain frames reveal
exceptionally clear outlines of both the moving fan blades
and the static candle—down to details like the candle wick.
While minor inconsistencies still appear, the increased clar-
ity and definition in these key frames highlight the poten-
tial of our system to deliver superior results, even when
operating under challenging, high-speed stereo imaging
conditions.

4.5 Potential Improvements

4.5.1 Adding Realistic Textures for Background Segmenta-
tion

To improve object-background segmentation, we intro-
duced checkerboard patterns to add texture to the back-
ground.Figures 11, 12, and 13 show, respectively, a sample
image captured by the left camera, a sample image cap-
tured by the right camera, and the resulting disparity map.
However, this approach did not yield significant benefits.
Instead, the checkerboard pattern seemed to draw undue
attention from the block-matching algorithm, likely due
to non-uniform illumination and the presence of shadows.
Additionally, imbalanced sensor responses may have exac-
erbated these issues. Although we conducted thorough gain
calibration on both cameras at the outset—striving for a
consistent and linear dynamic range—these measures did
not fully mitigate the observed challenges.

To address these limitations, we plan to conduct further
experiments using textured backgrounds derived from real
objects with varying depths, rather than flat checkerboard
patterns. This approach aims to introduce natural varia-
tions and depth cues that are more representative of real-
world scenes, potentially improving the segmentation per-
formance.

4.5.2 Subframe-Level Checkerboard Calibration Method

To successfully implement stereo block searching at the sub-
frame level, checkerboard calibration is applied individually
to each subframe. The procedure involves an initial pixel
reshuffling step to divide the image into 9 subframes, based
on a 3×3 tile size, followed by checkerboard calibration for
each subframe. This approach is expected to yield the best
results. Figure 10 illustrates the disparity map obtained after
applying checkerboard calibration to each subframe.

Despite these results, the observed improvement is
marginal when compared to the following previously tested
methods:(a) performing checkerboard calibration at the
frame level prior to reshuffling pixels into 9 subframes,
and (b) reshuffling pixels to generate 9 subframes, followed
by applying checkerboard calibration to only the first sub-
frame.

While small improvements are noted, the differences be-
tween these approaches are limited, even though subframe-
level checkerboard calibration was anticipated to provide
superior results.

Fig. 11. One image captured within checkerboard background. The
image presented here is from the left camera.

Fig. 12. One image captured within checkerboard background. The
image presented here is from the right camera.
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Fig. 13. An example of disparity map calculated with checkerboard
background using MoCha-Stereo [7].

5 CONCLUSION

This work presents a novel approach to high-speed depth
estimation, leveraging pixel-wise coded exposure cameras
and innovative processing techniques to address the critical
challenges of computational complexity, hardware limita-
tions, and synchronization. The proposed method integrates
seamlessly with existing depth estimation algorithms, en-
hancing their performance in dynamic environments.

In comparison to existing methods, the proposed ap-
proach bridges the gap between cost-effectiveness and
performance. Unlike event-driven and active sensor-based
methods, which face synchronization or cost-related con-
straints, the pixel-wise coded exposure methodology offers
a balanced trade-off between spatial resolution and speed.
Additionally, the system’s compatibility with off-the-shelf
components broadens its applicability across various do-
mains.

In conclusion, the proposed system provides a promising
solution for high-speed depth estimation, paving the way
for advanced real-time applications in dynamic settings.
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