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Abstract—This project aims to improve monocular depth estimation specifically in the presence of motion blur by utilizing Stable
Diffusion XL (SDXL) [1] and T2I adapters [2] to augment existing datasets. By generating realistic synthetic depth maps and
corresponding RGB images that incorporate both adverse environment conditions (e.g. low light, rain) and motion blur effect, we aim to
enhance the training data’s ability to simulate challenging real-world dynamics, such as fast-moving vehicles and blurred environments.
Fine-tuning state-of-the-art models like Depth Anything V2 [3] with these augmented datasets will enable the model to generate depth
maps that realistically reflect motion blur effects. Our approach will be evaluated using benchmark KITTI, aiming to improve the
accuracy and consistency of depth estimation in scenarios involving significant motion.

Index Terms—Computational Photography, Depth Estimation, Depth Anything V2, Stable Diffusion XL(SDXL), T2I-Adapters, Midas
Depth Estimation, Motion Blur Depth Enhancement
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1 INTRODUCTION

D EPTH ESTIMATION is an essential task in computer
vision with applications in autonomous driving,

robotics, and augmented reality. It allows systems to under-
stand the three-dimensional structure of a scene, which is
vital for navigation, obstacle avoidance, and interaction with
the environment. However, achieving accurate depth esti-
mation is challenging, especially in dynamic scenes where
motion blur occurs. Motion blur distorts visual features,
making it difficult for models to interpret object depth
accurately, particularly in fast-moving objects like cars, bi-
cycles, or drones. These challenges highlight the need for
improved depth estimation methods that can handle motion
blur effectively.

Current state-of-the-art models, such as Depth Anything
V2, perform well in most scenarios but struggle with motion
blur. The primary issue is that Depth Anything V2 gener-
ates static depth maps for motion-blurred images, treating
blurred objects as unmove translucent objects. This leads
to unrealistic depth representations, particularly in dynamic
scenes with high-speed motion. Such limitations reduce the
model’s reliability and accuracy in real-world applications
where motion blur is common.

This project addresses the challenges of depth estimation
under motion blur by enhancing Depth Anything V2’s
ability to handle such scenarios. Specifically, we aim to
incorporate motion blur effects into the depth estimation
process to improve model accuracy and realism.

To achieve this, we utilize the Stable Diffusion model
with the Depth-MiDaS adapter [2] to augment existing
depth estimation datasets. By building on the approach of
Tosi et al. [4] , which uses diffusion models to generate
images under adverse conditions, we extend the method
to include motion blur. Then we use prompts to guide the
model to generate realistic RGB images with motion blur
effects.

These augmented datasets are then used to fine-tune

Depth Anything V2, enabling it to better capture and rep-
resent motion blur in depth maps. This fine-tuning process
ensures the model produces depth estimates that are con-
sistent with real-world dynamics, improving its robustness
and accuracy in challenging, motion-heavy scenarios.

2 RELATED WORK

2.1 Overview of Existing Models

The Depth Anything model (V1) [5] is a deep learning-
based method for monocular depth estimation that has
shown promising results in standard scenarios. Depth Any-
thing V2 is an advanced version of this model that refines
the depth estimation process, enhancing its performance in
various real-world applications. It leverages convolutional
neural networks (CNNs) trained on large datasets to predict
depth from single images. Depth Anything V2 continues the
work of its predecessor by providing better generalization
across diverse and complex environments. However, it still
faces challenges in extremely adverse conditions, such as
motion blur.

2.2 Diffusion-Based Approaches for Depth Estimation

Tosi et al.’s paper ”Diffusion Models for Monocular
Depth Estimation: Overcoming Challenging Conditions” [4]
introduces an innovative method to address these chal-
lenges using text-to-image diffusion models. Firstly, they
use Depth-MiDaS to estimate depth in simple, clear scenes
and provide reliable depth information when conditions are
not too difficult.

Then they used the stable Diffusion Model to generate
images under challenging weather conditions such as rain,
snow, fog, low-light environments (night), and reflective or
transparent surfaces. This approach improves the perfor-
mance of depth estimation networks by generating synthetic
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Fig. 1. Flow Chart of Our Method

but realistic data that accounts for these challenging condi-
tions.

Finally, they use those newly generated images and
depth information to fine-tune the Depth Everything V1
model, improving its ability to handle complex, real-world
conditions.

Their use of diffusion models helps produce diverse
scenes while preserving underlying depth information,
which is crucial for improving the robustness of depth
estimation models in real-world scenarios.

2.3 Comparison
Traditional monocular depth models [6] [5] struggle

in challenging conditions such as bad weather or motion
blur. These models are trained on simpler data and fail to
generalize well to complex scenarios.

Tosi et al.’s diffusion-based [4] approach improves on
this by generating challenging environments through text-
to-image models like ControlNet [7], ensuring that depth
estimation models are trained on more diverse and difficult
conditions. They also use a self-distillation protocol, which
fine-tunes models with synthetic data, improving robust-
ness to environmental changes.

However, Tosi’s method [4] doesn’t fully address motion
blur caused by fast-moving objects, which is a key challenge
in real-world dynamic environments.

Our method builds on Tosi’s work [4] by incorporating
motion blur into the training process, further enhancing
depth estimation for fast-moving objects and improving
realism in dynamic scenarios.

3 THEORY

3.1 Problem Formulation
We observe the primary challenge is that existing monoc-

ular depth estimation models, such as Depth Anything V2,
generate unrealistic depth maps for motion-blurred scenes,
where the model treats the blurred object as static and
draws a clear object outline. This leads to inaccurate depth
representations inconsistent with the real-world dynamics
of moving objects. The motion blur effect occurs when
there is relative movement between the camera and the

objects in the scene or camera using a long exposure time
when looking at moving objects. That kind of effect causes
a blending of features that depth estimation models find
difficult to interpret, which may confuse the computer and
lead to an incorrect operation for things like autonomous
driving and robotics.

To address the challenge mentioned above, we recon-
sider the depth estimation problem by adding the motion
blur effect as a factor affecting the output. That is, instead
of treating the motion blur effect as noise, we incorporate it
into the training process so that the model learns to interpret
blurred features and add it as part of the scene’s depth struc-
ture. To accomplish that, we decide to augment the training
data by adding realistic motion-blurred images and then
use that augmented dataset to fine-tune the Depth Anything
V2 model to enhance its performance and accuracy on the
motion blur effect.

3.2 Flowchart Architecture

However, we are not able to find a dataset that pro-
vides realistic motion-blurred images with a corresponding
depth estimation that explicitly considers the presence of
the motion blur effect. Instead of relating to a dataset that
provides training data to us, we use the diffusion model
to generate our training set by adding different types of
adverse environmental conditions and the motion blur effect
into a clean image. The given figure 1 shows a flowchart of
how we accomplished our goal above, and the flowchart can
be divided into two main steps including data augmentation
with motion blur and fine-tuning the model. The description
of each step will be shown next.

3.2.1 Data Augmentation with Motion Blur

First of all, we randomly pick 2,000 images from KITTIv2
train set as the easy input images. As for each input image,
we use ControlNet Midas depth estimation model [7] to
generate the corresponding depth image. After that, by
using SDXL along with T2I adapters [2] and the above
depth image, we can generate challenge RGB images with
the same depth structure as the easy input image and with
additional adverse environmental conditions and motion
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blur effect. To encourage SDXL to add required challenge
conditions, we employ prompts that include motion blur
and adverse environment descriptions (e.g. ”Hazardous
smog blanketing city streets with motion blur”), combined
with negative prompts (e.g. ”Static cars, sharp car details,
...”) to avoid generating static or sharp details that are not
characteristic of realistic motion blur. Examples are shown
by the figure 2 as the following,

Fig. 2. Examples for Raw Image, Depth Image and Corresponding
Generated Images

Where RGB image is the raw image, and depth image is
the depth structure generated by the Midas depth estima-
tion model. All generated images use prompts, which are
shown below each image, and the same negative prompt.
By using this strategy, we generate 10 images with different
adverse environmental and motion-blurred conditions for
each input image. After that, we incorporate all input and
generated images together to form the training dataset of
size 22,000. Combining both static scenes and motion blur
images helps the model learn to distinguish between actual
object boundaries and blurred features, leading to more
accurate depth estimation.

3.2.2 Fine-Tuning the Model
In this stage, the dataset generated above will then

be used to fine-tune the model. However, the significant
challenge here is that since all motion-blurred images are
generated using the Diffusion model, then there is no
ground truth depth image for them. And the fine-tuning
requires ground truth such that it can compute the model
loss which will be used to update model parameters. To
accomplish that, we employ the self-distillation protocol.
That is, we utilize a robust pre-trained monocular depth
network, Depth Anything V2 base model, which will be
leveraged to generate depth images for all original, unchal-
lenging scenes in the 2,000 KITTIv2 train set. After that,
these generated depth images subsequently serve as pseudo
ground truth labels for the corresponding generated images
in the training set.

For fine-tuning the model, we employ the pre-trained
Depth Anything V2 base model as our start point and train
it for 120 epochs using the Adam optimization algorithm,
utilizing the augmented dataset above. As for each epoch,
the dataset will be shuffled such that the model will observe

different sequences of training data which will encourage
the model to generalize. Additionally, the model contains
97.5M parameters which are divided into two distinct parts
including the pre-trained parameters, which are used to
extract useful features from the input images; and the depth
head parameters, which are responsible for generating
depth images from the extracted features. The learning rate
lr is initialized as 5×10−6 and will be gradually reduced to
5 × 10−7 during the training process. The learning rate for
the pre-trained parameters is initially set to the same value
as lr, while the learning rate for the depth head parameters
is set to 10 times the value of lr. This is because the pre-
trained parameters require minimal adjustments and so less
change, whereas the depth head parameters, which are
trained from scratch, necessitate a higher learning rate to
facilitate faster convergence.

4 ANALYSIS AND EVALUATION

In this section, we are going to introduce the way used
to analyze and evaluate our fine-tuned Depth Anything V2
model. In short, we illustrate how we split the augmented
training set above during the fine-tuning process such that
one part is used for training the model and another part
is for validating the model performance for each epoch.
To evaluate the accuracy, we present all metrics we have
used. Finally, we demonstrate how we are going to compare
our fine-tuned model with the original Depth Anything V2
model qualitatively. More detailed results will be presented
in section 5.

4.1 Datasets
We use the augmented dataset of size 22,000 illustrated

above for both generating the train set and validating in
each epoch. To make sure the model will not be trained and
validated with the same image, we split that dataset so that
21,260 images will be used to train the model, whereas the
remaining 740 images will be used to validate the current
model performance. Since the dataset is separated ran-
domly, the evaluation set contains both generated motion-
blurred images and the original easy image in order to
evaluate the model performance on distinguishing between
motion-blurred and static objects.

Besides the generated dataset based on KITTIv2, we
also evaluate using additional images taken by our mobile
devices. To capture photos containing both motion-blurred
and static objects, we find a place on University Avenue,
where there are both vehicles parked on the side of the street
and some moving cars. The photos are taken using ISO 50
and shutter speed of 0.1 seconds such that the motion blur
effect will appear on all fast-moving objects. Also, the tripod
is used to avoid the device movement during the camera
exposure. Examples are the RGB images shown in the right
part of the figure 3.

4.2 Metrics
To evaluate both model’s accuracy and robustness, dur-

ing the fine-tuning process we choose to use the metrics
including Absolute Relative Error (AbsRel), Squared Rela-
tive Error (SqRel), Root Mean Squared Error (RMSE), Root
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Fig. 3. Visualization Result of Our Model.

Mean Squared Logarithmic Error (RMSLE), Mean Logarith-
mic Base-10 Error (Log10), and Scale-Invariant Logarithmic
Error (SILog). We also compute the percentage of pixels for
which the ratio between the predicted and target depth is
within a threshold of 1.25, 1.252, and 1.253. Throughout
the training process, we are willing to observe that all the
computed metrics preserve an overall downward trend with
initial oscillations and eventual stabilization. Inversely, all
percentages of pixels with depth prediction accuracy within
a threshold should have an overall upward trend. The trend
chart of AbsRel and RMSE is shown in figure 4.

4.3 Model Comparisons
We compare our fine-tuned Depth Anything V2 model

only with the original base model. Our focus is on assess-
ing performance under motion blur conditions, specifically
evaluating whether our fine-tuned model will generate
depth images accurately reflecting the blurred dynamics
of the scene. At the same time, we are willing to observe
that the original Depth Anything V2 model struggles to
accurately estimate depth in motion-blurred scenes, and
then it generates clear outlines for blurred objects instead.

5 RESULTS

In this section, we present a comprehensive evaluation
of our fine-tuned Depth Anything V2 model’s performance
on motion-blurred images. Our analysis encompasses both
qualitative assessments of depth map generation and quan-
titative measurements of model performance through var-
ious metrics. The results demonstrate significant improve-
ments in depth estimation accuracy for motion-blurred
scenes compared to the baseline model, with particular em-
phasis on maintaining structural coherence in areas affected
by motion blur. Through extensive experimentation and rig-
orous evaluation, we validate our approach’s effectiveness
in addressing the challenges posed by motion blur in depth
estimation tasks.

5.1 Qualitative Analysis
Figure 3 visually compares the depth maps produced

by the original Depth Anything V2 model and the fine-
tuned version on motion-blurred images. Figure 3 (left)

demonstrates depth estimation performance under motion
blur using RGB images from the KITTIv2 test set, where
depth maps from the standard Depth Anything V2 model
(middle column) are contrasted with those from our fine-
tuned version (right column), optimized for motion blur.
The original model tends to generate unrealistic sharp edges
for blurred objects, whereas our fine-tuned model produces
depth maps that more accurately reflect the blurred dy-
namics. Figure 3 (right) extends this comparison to depth
estimation on motion-blurred images captured by a mobile
phone, further validating our approach.

Qualitative results showing that the fine-tuned model is
better able to capture the depth of fast-moving vehicles and
pedestrians. Our fine-tuned model demonstrates the ability
to incorporate motion blur into the depth field, thereby
producing depth maps that faithfully represent both the
static and dynamic elements of the scene. In contrast, the
standard Depth Anything V2 model is limited to generating
depth maps as if all objects were still, effectively ignoring
the motion blur. The depth maps generated by the fine-
tuned model are more consistent with the visual appearance
of the scene, providing a more realistic representation of
depth under motion blur conditions.

5.2 Training Stability and Quantitative Results
The training process was monitored using both training

and validation metrics. Initial fluctuations were observed
due to the complexity of motion blur, but these metrics
stabilized over time, indicating effective learning of the blur-
aware features. The validation performance consistently
improved, demonstrating the robustness of our approach.

Fig. 4. Detailed Result During Training.

Figure 4 presents three key metrics during model fine-
tuning: training loss (left), evaluation RMSE (center), and
evaluation absolute relative error (right). The training loss
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exhibits a characteristic decreasing trend from approxi-
mately 0.26 to 0.14 over 600,000 iterations, demonstrating
consistent optimization convergence. The evaluation met-
rics - RMSE and absolute relative error - show similar con-
vergent behavior over approximately 120 epochs, stabilizing
at approximately 0.185 and 0.215 respectively.

The training dynamics reveal several noteworthy pat-
terns. Initially, there are pronounced oscillations in all met-
rics during the early stages (first 100,000 iterations for train-
ing loss and first 20 epochs for validation metrics), which
can be attributed to the model’s adaptation to the complex
characteristics of motion blur in depth estimation. These
fluctuations gradually diminish as training progresses, indi-
cating the model’s improving stability in handling motion-
blurred inputs.

Of particular interest is the convergence behavior in
the validation metrics (RMSE and absolute relative error),
which demonstrate asymptotic stabilization without signs
of overfitting. The RMSE settles around 0.185 with min-
imal variance, while the absolute relative error maintains
stability near 0.215, suggesting robust generalization to un-
seen motion-blurred scenarios. This parallel optimization of
multiple metrics provides strong evidence for the model’s
successful adaptation to the motion blur domain while
maintaining depth estimation accuracy.

The synchronous improvement across all metrics, cou-
pled with their eventual stabilization, substantiates the
effectiveness of the fine-tuning strategy in incorporating
motion blur handling capabilities into the depth estima-
tion framework. The absence of divergent behavior in the
validation metrics further confirms the model’s robustness
and practical applicability to real-world scenarios involving
motion blur.

These empirical results provide quantitative support for
the qualitative improvements observed in the model’s depth
estimation performance on motion-blurred images, estab-
lishing a strong foundation for its deployment in dynamic
real-world environments where motion blur is prevalent.

6 DISCUSSION AND CONCLUSION

This research investigates the integration of motion blur
considerations into monocular depth estimation models,
specifically focusing on the enhancement of the Depth Any-
thing V2 architecture. Our study addresses a critical gap
in current depth estimation approaches, which typically
assume static scene conditions and struggle with motion-
induced blur effects. Through systematic experimentation
and analysis, we demonstrate significant improvements in
depth map generation for dynamic scenes while identifying
key limitations and future research directions. The findings
presented herein contribute to the broader understanding
of motion blur handling in computer vision tasks and have
practical implications for real-world applications such as
autonomous systems and robotics. In this section, We will
address our key findings, practical implications, current lim-
itations, and proposed future research directions to advance
the field of motion-aware depth estimation.

6.1 Key Findings
As mentioned in Section 5, our experiments demonstrate

that incorporating motion blur into the training process of

Fig. 5. Examples of Successful and Failed Cases for Motion Blur Im-
ages.

monocular depth estimation models significantly improves
their ability to generate realistic depth maps for dynamic
scenes. The fine-tuned Depth Anything V2 model was able
to represent moving objects more accurately, providing
depth estimates that were consistent with real-world motion
blur.

6.2 Implications
This improvement has important implications for appli-

cations such as autonomous driving and robotics, where
understanding the depth of fast-moving objects is critical.
By generating depth maps that correctly reflect motion blur,
our model provides more reliable information for decision-
making in these applications. For example, in autonomous
driving, accurately estimating the depth of a rapidly ap-
proaching vehicle can help improve the safety and reliability
of the system.

6.3 Limitations
Our approach has several limitations that need to be

addressed in future work:
SDXL Limitations: Stable Diffusion XL (SDXL) does not

consistently produce realistic motion blur effects in the gen-
erated images, as in Figure 5. In some cases, the generated
images still contain static cars without realistic motion blur,
which limits the effectiveness of the augmented training
data.

Lack of Motion Blur Evaluation Datasets: Currently,
there are no publicly available datasets that specifically pro-
vide motion-blurred images along with the corresponding
ground truth depth images. This makes it difficult to evalu-
ate the model’s performance on real motion blur scenarios
and limits the diversity of training data.

Incorrect Ground Truth for Motion Blur: The ground
truth depth maps for the generated motion blur images are
derived from the original, clean images. These depth maps
are static and contain clear car edges, which means they do
not accurately represent the depth of motion-blurred scenes.
As a result, the ground truth is incorrect for all generated
motion blur images, which impacts the accuracy of training
and evaluation for motion blur depth estimation.

Incorrect Ground Truth for Motion Blur: The ground
truth depth maps for the generated motion blur images are
pseudo ground truth obtained using the pre-trained Depth
Anything V2 model on original, clean images. These depth
maps are static and contain clear car edges, as they are
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generated from single-frame raw images without motion
blur. This presents a fundamental mismatch since motion
blur is inherently a result of temporal integration over an
exposure period, while the pseudo-ground truth is derived
from a single frame captured within that period. As a
result, these pseudo-ground truth depth maps do not accu-
rately represent the depth characteristics of motion-blurred
scenes, where the blur effect encompasses object movement
throughout the entire exposure duration. This temporal
disparity between single-frame pseudo ground truth and
motion-blurred images, which represent integrated motion
over time, impacts the accuracy of both training and evalu-
ation for motion blur depth estimation.

6.4 Future Work
To address the limitations identified, several future di-

rections are planned:
Improving Motion Blur Generation: Since SDXL strug-

gles to produce realistic motion blur, we will explore other
generative models, such as GANs or VAEs, which may
provide better results for generating motion-blurred images.
Specifically, we will aim to generate images that more accu-
rately reflect dynamic motion, particularly for vehicles, to
enhance the quality of the augmented training data.

Developing a Motion Blur Dataset: Given the lack of a
suitable dataset containing both motion-blurred images and
corresponding ground truth depth maps, we plan to either
create a new dataset or collaborate with others to collect
such data. This dataset will be critical for evaluating the
model’s performance under realistic motion blur conditions
and for providing more diverse training data.

Generating Correct Ground Truth Depth: The current
approach uses ground truth depth maps from clean images,
which do not accurately represent the blurred dynamics. In
the future, we plan to develop techniques to generate more
appropriate ground truth depth maps for motion-blurred
images. This may involve using physics-based models to
simulate realistic depth for blurred objects or employing
multi-view stereo techniques to create depth maps that
reflect the true motion in the scene.

Multi-View Stereo for Motion Blur: We will investigate
the use of multi-view stereo techniques to improve depth
estimation in motion-blurred scenes. By combining infor-
mation from multiple viewpoints, we aim to generate more
accurate depth estimates that account for the dynamic na-
ture of the scene.

REFERENCES

[1] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,”
2021.

[2] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, Y. Shan, and X. Qie,
“T2i-adapter: Learning adapters to dig out more controllable ability
for text-to-image diffusion models,” arXiv preprint arXiv:2302.08453,
2023.

[3] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao,
“Depth anything v2,” arXiv:2406.09414, 2024.

[4] F. Tosi, P. Zama Ramirez, and M. Poggi, “Diffusion models for
monocular depth estimation: Overcoming challenging conditions,”
in European Conference on Computer Vision (ECCV), 2024.

[5] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth
anything: Unleashing the power of large-scale unlabeled data,” in
CVPR, 2024.

[6] G. et al., “Defeatnet: General monocular depth via simultaneous
unsupervised representation learning,” in IEEE International Con-
ference on Computer Vision (ICCV), 2021.

[7] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control
to text-to-image diffusion models,” 2023.


