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FIRE: Frequency Image Relighting
Enhancement

Tianyang Hu, Jie Zhang, An Cao

Abstract—The image relighting task focuses on transferring a given input image to a desired new illumination condition. The relighting
topic has been studied for years, but a new subdivision of the topic, single-image relight, has gotten more attention. Unlike
sampling-based relighting which requires multiple input images of the same scene to perform relighting, the single-image relighting
attempts to use only one input image. Although plenty of architectures have been proposed for this task, many of them suffer from
incorrect or insufficient lighting condition predictions. For this project, we test if adding frequency domain feature analysis to the
relighting architectures can help with its performance and result. As an early study on this subject, we find that adding specifically
targeted frequency analysis can decrease the training time and increase the qualitative result of the architecture.

Index Terms—Computational Photography, Image Relighting, Deep Learning
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1 INTRODUCTION

Relighting is the process of changing or simulating the
lighting conditions of a scene or object in an image while
maintaining other attributes such as geometry, texture, and
reflectance. [Fig 1] This application has great potential in
fields like photography, film production, gaming, and vir-
tual reality, where realistic lighting effects are of significance.

Lighting condition in this context means the particular
characteristics of light applied to a scene or object. It in-
cludes the direction, intensity, and spectral distribution of
the source, as well as the resultant effects these properties
create in the scene, such as patterns of overall illumination
and shadowing.

In images, the overall illumination and shadow patterns
correspond to the low-frequency components in the spatial
domain, which varies slowly across a large area of the image
in terms of intensity or color. Capturing and manipulating
these low-frequency features is important for accurately
simulating or transferring lighting in relighting tasks.

The Fourier transform provides a way of isolating the
low-frequency information in the frequency domain effi-
ciently. We want to find out if introducing Fourier-based
techniques can force the network to focus more on the low-
frequency details of the image and in the end improve the
quality of output image and the efficiency of the network.

Fig. 1: Visual effects of relighting task.

2 TASK DESCRIPTION

In this project, we address a specific fixed-to-fixed relighting
task, where both the input and output images are captured
under fixed external lighting conditions [Fig 2]. This con-
straint arises from the limited availability of training data.
Although the external lighting conditions (such as sunlight
or overcast skies, where the light source is not visible in the
scene) remain consistent, variations may still occur within
the scene itself due to light-emitting sources like fire or
lamps. These internal lighting sources introduce localized
differences in illumination while preserving the overall fixed
lighting condition.

We use only RGB information of images for training,
without auxiliary data such as depth maps, surface normals,
or other scene descriptors. This is because many real-world
applications, such as photography and image editing, have
only RGB information.

3 RELATED WORK

3.1 Image Relighting

The image relighting task is not a new topic in computer
vision, and the approaches to address this task have been
evolving through years of studies in the community. In the
early stage, the task of image relighting takes a sampling
approach [1], where multiple images of the same scene
under different illumination conditions will be taken and
the desired new illumination will be generated by interpo-
lating those images. Later improvements [2] on this topic
focus mainly on decreasing the image samples we need to
generate the new desired image.

In recent years, the community continuous this focus
on decreasing the sampling size with the inspiration from
the image-to-image transformation [3]. There are various
methods [4] afterwards use the idea of image-to-image
transformation and successfully design a network to fulfill
the relighting task using only images under 8 different
illumination conditions as input.



2

(a) Input for Image 1 (b) Target for Image 1

(c) Input for Image 2 (d) Target for Image 2

Fig. 2: Fixed-to-fixed lighting conditions in training data

Currently, most of the work is focusing on the single-
image relighting task where the input is now only one
image. The most common approach is to use auxiliary in-
formation such as depth maps or image normals to support
the network to determine the geometry of the scene [5] [6];
however, similarly to the sampling method, auxiliary infor-
mation is not always accessible through real applications.

Several studies have been done to remove the need for
auxiliary information. Wang et.al. [7] experiments on using
a deep residual network for relighting (DRN). The algorithm
had outperformed all other competitors at the time, but the
network suffered significantly in determining the difference
between material color and illumination condition.

Our work will be based on Illumination-Aware Network
(IAN) [8] which is improving the original DRN network by
having the network focus on the illumination condition. In
this paper, we will try to use frequency domain features
to improve IAN. Details about the IAN and how we will
improve it will be discussed in Section 3.

3.2 Frequency Domain Information

Frequency domain analysis has been widely used in image-
related areas. Various methods for different tasks use fre-
quency features to enhance their performance, especially in
illumination-evolving tasks. For example, Vasluianu et al. [9]
uses a frequency-based network to perform ambient light
normalization and shadow removal. Hu et al. [10] also uses
the frequency features to support generating the HDR image
from LDR images. Last but not least, Wang et al. [11] uses
the frequency domain analysis to boost the low-light image
enhancement task.

The relighting task we will improve on involves direct
manipulation of the illumination condition of the image;

however, this task is still a new topic in computational imag-
ing with a few studies on whether adding specific frequency
domain features extraction can enhance its performance. In
the rest of the paper, we will perform some early studies on
this subject.

4 PROPOSED METHOD

We use the Illumination-Aware Network (IAN) [8] as a
baseline model and add the frequency domain feature onto
its architecture. The pipeline of the IAN can be seen in
Figure 3.

The encoder and decoder here follow the basic U-Net
[12] structure where CNN and ReLu layers are applied with
a filter size of 24. The basic U-Net structure is a very general
structure that can be used in various different visual tasks;
however, due to the ill-posed nature of the relighting task,
we would like to modify the encoder to also include fre-
quency domain features and test if this can help determine
the illumination condition (see section 3.1 and 3.2).

As described in the original paper, the Illumination
Aware Residual Block (IARB) is used to capture the illu-
mination condition by simulating a physic-based rendering
process using dilate blocks and spatial attention blocks. The
IARB will be trained to capture an illumination descriptor
that can be used to offset the input illumination to the out-
put illumination. The detail of the implementation on why
spatial attention blocks are used here to capture illumination
is not specifically described in the paper, so we would like
to see whether switching to a frequency attention block
can improve the ability of IARB to capture illumination
conditions (see section 3.3).

The IAN uses a pyramid-shaped structure where the
Encoder-IARB-Decoder section has been applied to the orig-
inal input, a half-size down-sampled input, and a quarter-
size down-sampled input. As described in the original pa-
per, this structure is used to better detect the illumination
condition in different scales. Note that we separate the
Encoder-IARB-Decoder section for each input size in the
figure for better visualization, but the same Encoder-IARB-
Decoder section will be used for all input sizes in the actual
implementation.

4.1 Fourier Channel

Fourier Channel utilizes the Fourier transform to enhance
the representation of input image data for lighting transfor-
mation. As is illustrated in Figure 4, the method begins with
the applying Fourier Transform to each of the three RGB
channels of the input images, projecting them into Fourier
space. This transformation allows the model to capture
frequency information within images that is also important
for relighting tasks. The output Fourier space tensors are
then concatenated with the RGB tensors to form six-channel
tensors, which integrate both spatial and frequency-domain
features. These enhanced tensors serve as the input to the
original model, enriching its capacity to analyze and process
lighting-related features [13]. To ensure compatibility with
these modified inputs, the model’s pre-processing module
is adjusted accordingly.
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Fig. 3: Structure of the Illumination-Aware Network

Fig. 4: Fourier Channel’s Pipeline

4.2 Fourier Filter

Fourier Filter is another Fourier-based relighting method
we propose, which is built based on Fourier Channel. We
designed this method in order to enhance the performance
by making the model focus on low-frequency information,
which is more significant than high-frequency representa-
tions in relighting tasks. The pipeline of this method is
presented in Figure 5. In the beginning, this method also
applies Fourier Transformation to each RGB channel of
input images, projecting them from the spatial space to the
frequency space. However, not all information in the fre-
quency contributes identically to relighting tasks. Since low-
frequency information carries crucial information related to
global lighting conditions and shadows, and high-frequency
components typically just represent details of images, low-
frequency are more relevant and crucial for relighting tasks
[14], [15]. To address this issue, a low-frequency filter is
introduced to the Fourier-transformed tensors. This filter
selectively removes high-frequency components and pre-
serves the low-frequency parts, which are important for
relighting. The transformed and filtered tensors, which con-
tain the image’s low frequency information, is then con-
catenated with the original RGB tensors, creating a tensor
that contains both spatial and frequency information. The
filtered tensors, rich in essential lighting information, are
then passed through a modified pre-processing module.
Since its’ shape different from that of the original input, the
pre-processing module modifiy the input’s shape into an
expected shape for later layers, ensuring the integration of
Fourier Filter with the original model’s architecture. Once
processed, the concatenated tensors containing the spatial
and low-frequency information, are fed into the following
layers of the model for further processing and feature ex-
traction.

Fig. 5: Fourier Filter’s Pipeline

4.3 Frequency Encoder
Another modification we will be testing is the usage of a
frequency encoder. The idea of the frequency encoder orig-
inates from the Low-Light Image Enhancement (LLIE) task
which is also an illumination-related task. Among the recent
studies on LLIE, FourLLIE [11], which takes advantage of
using frequency domain features, has shown a promising
result when compared with other State-Of-Art methods;
therefore, we choose to apply a similar approach in the
relighting task here.

Similar to FourLLIE we will use a multi-branch encoder
structure to modify the original method (see Figure 6),
where the frequency encoder will operate in parallel with
the original spatial RGB encoder. Note that the frequency
encoder will also be used for all input sizes in the pyramid-
shaped structure of our original method to better address
the frequency information in different scales.

The design of the frequency encoder is similar to the
FourLLIE but with some modifications. The frequency do-
main information can be separated into amplitude and
phase, where amplitude corresponds to lighting intensity
and phase represents more about lighting structures [16];
thus, in the FourLLIE the frequency encoder has been di-
vided into amplitude and phase branches that are convolv-
ing separately since the low-lighting situation needs to focus
more on the lighting intensity.

In the relighting task, the amplitude and the phase are
both relevant to the illumination condition and have a
certain correlation with each other. We therefore design our
frequency encoder to represent this correlation by convolv-
ing the frequency domain image using a three-by-three filter.

4.4 Fourier Attention mechanism
In the original method, a spatial attention mechanism is
used to force the network to focus on important spatial
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Fig. 6: Fourier Encoder Pipline

patterns of the input. This mechanism uses measures of
means and standard deviations across spatial dimensions
as input, combined with lightweight convolutional layers to
modulate the importance of specific pixel regions. While this
is effective for capturing spatial patterns, it tends to focus
more on localized spatial features and may not be effective
in capturing global or repetitive structures.

To improve that, we add a Fourier-based attention mech-
anism that transforms the input features into the Fourier
domain, enabling the model to focus on important frequen-
cies. [17] The Fourier attention mechanism computes an
attention map directly from the magnitude of the frequency
components, modulates the importance of the frequency
representation, and then reconstructs the enhanced features
using the inverse Fourier Transform. This modification al-
lows the model to capture both global structural information
and localized textures, making it well-suited for relighting
tasks.

However, due to the limitation of computational re-
sources, we finally replaced the combination of spatial atten-
tion mechanism and frequency attention mechanism with
the pure frequency attention mechanism. [Fig 7]

Fig. 7: Structure for Fourier Attention Mechanism.

5 EXPERIMENTAL RESULTS

5.1 Dataset

In order to highlight the relighting performance of four
modified Fourier-based methods we propose and com-
pare them with the original model’s performance, we train
Fourier Channel, Fourier Filter, Fourier Attention Map,
Fourier Encoder as well as the original model on the training
set of VIDIT ECCV 2020 AIM dataset [18], [19]. Since ground
truths of the test set of VIDIT ECCV 2020 AIM dataset are
not open to the public, we choose to test the performance of
all these models on the validation set.

The training set of VIDIT ECCV 2020 AIM includes 300
items, and the validation set includes 45 items. Each of these
items consists of one input and one ground truth, which are
images of the same scene. All inputs in the dataset share
the light situation, and all ground truth share another light
situation.

In our experiment, we will pass the input of the dataset
into the model, and then compare the obtained results with

Model Parameters (M) FLOPs (G)

Original [?] 0.6070 53.89
Fourier Channel 0.6076 53.93

Fourier Filter 0.6076 53.93
Fourier Attention Map 0.5992 54.06

Fourier Encoder 0.6707 65.02

TABLE 1: Sizes of Models

Fig. 8: PSNR vs Iteration

Model PSNR Iteration

Original [?] 17.9837 9900
Fourier Channel 18.0184 3900

Fourier Filter 18.1311 6900
Fourier Attention Map 18.0287 5100

Fourier Encoder 17.9945 3900

TABLE 2: Performance of Models

the ground truth to find the loss value required for model
training or to calculate the PSNR of the model performance.

5.2 Quantitative Result

In order to keep the fairness of the experiment, we used the
same hyperparameters for all the five models. In this way,
the parameters as well as the flops of these models are at
the same level (TABLE 1), ensuring that any observed per-
formance differences can be attributed to our modifications
rather than the influence of model size.

Peak Signal-to-Noise Ratio (PSNR) measures the sim-
ilarity between the relit image and the ground truth by
quantifying the reconstruction quality, A higher PSNR in-
dicates that the relit image closely matches the ground
truth, reflecting better performance in preserving details
and minimizing errors introduced during relighting [19].
In order to quantify the performance of each model, we
calculate the PSNR between model outputs and ground
truths as the experiment matrics.

The quantitative analysis of Fourier-based relighting
methods compared to a baseline provides valuable insights
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into the efficiency and effectiveness of these methods. Ac-
cording to the Figure 8 and TABLE 2, the original model
[8] was trained for 10,000 iterations as the baseline and
achieved a PSNR of 17.9837. In contrast, all Fourier-based
methods demonstrated better performance in PSNR than
the original model, while requiring significantly fewer itera-
tions. Therefore, we are convinced that Fourier-based meth-
ods obtain superior computational efficiency. Among our
methods, the Fourier Filter achieves the best performance,
achieving a PSNR of 18.1311, which is the highest among all
approaches. This improvement was realized with only 6,900
iterations – roughly 30% fewer iterations than the baseline.
Such a reduction in computational efficiency as well as the
improved performance indicates the remarkable advantage
of integrating Fourier-based techniques into relighting mod-
els.

Other Fourier-based methods, including the Fourier
Channel, Fourier Attention Map, and Fourier Encoder, also
obtained substantial improvements over the baseline. While
requiring significantly fewer iterations, these methods con-
sistently achieved comparable or better PSNR than the
baseline. This consistent performance advantage across all
the Fourier-based methods indicates their robustness and
versatility in addressing relighting tasks.

Since low-frequency information of images captures the
broad, global characteristics of an image, such as illumina-
tion, shading, and smooth transitions in light intensity, it
has significant effects on achieving realistic and consistent
lighting effects when relighting an image [14], [15]. From
this analysis, we could obtain a critical result that Fourier
Transformation can significantly improve models’ abilities
to focus on low-frequency information, which is crucial
for relighting tasks, since accurately capturing and manip-
ulating low-frequency details can significantly impact the
final output of relighting. By implementing Fourier-based
modifications, the models not only improved the fidelity of
outputs and their PSNR, but also reduce training iterations,
minimizing computational power and time usage.

The quantitative results of Fourier-based relighting
methods demonstrate their significant advantages over the
baseline. Our Fourier-based modifications not only improve
the PSNR performance and overall fidelity of output im-
ages, but also achieve these better results with a reduced
computational usage. These two benefits—enhanced perfor-
mance and reduced computational power usage—highlight
the efficiency provided by Fourier Transformation in ad-
dressing the complexities of relighting tasks. With Fourier
transformation, all the methods we propose achieve better
performance with fewer iterations, highlighting their com-
putational efficiency. Their focus on low-frequency informa-
tion of images allows capturing and manipulating global
image characteristics accurately, achieving more realistic
and consistent lighting effects.

5.3 Qualitative Result

The qualitative result comparisons of our relighting models,
as shown in the Figure 9, validate the advantages of our
models, which is proved by our quantitative results. These
comparisons highlight the effectiveness of our Fourier-
based methods in relighting tasks while achieving better

fidelity and PSNR. For instance, the bottom left corner of
the sample image in the first column showcases an area
that is supposed to remain dark under the target light-
ing condition. Our Fourier-based methods outperform the
original approach [8] by demonstrating superior luminance
suppression in this region, closely adhering to the intended
lighting dynamics. This ability to control and minimize
excess illumination ensures the scene retains its intended
atmosphere and avoids overexposure.

Although halos, a common and challenging artifact is
a difficult problem remaining unsolved in relighting tasks
[20], this is another aspect where our models are proficient.
Halos often occur when bright areas blur into darker re-
gions, affecting the visual coherence of the scene. In the
lower-right part of the example images in the first column,
our models effectively alleviate this issue. By reducing the
prominence of halos, our Fourier-based methods achieve
a smoother transition between bright and dark areas, en-
hancing the visual clarity and the quality of the scene. This
improvement demonstrates the robustness of our methods
in reducing artifacts, which often affects negatively the
fidelity of relighting outputs.

Furthermore, the reflection of objects’ surfaces under
specific lighting conditions is significant for creating fidelity
in relighting tasks. In the dark region of the target image
in the first column, a reflective spot is produced under the
target lighting condition. Among our Fourier-based models,
the Fourier Encoder performs best in reproducing this reflec-
tive spot with remarkable accuracy. This accuracy ensures
that reflective surfaces behave realistically, contributing to
the fidelity of the relighting scene. By faithfully replicating
the reflective behavior, the Fourier Encoder captures subtle
but essential details that elevate the fidelity of the final
output.

The qualitative evaluation of our models demonstrates
their abilities to produce visual coherence and generate
realistic results. The better luminance suppression observed
in the darker areas, the mitigation of halos, and the accurate
replication of reflective spots collectively validate the effec-
tiveness of our Fourier-based methods. Outperforming in
these areas, our models demonstrate clear advantages over
the original model. The results highlight their abilities to
handle complex lighting interactions and generate outputs
which precisely align with the target lighting conditions.

6 CONCLUSION

6.1 Summary

In this paper, we propose several methods of integrating
the Fourier transform into the Illumination Aware Network
(IAN) for a relighting task. In our experiment, our Fourier
Transformation-based method has a significant advantage
over the original method in terms of training efficiency as
well as PSNR of the output results. This is also verified by
the images presented in the qualitative results. The results
show the promising potential of the Fourier transform in
improving both the quality of the relighted images and
computational efficiency.
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Fig. 9: Output Comparison

6.2 Limitation and Future Work
While we propose different methods of integrating the
Fourier transform, they are applied to only one Illumination
Aware Network. Future research should extend this integra-
tion with other network architectures, transformer-based, or
hybrid methods to learn its adaptability and overall impact
on image relighting tasks.

Another limitation of the current modified network is
that it only takes RGB image data without auxiliary infor-
mation as inputs. This is due to a lack of access to diverse
training datasets. In follow-up work, networks should be
tested by using richer inputs to see precisely how the contri-
bution of the Fourier transform works for more complicated
scenarios of relighting.

Finally, the methods in this paper integrate Fourier
transform into IAN in the input, encoder, and attention
stages. Future research should extend the exploration to
other stages of the network.
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