
BlindSight: Seeing Around Corners with Diffusion
Models

Amirmojtaba Sabour
University of Toronto

amsabour@cs.toronto.edu

Abstract

Non-Line-of-Sight (NLOS) imaging, which is the ability to see around corners by
analyzing light reflected off walls, has been limited by poor reconstruction quality
or the need for specialized hardware and complex active imaging setups. In this
paper, we present BlindSight, a new approach that incorporates the generative
capabilities of diffusion models to reconstruct hidden scenes from passive indirect
reflections. Our method employs a two-stage architecture: first, a reconstruction
network maps the wall projections to a learned latent space aligned with Stable
Diffusion’s VAE, which is decoded into a rough estimation of the target image.
Afterwards, an enhancer network based on ControlNet reconstructs a detailed scene
through controlled hallucination. Unlike previous approaches that struggle with
the inherently ill-posed nature of passive NLOS reconstruction, BlindSight uses
the rich prior knowledge of pretrained diffusion models to generate plausible and
detailed reconstructions. We evaluate BlindSight on the NLOS-passive dataset and
demonstrate significant improvements in both quantitative metrics and qualitative
results compared to existing methods. The results suggest that large pretrained
generative models can serve as powerful priors for solving challenging inverse
problems in computational imaging.

1 Introduction

Non-line-of-sight (NLOS) imaging aims to reconstruct scenes obstructed from direct view by ana-
lyzing scattered light on a relay wall, as shown in Figure 1. This capability has broad applications
in autonomous driving, robotics, and surveillance. Depending on the presence of a controllable
light source, NLOS imaging can be classified into active imaging [2, 12, 15] and passive imag-
ing [28, 20, 21, 32, 1, 22].

Active NLOS imaging relies on illuminating the scene with controlled light sources, such as ultrafast
lasers, and measuring the time-of-flight or intensity of light as it reflects off intermediate surfaces.
While these methods achieve impressive reconstructions, they often require specialized equipment
and complex setups, limiting their practicality. In contrast, passive NLOS imaging eliminates the
need for active light sources and instead leverages indirect light captured by an ordinary camera,
framing the problem as a challenging image restoration task.

Passive NLOS imaging is inherently challenging due to the extreme blur and information loss in
the captured projection image, which makes reconstructing the original scene more difficult. Most
existing methods produce highly blurry reconstructions. To address this, we explore the use of
additional image and content priors to aid reconstruction and generate high-quality images.

Diffusion models [9] have recently achieved remarkable success in image generation [18], image
restoration [14], and conditional generation [29, 27] tasks. Building on this success, we propose
BlindSight, a new two-stage passive NLOS imaging method that leverages pretrained image diffusion
models as priors to enhance reconstruction quality. In the first stage, we follow prior work and
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Figure 1: Passive NLOS imaging.

generate a rough and blurry estimate of the hidden image using a reconstruction network. In the
second stage, a ControlNet [29] reconstructs the final image conditioned on the rough estimate and
an optional content prior in the form of a text prompt describing the hidden image.

We train and evaluate BlindSight on the STL10 [5] subset of the NLOS-Passive [7] dataset and show
significant quantitative and qualitative improvements over prior works. We also perform several
ablations on the various design decisions made along the way, and qualitatively showcase the impact
of the different additional priors used.

2 Related Work

Passive NLOS Imaging Our work focuses on the 2D reconstruction problem in passive NLOS
imaging. Existing methods mainly include placing partial occluders [28, 20], using polarizers [21],
and applying deep learning methods [32, 1, 22]. Among them, deep learning-based passive NLOS
imaging is attractive because the superior representation ability of deep neural networks can greatly
improve the reconstruction quality. Most notably, Tancik et al. [22] used a variational autoencoder
(VAE) for NLOS imaging, however the model is limited to reconstructing a single specific object.

Image restoration Image restoration (IR) addresses the challenge of improving degraded im-
ages through tasks like super-resolution, deblurring, and denoising. Traditional methods relied on
handcrafted spatial or frequency-based algorithms [11, 17, 3, 6], later overtaken by deep learning
approaches using CNNs [13] and Transformers [23]. While these methods have shown strong per-
formance on standard benchmarks, their reconstructions often lack realistic textures. Generative
adversarial networks (GANs) introduced adversarial loss to enhance texture realism but are prone to
optimization instability and can generate counterfactual artifacts. Diffusion models have recently
outperformed GANs in IR by leveraging iterative denoising processes, producing high-fidelity results
with fewer artifacts. Supervised approaches, such as SR3 [19] and DeblurDPM [25], train diffusion
models from scratch using paired datasets, achieving state-of-the-art performance but requiring exten-
sive labeled data. In contrast, zero-shot methods like ILVR [4] and DDNM [24] utilize pre-trained
diffusion models to extract priors, enabling training-free restoration. These approaches are effective
in data-scarce scenarios but face challenges in ensuring consistency between degraded and restored
images. Our work builds on diffusion-based IR, and using them as a prior to incorporate details into
the blurry reconstructions from prior work on non-line-of-sight (NLOS) imaging methods.

3 Method

In this project, we explore how incorporating image and content priors can enhance NLOS imaging
reconstruction. Our proposed method reconstructs hidden scenes using a two-stage pipeline, as
shown in Figure 2. The first stage, inspired by [7], employs a reconstruction network that processes
the projection image and converts it into a rough estimate of the hidden image using a variational
autoencoder (VAE). In the second stage, an enhancer network leverages a ControlNet [29] built on a
pretrained text-to-image diffusion model [18] to recover lost details using both learned image priors
and optional semantic guidance through text prompts.
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Figure 2: An overview of our two-stage reconstruction pipeline.

More formally, given a projection image Iproj , our goal is to reconstruct the hidden image Ihidden.
In stage 1, the reconstruction network produces a coarse and blurry reconstruction Icoarse. In stage
2, a ControlNet built on Stable Diffusion 1.5 generates the final result conditioned on an optional
content prior in the form of a text prompt p, expressed as Ifinal = Φpretrained(Icoarse, p).

3.1 Coarse Reconstruction Network

The reconstruction network’s primary role is generating an initial rough estimate of the hidden image.
Following prior work [7], this is achieved by aligning projection images Iproj and hidden images
Ihidden in the latent space of a pretrained autoencoder. We specifically use the VAE from Stable
Diffusion 1.5 as our pretrained model. This VAE employs an encoder that compresses images of size
512× 512× 3 into a compact latent representation of size 64× 64× 4, which can then be decoded
back into the original image space. For our reconstruction network, we initialize a new encoder
Eproj using the pretrained weights of the original encoder Epretrained and train it to align the latent
representations of projection images with those of the hidden images. This alignment can be formally
expressed as:

E∗
proj = argmin |Eproj [Iproj ]− Epretrained [Ihidden] |22 (1)

Once training is complete, we can obtain a rough estimation by passing the aligned latents through
the pretrained decoder:

Icoarse = Dpretrained(Eproj(Iproj)) (2)

However, due to the substantial information loss inherent in the projection images, the resulting
output is typically very blurry and lacks fine details. To fix this, we use an enhancer network that
recovers these details by leveraging the rich knowledge and priors in pretrained diffusion models.

3.2 Enhancer Network

The enhancer network’s role is to leverage a pretrained diffusion model to hallucinate missing
details that were lost during the NLOS projection process. We investigate two complementary
approaches: using the pretrained diffusion model’s inherent image prior alone, and augmenting it
with an additional content prior in the form of a text prompt describing the hidden image. When this
content prior is provided, it significantly constrains the solution space of possible images that could
have produced the observed projection, leading to more accurate and effective reconstructions. For a
detailed analysis of how different priors affect reconstruction quality, please see Section 4.

To condition the pretrained diffusion model on the coarse reconstruction Icoarse, we train a Control-
Net [29] on top of Stable Diffusion 1.5. During training, we randomly drop both the text prompts and
the conditioning signal Icoarse with probabilities of 10% and 50% respectively, enabling classifier-
free guidance [10] during inference. This technique is vital for ensuring the final outputs maintain
consistency with both the provided content prior and the structural information present in the coarse
reconstruction.
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Table 1: Quantitative evaluation and ablation study results. Higher PSNR (↑) and lower LPIPS/FID
(↓) are better. Our full method achieves the best perceptual metrics while ablations demonstrate the
importance of each component.

Method PSNR ↑ LPIPS ↓ FID ↓
Reconstruction network 17.1 0.649 194.799

Ours 13.6 0.581 20.147
Ours - No text 13.0 0.661 114.420
Ours - No projection 9.4 0.708 24.183

4 Experiments

4.1 Experiment setting

Data The NLOS-Passive dataset [7] is used for training and evaluation. This dataset contains four
groups with different image sources: STL10, MNIST digits, Anime faces, and Supermodel faces,
each paired with their corresponding projections. We focus on the STL10 group as it presents the
most diverse and challenging scenarios. We use 100K image-projection pairs for training and 5K
pairs for quantitative evaluation. Text descriptions for all images are generated using the Florence-2
multimodal vision-language model [26]. All hidden and projection images are resized to 512× 512
resolution for both training and inference.

Metrics We evaluate reconstruction quality using both standard metrics and distribution-based
measures. For direct image comparison, we use PSNR and LPIPS [30] against ground truth images.
However, given the ill-posed nature of NLOS imaging and the substantial information loss in the
projection process, these reconstruction metrics alone are insufficient. We therefore also employ
Frechet Inception Distance (FID)[8] on the 5K evaluation set. For inference, we use the UniPC
sampler[31] with 20 steps and apply classifier-free guidance to both text and coarse reconstruction
signals (Icoarse) with a guidance scale of 5.

Implementation Details The reconstruction network is trained for 50K iterations using an L2 loss
between latent representations. We use the AdamW optimizer [16] with a learning rate of 1e-4 and
batch size of 32. For the enhancer network, we train a ControlNet on top of Stable Diffusion 1.5,
applying dropout to the conditioning signals with probabilities of 10% for text prompts and 50% for
coarse reconstructions to enable classifier-free guidance during inference. The training is performed
for 20K steps with a batch size of 32. All training is performed on 8 NVIDIA A100 GPUs.

4.2 Results and Ablations

We evaluate BlindSight through comprehensive experiments and ablation studies to understand the
contribution of each component. Table 1 presents the quantitative results of our method compared to
baselines and ablated variants.

Reconstruction Quality The baseline reconstruction network achieves the highest PSNR (17.1),
primarily because it learns to predict the mean of the possible image distribution for a given projection.
While this minimizes MSE loss, it results in blurry reconstructions lacking fine details, reflected in
poor LPIPS (0.649) and FID (194.799) scores. In contrast, our full method produces more detailed
and realistic reconstructions, demonstrated by significant improvements in perceptual metrics (LPIPS:
0.581, FID: 20.147), despite a lower PSNR (13.6) due to the inherent variation in generated details.

Impact of Priors To understand the impact of different priors, we conduct two ablation studies.
First, we remove the content prior by using empty text prompts during generation. This results in
significant degradation across all metrics (PSNR: 13.0, LPIPS: 0.661, FID: 114.420), highlighting
the importance of semantic guidance in producing coherent reconstructions.

To verify that our method truly adheres to the projection information rather than merely using the
pretrained diffusion model, we test generation without the coarse conditioning signal. This ablation
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Figure 3: Qualitative comparison of NLOS reconstruction methods. Top to bottom: input projections,
baseline reconstructions, ablations (no text, no projection), our full method, and ground truth. Our
approach generates more detailed and realistic reconstructions while preserving scene content.

shows the most severe performance drop in reconstruction metrics (PSNR: 9.4, LPIPS: 0.708) and
a slight deterioration in distribution matching (FID: 24.183). These results confirm that while the
diffusion model’s prior contributes significantly to the visual quality, the conditioning signal from
the reconstruction network is crucial for maintaining a semblance of consistency to the original
image. The quantitative results are supported by qualitative comparisons shown in Figure 3, where
our method consistently produces more detailed and realistic reconstructions while preserving the
essential structure of the hidden scene.

5 Conclusion

In this paper, we presented BlindSight, a new approach to passive non-line-of-sight imaging that
leverages the generative capabilities of diffusion models. Our two-stage architecture, combining
a reconstruction network with a diffusion-based enhancer network, demonstrates that pretrained
generative models can serve as powerful priors for solving complex inverse problems in computational
imaging. Rather than fighting the inherently ill-posed nature of passive NLOS reconstruction, our
method embraces controlled hallucination, using the rich prior knowledge encoded in pretrained
diffusion models to generate plausible and detailed reconstructions. The experimental results show
that BlindSight significantly outperforms existing methods in both quantitative metrics and qualitative
results while requiring only standard RGB cameras, suggesting that similar approaches could be
valuable for other ill-posed inverse problems.
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