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Constrained Reverse Diffusion
Alexander Rosen

Abstract—Diffusion models have revolutionized computer vision by achieving unprecedented quality, fidelity, and diversity across
various applications. To extend this success to real-world tasks, we believe the principles and heuristics of diffusion models must be
adapted to incorporate physical constraints into their formulation. We make this adjustment by discarding the first-order Markov chain
and synthesizing a new reverse process with stochastic linear interpolation and a differentiable physics engine. This results in a
generative model that incorporates constraints into its sampling process while matching the performance of unconstrained models on
numerous computer vision tasks, ranging from image denoising to 2D point cloud reconstruction.

Index Terms—Diffusion, Generative Models, Constrained Generation
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1 INTRODUCTION

O VER the past four years computer vision tasks such as
image generation, image denoising, and point cloud

generation have been taken over by Denoising Diffusion
Probabilistic Models (DDPM) [1] and variants thereof. Dif-
fusion models and DDPM were originally inspired by a ran-
dom walk from non-equilibirum thermodynamics, where
we define a process to gradually move from a training sam-
ple to noise we call an equilibrium state [2]. This perspective
unveiled a new framework to train a generative model by
learning to reverse this process moving from an equilibrium
state to a high-concentration sample resembling our dataset.

It turns out that this point of view for training a gener-
ative model has many deep and intuitive properties, from
an absence of joint training objectives to the reverse random
walk encouraging a diverse set of samples. Still, one intrigu-
ing property remains elusive: How do we bake constraints
into the reverse process or final sample? How might we
sample a configuration of objects in a room with guarantees
they don’t overlap? In this work, we pave a path forward
for diffusion-esque algorithms that facilitate sampling under
geometric constraints; we construct an algorithm as general
as current diffusion literature, show our algorithm is on par
with DDPM for image generation and denoising tasks, and
provide examples of our algorithm handling obstacles and
collisions for 2D point cloud generation.

2 RELATED WORK

2.1 Denoising Diffusion Probabilistic Models
DDPMs belong to a class of generative models whose sam-
pling process involves moving backwards through a finite
first-order Markov chain starting from an isotropic Gaussian
noise equilibrium. Given the previous element xt−1 in our
chain (starting with a sample x0 from our training set), we
define the forward process for xt as

q(xt|xt−1) = N (
√
1− βtxt−1, βtI) (1)

which we can sample directly from x0 as

q(xt|x0) = N (
√
αtx0, (1− αt)I) (2)
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for αt = 1 − βt and αt =
∏t

i=1 αt. This forward process is
repeated for T steps (usually 1000), and we choose {βt}Tt=1

so that equilibrium xT is approximately standard normal.
At inference time, we seek to start with a sample xT and

repeatedly sample xt−1 given xt until we reach x0. Using
(2) with the reparameterization trick, we can write

x0 = 1√
αt

(
x0 −

√
1− αtϵ

)
(3)

for ϵ ∼ N(0, 1), allowing us to show the mean of the reverse
posterior

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
(4)

is

µ = 1√
αt

(
xt −

1− αt√
1− αt

ϵ

)
(5)

So, we train a network to predict this ϵ given xt and t, and
sample xt−1 as this µ with small additive Gaussian noise
dependent on t.

2.2 Extensions of Diffusion

With the success of this method came many subsequent
alterations, such as speeding up the reverse process [3],
reasoning about a more suitable variance schedule [4], or
performing the diffusion process in a latent space [5]. The
relevant follow-up work we choose to focus on is cold
diffusion [6], which generalizes the idea of diffusion to
non-Gaussian or even deterministic equilibria. A much sim-
pler algorithm, cold diffusion attempts to predict back x0,
learning a restoration operation rθ given some degradation
xt = d(x0, t):

x0 ≈ rθ(d(x0, t)) (6)

To sample an x0 using our model, we start with xT ,
predict x̂0 = r(xT , T ), run this prediction through our
forward process to produce an xt−1 = d(x̂0, t), and repeat
until timestep zero.
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Fig. 1. Backward prediction process

2.3 Constrained Problems
Incorporating constraints into the reverse process and final
generation are typically problem specific, resulting in a
variety of different methods. The focus of this report is
on ensuring that the generation quality and diversity of
our proposed method is up to the standard set by current
generative models, meaning we will not be comparing our
work to methods for layout planning, object reorganization,
etc. Moving forward, we hope to compare our work against
diffusion policies [7] and DDPM-based methods whose
samples approximately satisfy constraints in a scene [8].

3 PROPOSED METHOD

3.1 A New Generative Model
The formulations of diffusion we have seen in the re-
lated work section rely on an intermediate prediction of
x0, whether it’s explicit with cold diffusion or implicitly
through the mean of a posterior with DDPM. In order
to account for constraints during sampling or constraints
in the final result, we need some process involving these
constraints during training, which we can introduce by
having a direct prediction back one timestep opposed to an
intermediate prediction or sampling process through x0.

Our method begins by removing the Markov chain from
the diffusion process and replacing it with linear inter-
polation between equilibria noise and training examples.
At training time, we sample a timestep uniformly from
{0, . . . , T}, a training example x0 and an equilibrium ϵ ∼ q
from any deterministic or non-deterministic distribution q.
Lying on the line segment between ϵ and x0, we define

xt =
(
1− 1

T

)
x0 +

t
T ϵ (7)

that approaches ϵ as t → T and x0 as t → 0. To devise a
sampling algorithm to obtain xt−1 given xt, we can compute
xt−1 and xt using the same source of randomness ϵ, and
directly predict xt−1 without conditioning on x0.

3.2 Reformulation with Velocity
Now that we have a method to directly predict xt−1, we can
rephrase this prediction to incorporate constraints; instead
of a model learning xt−1, suppose we learn an initial veloc-
ity vector to apply to points in space xt. Then, we can feed

these velocity vectors and initial positions xt to a simulation,
run this simulation, and record the final positions as our
prediction for xt−1. That is, for a differentiable physics
engine D(x, v) taking initial positions x and velocities v to
final positions, a model M , and some loss L between x̂t−1

and xt−1, we substitute the gradient descent step on

∇L(xt−1,M(xt, t)) (8)

for a step on

∇L(xt−1, D(xt,M(xt, t))) (9)

This introduction of D allows the reverse process to move
through space under constraints, such as object-to-object
collisions, object-to-scene collisions, deformations, a back-
ground vector field, etc.

At inference time, our algorithm remains similar to
DDPM and cold diffusion. We sample xt = xT ∼ q,
and repeatedly compute xt−1 = D(xt,M(xt, t)) down to
timestep zero. When performing inference in the real-world
rather than simulation, the velocity vectors M(xt, t) would
be applied to the objects in positions xt and xt−1 would be
measured from the scene after some fixed period of time.
The differentiable physics engine D may also be used to
introduce small sources of randomness during training time
simulations to ensure final positions are not fully deter-
mined by xT and our learned velocities are robust against
discrepancies between simulation and the real-world.

4 EXPERIMENTAL RESULTS

For our experimental results, we test our algorithm’s image
generation and image denoising capabilities against DDPM,
as well as providing qualitative results for 2D point cloud
generation.

4.1 Setup
For image generation and denoising, we train on the 32 by
32 CIFAR-10 dataset. To evaluate image generation quality,
we extract feature vectors for generated images and images
sampled from the training set using the final convolutional
layer of Inception-v3 [9] after upsampling to 224 by 224.
Then, we compute FID scores [10] with these feature vec-
tors to quantify the quality and diversity of the generated
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Fig. 2. Training and sampling algorithms

images. To evaluate the same models on image denoising,
we compute a collection of T − 1 denoised images where
the backward denoising process starts as each possible xt.
Of these images, we record PSNR and SSIM as the maxi-
mum over the collection, ensuring our comparisons between
denoising methods have optimal starting points for each
respective backward process. PSNR and SSIM are computed
for 30 CIFAR-10 images with additive noise sampled from a
N (0, 0.1) Gaussian.

For 2D point cloud generation, we learn to reconstruct a
single point cloud with DDPM and our method to provide
intuition for the reader and motivation for future work.

4.2 Implementation Details

Each model for image generation and denoising uses the
same U-Net [11]. The convolutional block is composed of
convolutions, group normalization layers [12], and ReLU
non-linearities, as well as a residual connection [13]. A down
block is composed of a single convolutional block and max
pooling, and an up block is composed of a transposed
convolution, two convolutional blocks, and a concatenated
skip connection from the corresponding down block. There
are three up and down blocks, and the middle consists of
average pooling and time siren [14] to condition the model
on timesteps t, which we found to accelerate convergence
for each diffusion algorithm.

For 2D point cloud generation, we found an MLP with
three 128-dimensional hidden layers to be sufficient. The
input to the model was a concatenation of points from the
point cloud and an embedding of the current timestep, both
with separate sinusoidal positional encoding [15].

Each image model was trained for 200 epochs (<1hr
on an A6000 GPU) with a batch size of 100. Point cloud
models were trained with various configurations in under
5 minutes. The total number of timesteps T was set to 1000
for cold diffusion and DDPM and 100 for our method since
we found linear interpolation required fewer timesteps for
diverse generations.

4.3 Image Generation and Denoising Results

Quantitative results for image generation quality and di-
versity and image denoising are shown in Table 1. Each
model performs quite well given the training time and
setup, with DDPM achieving the best FID and PSNR scores
and our model achieving the best SSIM score. As seen in

Figures 3 and 4, the generated and denoised images appear
qualitatively on par with each other.

One important observation we can take from Figure 4
is that DDPM appears to denoise images by generating
new details that weren’t there before while our method
produces blurrier representations without these new details.
This may offer some explanation as to why our SSIM scores
are slightly better and PSNR scores are slightly lower.

Another interesting observation is that DDPM and cold
diffusion training updates seemed heavily biased towards a
single colour palette per step while our algorithm was less
biased but had much more difficulty with solid backgrounds
(e.g. completely white backgrounds or plain skies). This
could explain why FID scores for DDPM are the best since
the model for our method may be struggling to produce
images with very high frequencies in certain areas and
low frequencies everywhere else, but this difference is near
negligible towards the end of training.

Overall, these results allow us to infer that our algorithm
seems to match the generation quality and diversity of
DDPM.

4.4 2D Point Cloud Generation Results

Qualitative results for 2D point cloud generation are shown
in Figures 5 to 7. Figures 9 and 10 show the paths of
points through space with and without obstacles in the
scene; these paths appear efficient in space, unlike those for
DDPM xt → xt−1 jumps shown in Figure 8. Compared to
image generation and denoising results, the 2D point cloud
generation results highlight more of the disadvantages of
our model including the failure of linear interpolation to
produce optimal straight paths for scenes with several ob-
stacles.

5 CONCLUSION

In this work, we devised a new generative model inspired
by DDPM and other diffusion models, but removed the
first-order Markov chain to enable the reverse process and
final sample to satisfy constraints specified by a differen-
tiable physics engine. We showed this algorithm matched
image generation and denoising standards set by DDPM
and gave examples of our algorithm handling a constrained
environment for 2D point cloud generation. We believe
our algorithm is a promising formulation for handling
constrained generation since it performs well on all our



4

TABLE 1
Generation and Denoising Results

Model FID (generation) PSNR (denoising) SSIM (denoising)

DDPM 29.8 22.84 0.907
Ours 31.1 21.12 0.953

experiments, maintains the generality of sampling equilibria
from any distribution [6], produces relatively efficient tra-
jectories through space, and is portable to several different
applications. Even so, our algorithm is hindered by training
overhead from the physics engine and certain constraints
like large immovable obstacles, but we expect constrained
problems to come with these tradeoffs. Henceforth, we hope
to continue testing our algorithm and scaling it to tackle
image generation with geometric constraints in RGB-XY
pixel space, voxelized 3D point cloud generation with non-
overlapping points, and generative models for manipulat-
ing deformable meshes.
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Fig. 3. Generated Images
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Fig. 4. Image Denoising

Fig. 5. DDPM 2D point cloud generation. Sizes of points are smaller in actuality.
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Fig. 6. Our 2D point cloud generation. Sizes of points are smaller in actuality.

Fig. 7. Our 2D point cloud generation with obstacles. Sizes of points are smaller in actuality.

Fig. 8. DDPM 2D point cloud generation trajectories.

Fig. 9. Our 2D point cloud generation trajectories.

Fig. 10. Our 2D point cloud generation trajectories with obstacles.


