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Combating distribution shift in self-supervised
learning with test-time adaptation

Aditya Mehrotra and Aviraj Newatia

Abstract—We explore methods to adapt self-supervised models at test time on distribution shifts. Specifically, we focus on methods
which finetune the model with constraints such as low rank updates, fisher information and naive unconstrained optimization. We
evaluate our method on Camelyon-17 and Cifar10/Cifar10.1.
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1 INTRODUCTION

D Eep learning architectures benefit from learning
rich representations about the distribution of their

training data. In most conventional supervised learning
cases, we use ground truth labels or predictions about
input data in order to train neural networks. However,
the lack of availability of labeled data in some settings
makes this challenging. Self-supervised representation
learning emerged as a paradigm to train the intermediate
representations of a deep learning system without ground-
truth data. Once representations for the input data
distribution were learned, a separate classification head
(such as a linear probe) would be trained on the limited
labeled data to produce a system that could interpret the
learned representations.

However, these systems can suffer from distribution
shift at test time. Distribution shifts occur when the
distribution of the data that a deep learning system is
deployed on differs from the distribution of the data
that it was trained on. These can occur for a number of
reasons, such as a change in the hospital that the data was
collected from. Distribution shifts can cause harmful effects
to learned systems, and studying methods of preventing
distribution shifts and adapting trained models to observed
distribution shifts is a rich field of study [1]. Existing
works in test-time adaptation that target self-supervised
learning methods assume access to labeled data about the
test distribution. This is a significant limitation of current
test-time adaptation methods in self-supervised learning
settings, as in deployment it is not necessary that we have
access to labeled samples from the test distribution. For
instance, in the context of medical imaging, distribution
shift can occur when deploying a model in a hospital who’s
data was not in its training set. This can occur for reasons
as simple as the choice of dye in histopathology slides [2].
On deployment we wish to update the representations of
the neural network to consolidate the causal features from
the test distribution data to the category of the input data
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they belong to.

In this work we tackle this problem of performing test-
time adaptation of self-supervised models without access
to ground-truth labels for test data. This severely restricted
case limits potential approach vectors due to the inability
to train using error signals from ground-truth labels. We
present an evaluation of naive, Low-Rank Adaptation [3],
and Elastic Weight Consolidation [4] fine-tuning techniques
as approaches to adapting trained representations to a new
test distribution.

2 RELATED WORKS

2.1 Self-Supervised Learning

Self Supervised learning is a class of methods that train
robust feature extractors from images in the absence of
labels. These methods often involve teacher and student
networks, with a knowledge distillation loss. These methods
can be applied to all sorts of vision backbones such as CNNs
and Vision Transformers. Once trained, these feature extrac-
tors are able to accurately classify the distribution they are
trained on via simple linear probes. Self-Supervised training
is often used as a method to Pre-Train feature extractors. [5]
[6]

2.2 Test-time Adaptation

Test-Time adaptation is a class of methods which modify
a model to adapt to incoming test distributions. There are
a variety of setups and approaches to this problem. The
survey paper we cited covers these in more detail [1].

In our work, we assume no access to labels at and
both train and test time. Related work in this area involve
updating batchnorm/layernorm statistics, or matching
first order statistics of the representation learner to match
between train/test distributions [7].

Our work differs in the sense that we try and fine-tune
the model directly, and change the base set of weights.
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3 METHODOLOGY

We propose using fine-tuning methods in order to adapt
self-supervised representations to the target domain of the
test distribution. Fine-tuning methods have shown promise
in transfer learning for taking large pre-trained methods and
adapting them for new tasks. This enables trained neural
networks to change to model the distribution represented
by the fine-tuning task.

3.1 Self-Supervised Pretraining with DINO
In this paper, we use the the DINO [5] training framework
for pretraining and finetuning. The DINO framework is
illustrated in Fig. 1.

There are two vision transformers, a ”student” and
”teacher”. Both networks are initialized the same way,
and the teacher is a direct copy of the student at the
start of pretraining. Then, the teacher and student are fed
augmented versions of the same image x denoted as x1, x2,
and we get representations for both of them. We then pass
them through a softmax and align their representations via
a cross entropy loss. Once the loss is computed, gradient
is back-propagated to the student network and the teacher
parameters are updated with an EMA of the student
parameters.

The intuition is that the teacher network’s logits provide
a moving target that the student needs to ”match”. Since we
augment x, the representations become extremely robust to
image corruptions such as blurs, solarized blurs and rota-
tions/flips. Ultimately, we receive a strong representation
learner from the teacher that can get high accuracies with
simple classifiers such as KNN or linear probes.

3.2 Finetuning
Naive fine-tuning is typically performed by inserting a
classification head onto the self-supervised pre-trained
models, and by using error signal to update the internal
representations of the model to extract the important causal
features relevant to the downstream fine-tuning task. This

Fig. 2. Naive finetuning of a ViT on out of distribution

is shown in Figure 2.

Considering the lack of test labels in our setting, we
instead apply fine-tuning through self-supervised training.
Using the original training methodology of the pre-trained
representation network, we perform several epochs of train-
ing using the original self-supervised framework on data
samples from the test distribution in order to enrich the rep-
resentations that the network learns for them. Considering
that these samples contain whichever potential distribution
shift is observed, by consolidating their representations with
those learned for the training distribution, the network
should discard spurious correlation factors which constitute
the distribution shift and identify the features that are causal
and remain consistent with what was seen during training
in the train distribution.

3.3 Low-Rank Adaptation

Low-Rank adaptation (LoRA) methods are a powerful and
efficient method of fine-tuning deep neural networks which
has shown promise in the study of large transformers
and language models. Particularly in the study of vision
transfomers [8], LoRA has been used to improve robustness
through adversarial fine-tuning.

LoRA methods enable fine-tuning of large pre-trained
methods without changing the underlying pre-trained pa-
rameters, and instead learn an adaptation matrix which is
used to slightly perturb network activations towards the
distribution modelled by the fine-tuning task. This adap-
tation matrix is learned by learning two matrices projecting
the input data of a layer down to a low dimensional repre-
sentation and then back up to the dimension of the output
of the layer.

Performing LoRA fine-tuning on samples from the test
distribution at deployment time thus naturally translates
to a useful method of test-time adaptation. By training on
test distribution samples, the LoRA modules learn slight
perturbations to perform to the inference pipeline of test
distribution samples to bring them “in-distribution” of the
representations learned by the neural network.
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Fig. 4. Elastic Weight Consolidation (EWC)

3.4 Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) is a method from
the continual learning community used to mitigate the
phenomena of catastrophic forgetting [4]. Catastrophic
forgetting is the phenomena in continual learning settings
where deep neural networks tend to “forget” training
samples encountered earlier in training.

Since the goal of test-time adaptation is to expand the
distribution of input data that the pre-trained network can
reliably, robustly, and causally represent - it is an important
consideration to ensure that the fine-tuning procedure does
not overfit the network to the test distribution, and forget
instances from the training distribution. To ensure this, EWC
adds a regularization term to the loss function for training
based on the Fisher Information Matrix [9]. This induces
a per-parameter regularization restricting the movement of
the parameter in weight-space to a surface on which it
still represents the same information about the posterior
distribution of the learned model after pre-training. This
enables the behaviour of the neural network to consolidate
the data points seen later in training, which in the case of
test-time adaptation are the test distribution samples, with-
out forgetting the important information about the training
distribution. This process improves retention of causally
important features regarding both the training and test dis-
tributions, while shifting the parameters to represent what
is common between the two distributions, which intuitively
should be the task relevant information.

4 EXPERIMENTAL RESULTS

4.1 Setup
We evaluate Naive, LoRA, and EWC fine-tuning for
test-time adaptation on pretrained vision transformers
[10] trained in a self-supervised manner using the DiNO
algorithm [5]. We focus on smaller vision transformers,
particularly the family of TinyViTs [11] and SmallViTs.

We employ two datasets that exhibit distribution shifts
in image-classification tasks for different reasons. First, we
train on CIFAR10 [12] and evaluate on CIFAR10.1 [13] [14].
Second, we evaluate on the Camelyon17 [2] dataset from
the WILDS [15] distribution shift benchmark. In this dataset
we use the harmful and not harmful dataset splits to
display distribution shift.

To evaluate our adapted models we attach two types of
classifiers to the pre-trained backbone network. Firstly, we
employ a linear probe, trained on the test distribution labels.
The accuracy of this linear probe gauges the separability of
the representation space, and is standard in self-supervised
learning literature. Secondly, we use a k-Nearest-Neighbor
(KNN) [16] classification head, trained on the training
set, to measure the consolidation of input data samples.
A high accuracy on a KNN classification head indicates
that the representations of samples from both the training
distribution and test distribution that belong to the same
class lie close together in the representation space. This
implies that the learned representations are good causal
feature extractors.

4.2 Camelyon17
We pre-train a ViT_Tiny model on the training set of
the Camelyon17 dataset from WILDS. We employ the
DiNO framework, training for 500 epochs with a learning
rate capped at 0.0005 and 10 warmup epochs, and the
AdamW optimizer [17]. We evaluate the performance of the
pre-trained network combined with a KNN classifier and
a trained linear probe on the train, harmful and not
harmful dataset splits which represent in-distribution, out-
of-distribution and potentially harmful distribution shift,
and out-of-distribution and likely not-harmful distribution
shift in input images. Both of the out-of-distribution images
are collected from hospitals other than those from which
the training samples were collected.

For test-time adaptation we perform 50 epochs of Naive
fine-tuning, LoRA fine-tuning, and EWC fine-tuning using
the same learning rate. We evaluate 5 checkpoints for
each fine-tuning method (10, 20, 30, 40, and 50 epochs).
We selected LoRA hyperparameters using a grid search,
settling on a rank of [2,4,8].

Using a KNN classification head, we report the classifica-
tion accuracy using both 10 and 20 nearest neighbours. The
best results comparing Naive fine-tuning, EWC, and LoRA
are presented in Table 1.

We observe that during the fine-tuning procedure, the
neural network exhibits a degradation in performance on
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TABLE 1
Camelyon17 classification results with 10NN.

We show Top1 accuracy.

Method Train Val Harmful Not-Harmful

Base 99.98 99.74 73.19 78.90
Naive 99.83 99.55 73.28 79.27
EWC 73.31 79.26 73.31 79.26
LoRA 98.68 98.13 93.64 84.44

TABLE 2
Camelyon17 classification results with 10NN across LoRA Ranks.

We show Top1 accuracy.

LoRA Rank Train Val Harmful Not-Harmful

2 98.56 97.73 88.08 83.90
4 98.68 98.13 93.64 84.44
8 98.05 97.05 89.03 79.39

the training set, as shown in Figure 5. Fine-tuning with
EWC also leads to small decreases in performance of
the model on in-distribution dataset splits. This was an
interesting outcome, as the increases in accuracy observed
on the out-of-distribution data was marginal. Considering
that Naive fine-tuning did not offer much in the way of
performance gains on the out-of-distribution data, this
behavior is not surprising, as it promotes retaining accuracy
on the data it has already been trained on.

As visible in Table 2, the LoRA adaptation also produced
a decrease in accuracy on the in-distribution data, such as
the Train and Val dataset splits. However, LoRA adapters
were able to increase performance on the out-of-distribution
Harmful and Not Harmful dataset splits. We observe
that the performance increase observed on the Harmful
split is significantly greater than the increase observed on
the Not Harmful split. This is interesting because the base
model performed worse on the Harmful split to begin
with. We notice that performance gains on the Harmful
split increase as LoRA rank increases to a significant
point whereas performance on the Not Harmful split
increases marginally. This is particularly interesting as the
Not Harmful split was used for the test-time adaptation
procedure. We observe that LoRA rank 4 yields the best
performance on test-time fine-tuning. Increasing the rank to
8 degrades performance on the both out-of-distribution and
in-distribution splits of the dataset.

We also observe in Table 3 that performance on out-of-
distribution data peaks at 20 epochs of LoRA fine-tuning
with some performance degradation on in-distribution data.
However, we do note that after this point, the changes in
performance on both in and out of distribution dataset splits
are marginal implying that the test and train distributions
are somewhat consolidated in representation space after few
epochs of LoRA fine-tuning. This suggests that this method
of test-time adaptation is efficient, likely due to the flexibility
of freshly initialised LoRA adapter weights. This would
allow the first few epochs of fine-tuning on test-distribution
data to heavily bias the LoRA weights, thoroughly adapting

TABLE 3
LoRA Rank 4 Fine-tuning on Camelyon17

# Epochs Train Val Harmful Not Harmful

10 Epochs 98.40 97.71 93.00 85.55
20 Epochs 98.48 97.8 94.06 84.91
30 Epochs 98.60 98.10 91.32 84.10
40 Epochs 98.67 98.08 93.44 84.39
50 Epochs 98.68 98.13 93.64 84.44

Fig. 5. KNN Classifier Accuracy on Training Set in Naive Fine-Tuning on
Camelyon17

the network to the new distribution.

4.3 CIFAR-10
CIFAR10.1 is a set of 2000 images belonging to the
CIFAR10 classes that have been adversarially sampled from
TinyImagenet [18] to induce the distribution shift. In this
setting, we pre-train a SmallViT on CIFAR10 for 500 epochs
with a learning rate capped at 0.0005 and 10 warmup
epochs and evaluate its performance on CIFAR10.1 using
a KNN and Linear probing. We refer to CIFAR 10.1 as ”test”.

In Table 4, we see numerical evidence in distribution
shift in the SSL representations via KNN classifiers. The
KNN fit to the train set performs well on the validation set
and performs much worse on the test set.

TABLE 4
CIFAR10 classification results.

Val and Test show Top1 accuracy for 10NN and 20NN classifiers.

Method Val Test
10NN 20NN 10NN 20NN

Base 87.16 87.19 76.70 76.75

In Table 5, we try simply fine-tuning our base DINO
network pretrained on CIFAR 10, on our test set. We find
that performance degrades both on the train and test sets
when using linear probes on checkpoints.

When we use LoRA, we find that the model performance
degrades on both sets a lot slower compared to naive
finetuning. This is shown in Table 6, for linear probing once
again.
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TABLE 5
Iterative Fine-tuning Results on CIFAR (each iteration is 10 epochs)

Method Val Test

Base 87.16 75.2
First iteration of finetuning 87.12 75.0
Second iteration of finetuning 86.54 74.8
Third iteration of finetuning 85.96 74.63
Fourth iteration of finetuning 85.40 74.13

TABLE 6
CIFAR10 Classification Results with LoRA

Method Val Test

Base 87.1 75.2
Rank-4 LoRA 86.5 75.0
Rank-8 LoRA 85.8 74.7

Finally, with EWC, we get larger changes in loss
compared to LoRA, but the same trend of degradation
on both sets. These results are illustrated in Table 7.
We specifically see that the higher rank of LoRA, the
more performance degrades on both distributions. This
is intuitive, as a higher rank allows for more degrees of
freedom to destroy the original model.

Ultimately, we see that each finetuning method results in
worse performance on both distributions.

5 DISCUSSION

This work evaluates how effective fine-tuning methods
are at mitigating the impact of distribution shifts in deep
learning systems at test time. We find that naive fine-tuning,
fine-tuning with EWC, and fine-tuning with LoRA all lead
to a reduction in model performance on data from the
training distribution. Simultaneously, we observe that
in most cases, these methods do not have a measurable
positive impact on performance on the test distribution.
The exception to this case was LoRA fine-tuning on the
Camelyon17 histopathology datasets, in which we observed
up to a 20% increase in classification accuracy on harmful
distribution shifts.

We note that this result was not observed when LoRA
was used to fine-tune models for CIFAR10. We consider this
to be an artifact of the number of classes and the complexity
of these datasets, as well as the fact that the CIFAR10.1
distribution shift dataset was adversarially created - and
thus may include compound distribution shifts whereas
Camelyon17 does not have these traits. We also believe
that the lack of performance gains given by EWC and
Naive fine-tuning are caused by the small size of the test
fine-tuning dataset and that CIFAR has many more classes
compared to camelyon, which is binary. This is exacerbated
by the fact that transformers require large amounts of data
to train, and thus are likely less flexible to changing their
representative distribution.

However, we note that this work provides a baseline in
the study of test-time adaptation in the strong setting of

TABLE 7
Iterative EWC iterations on CIFAR (each iteration is 10 epochs)

Method Val Test

Base 87.16 75.2
First iteration of finetuning 87.16 75.1
Second iteration of finetuning 87.0 74.9
Third iteration of finetuning 86.9 74.8
Fourth iteration of finetuning 86.7 74.6

TABLE 8
EWC Camelyon17 classification results.

# Epochs Harmful Not-Harmful
10NN 20NN 10NN 20NN

10 Epochs 73.21 74.26 79.02 79.36
20 Epochs 73.27 74.28 79.19 79.44
30 Epochs 73.30 74.32 79.23 79.51
40 Epochs 73.24 74.28 79.27 79.56
50 Epochs 73.31 74.33 79.26 79.56

solely having unlabeled samples from the test distribution.
This is a practical problem, and one that is not studied
extensively in existing literature.

Possible extensions to this work are a combination
of EWC and LoRA fine-tuning methods, as this may
allow the flexibilty of LoRA and the robustness of
EWC to yield a well-adapted model. Additionally, we
encourage exploration into a negative weighting of the
EWC regularization term, which may potentially encourage
forgetting of part of the training distribution to allow
for adaptation of the test distribution. Further work may
include explorations into sparsity and modifications to the
self-supervised learning process.
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