Hyperspectral Image Super-Resolution via Spatiospectral Attention and Frequency Domain Loss

Peter Phan

University of Toronto

Motivation

- Hyperspectral images are crucial for applications that require both spatial information and detailed spectral information. For example, in disease diagnosis, materials identification, and environmental monitoring.
- Effectiveness is limited due to low spatial resolution caused by physical constraints of sensors.
- High-resolution multispectral images (RGB) are often available alongside a corresponding low-resolution hyperspectral image. Various fusionbased methods have been explored to merge a high-resolution multispectral image with a low-resolution hyperspectral image to obtain a high-resolution hyperspectral image.

Related Work

- Zhang et al. introduced SSR-Net, a deep CNN fusion model incorporating a spatial edge loss and spectral edge loss. [1]
- Hu et al. introduced HSRnet, a deep CNN fusion network with separate spectral and spatial attention modules. [2]
- Xie et al. introduced MHF-Net, a modelbased deep learning method. The MS/HS fusion model integrates generalization models of low-resolution images with lowrank prior knowledge of high-resolution hyperspectral images. The network is then constructed by unfolding the proximal gradient algorithm. This has advantages in interpretability and generalization. [3]

References

[1] Zhang, Huang, Wang, Li. SSR-NET: Spatial—spectral reconstruction network for hyperspectral and multispectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 2020

[2] Hu, Huang, Deng, Jiang, Vivone, Chanussot, Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks, IEEE Transactions on Neural Networks and Learning Systems, 2021

[3] Xie, Zhou, Zhao, Xu, Meng. MHF-Net: An interpretable deep network for multispectral and hyperspectral image fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020

[4] Park, Lee, Grossberg, Nayer. Multispectral Imaging Using Multiplexed Illumination. IEEE 11th International Conference on Computer Vision, 2007

Methods

- HSRnet fails to capture high-frequency features.
- Dataset: CAVE hyperspectral image dataset [4]
- **Training:** All models were trained on the same dataset and hyperparameters (200 epochs, Adam optimizer with 1e-4 learning rate, NVIDIA RTX 4060, approx. 1-1.5 hours training time per model)
- We experiment with various frequency domain-based adjustments to HSR-Net to improve frequency preservation.
 - 1. High-Frequency Domain Loss Term: punish loss of high-frequency details.

$$\mathcal{L}_{hf} = rac{1}{HWC} \sum_{i=1}^{HWC} \| ext{HighPass}(I_{ ext{GT}})_i - ext{HighPass}(f(I_{ ext{LR-HSI}}, I_{ ext{HR-MSI}}))_i\|_2^2$$

2. Frequency Domain Fusion (FD-HSRnet): apply HSRnet to learn residuals in both the frequency domain and spatial domain.

Experimental Results

 HSRnet trained with a high-frequency domain loss term has greater performance than base HSRnet in all metrics, in both the raw images and high-pass filtered images.

Model		SNR	SSIM	MSE	SAM	ERGAS	Model	PSNR	SSIM	MSE	SAM	ERGAS
Bicubic Interpolation		3.72	0.93	0.00046	0.065	3.83	Bicubic Interpolation	18.95	0.109	0.051	1.337	38984
HSRnet	33	3.73	0.930	0.00046	0.065	3.82	HSRnet	18.95	0.109	0.051	1.336	38984
HSRnet + 0.0	$05\mathcal{L}_{hf}$ 34	4.17	0.941	0.00041	0.061	3.66	$\mathrm{HSRnet} + 0.05\mathcal{L}_{hf}$	20.02	0.213	0.040	1.142	35949
HSRnet + 0.1	$10\mathcal{L}_{hf}$ 34	4.69	0.951	0.00036	0.058	3.49	$HSRnet + 0.10\mathcal{L}_{hf}$	20.48	0.256	0.036	1.072	34642
HSRnet + 0.1	$15\mathcal{L}_{hf}$ 35	5.00	0.959	0.00033	0.055	3.36	$HSRnet + 0.15\mathcal{L}_{hf}$	21.32	0.360	0.030	0.954	31310
HSRnet + 0.2	$20\mathcal{L}_{hf}$ 35	5.20	0.963	0.00032	0.054	3.29	$\mathrm{HSRnet} + 0.20\mathcal{L}_{hf}$	21.55	0.386	0.028	0.925	30819
FD-HSRn	et 33	3.73	0.93	0.00046	0.065	3.82	FD-HSRnet	18.95	0.109	0.051	1.337	38984

Table 1: Average Performance Across 11
Testing Images of the CAVE Dataset

Low Resolution HSI

Ground Truth

Table 2: Average High-Frequency Performance Across 11 Testing Images of the CAVE Dataset

HSRnet + High-Freq Loss (0.2)

HSRnet

