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Figure 1. Results of blind rotation deblurring, a challenging non-linear inverse problem: (a) ground truth image, (b) rotation blurred
measurement, and restored images using (c) BlindDPS [11], (d) FastEM [35], (e) GibbsDDRM [41], and (f) CL-DPS (ours). Notably, all
methods fail catastrophically except for CL-DPS.

Real-world applications frequently involve blind inverse
problems with unknown measurements. Existing
DM-based methods for blind inverse problems are
limited, primarily addressing only linear measurements
and thus lacking applicability to real-life scenarios that
often involve non-linear operations. To overcome these
limitations, we propose CL-DPS, a novel approach based
on contrastive learning for solving blind inverse problems
via diffusion posterior sampling.We train an auxiliary deep
neural network (DNN) offline using a modified version of
MoCo, a contrastive learning technique. This auxiliary
DNN serves as a likelihood estimator, enabling estimation
of p(y|x) without prior knowledge of the measurement
operator, thereby adjusting the reverse path of the
diffusion process for inverse problem solving.

Related Work

For non-blind inverse problems, methods such as diffusion
posterior sampling (DPS) [1] and pseudo-guided diffusion
models [48] leverage Tweedie’s formula [2] to approximate
the smoothed likelihood. Similarly,singular-value
decomposition (SVD)-based techniques [32] are applied
for related purposes. Conversely, for blind inverse
problems, alongside the approaches discussed in Sec.1
[3], introduced Blind RED-Dif, an extension of the RED-diff
framework [4]. This method employs variational inference
to jointly estimate both the latent image and the unknown
forward model parameters, addressing the challenges of
unknown measurement operators.As a versatile
semi-supervised learning framework, contrastive learning
learns useful feature representation by clustering positive
samples and dispersing negative samples. It achieves
great success since instance discrimination has been
proposed in [5]. Since then [6,7] advanced the field by
leveraging diverse data augmentation methods and using
projection head during the contrastive learning process. [0]
used a momentum update mechanism to maintain a
negative sample generator, rather than a physical queue
of negative examples to reduce the memory consumption.
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New Technique

We propose CL-DPS, an inverse problem solver using diffusion models for the blind setting.
CL-DPS incorporates an auxiliary DNN, trained using MoCo, to serve as a likelihood estimator.
Unlike previous blind solvers, which are limited to recovering images only under linear

measurements, CL- DPS is capable of recovering images for both
measurements.

linear and non-linear

Estimating the posterior pt(x(t)|y) requires an estimation of the likelihood pt(y|x(t)). To achieve
this, we aim to train an auxiliary DNN offline (prior to applying diffusion models for inverse
problem-solving) which is able to estimate the likelihood pt(y|x(t)). Note that at this the time the
measurement parameters y are unknown. This auxiliary DNN will then be employed during the
diffusion- based inverse problem-solving process to adjust the reverse diffusion path

accordingly.
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Figure 7. Results of blind zoom deblurring, a challenging non-linear inverse problem: (a) ground truth image, (b) zoom blurred measure-
ment, and restored images using (c) BlindDPS [11], (d) FastEM [35], (e) GibbsDDRM [41], and (f) CL-DPS (ours). Notably, all methods

fail catastrophically except for CL-DPS.

FFHQ (256 x 256)

AFHQ (256 x 256)

Method Rotation Zoom Rotation

Zoom

PSNR1+ FID| LPIPS| PSNRT FID| LPIPS| | PSNRT FID|]

LPIPS| PSNRt FID| LPIPS |

CL-DPS (Ours) 22.74 33.66 0.302 20.68 42.61 0.435 21.46 36.96

0.319 19.63 57.54 0.468

BlindDPS [11]
FastEM [35]
GibbsDDRM [41]

16.87 34376  0.552 16.39 292091
1596 26843  0.597 18.68  303.25
18.43  236.55  0.565 1545 32742

0.780
0.623
0.802

13.25  200.46
11.57  289.19
15.24  263.49

0.674 11.75  279.57
0.680 15.60 310.06
0.628 14.57  280.54

0.607
0.797
0.549

Table 1. Non-linear blind inverse problems: Blind rotation and zoom deblurring results on the FFHQ and AFHQ datasets for CL-DPS and
benchmark methods. CL-DPS successfully restores the input images with high quality, whereas all other methods fail. Bold and underlined

values denote the best and second-best results, respectively.

FFHQ (256 x 256)

AFHQ (256 x 256)

Method Motion Gaussian Motion

Gaussian

PSNRT FID] LPIPS| PSNRT FID] LPIPS| | PSNRT FIDJ

LPIPS| PSNRT FID] LPIPS |

CL-DPS (Ours) 2293 3244  0.157 24.82  26.64  0.348 22.06  42.25

0.280 23.76  20.56 0.225

SelfDeblur [45]
DeblurGANV2 [34]
Pan_10 [44]
BlindDPS [11]
FastEM [35]
LatentDEM [56]
GibbsDDRM [41]

10.83
1715

270.0 2354
220.7 185.5
1553 2426 0542 1994 92770 0415 15.34  235.0
2224 2949 0.281 2477 2736  0.233 2092 23.89
24.68 - 0.34 - - -
22.65 0.167 -

0.717 11.36
0.571 19.69

0.686
0.529

9.081
17.64

300.5
186.2

2580 38.71 0.115 22.01  48.00

1722
86.87
62.76
20.54

0.768 11,53
0.597 20.29
0.627 21.41
0.338 23.65

0.662
0.523
0.395
0.287

0.197

Table 2. Linear blind inverse problems: Blind motion and Gaussian deblurring results on the FFHQ and AFHQ datasets for CL-DPS and

benchmark methods. CL-DPS achieves competitive results compared to other benchmark methods.



