CL-DPS: A Contrastive Learning Approach to Blind Inverse Problem Solving via Diffusion Posterior Sampling Linfeng Ye, Pallavi Ferrao

Affiliations, University of Toronto

Motivation

Figure 1. Results of blind rotation deblurring, a challenging non-linear inverse problem: (a) ground truth image, (b) rotation blurred measurement, and restored images using (c) BlindDPS [11], (d) FastEM [35], (e) GibbsDDRM [41], and (f) CL-DPS (ours). Notably, all methods fail catastrophically except for CL-DPS.

Real-world applications frequently involve blind inverse problems with unknown measurements. Existing DM-based methods for blind inverse problems are limited, primarily addressing only linear measurements and thus lacking applicability to real-life scenarios that often involve non-linear operations. To overcome these limitations, we propose CL-DPS, a novel approach based on contrastive learning for solving blind inverse problems via diffusion posterior sampling. We train an auxiliary deep neural network (DNN) offline using a modified version of MoCo, a contrastive learning technique. This auxiliary DNN serves as a likelihood estimator, enabling estimation of p(y|x) without prior knowledge of the measurement operator, thereby adjusting the reverse path of the diffusion process for inverse problem solving.

Related Work

For non-blind inverse problems, methods such as diffusion posterior sampling (DPS) [1] and pseudo-guided diffusion models [48] leverage Tweedie's formula [2] to approximate the smoothed likelihood. Similarly, singular-value decomposition (SVD)-based techniques [32] are applied for related purposes. Conversely, for blind inverse problems, alongside the approaches discussed in Sec.1 [3], introduced Blind RED-Dif, an extension of the RED-diff framework [4]. This method employs variational inference to jointly estimate both the latent image and the unknown forward model parameters, addressing the challenges of unknown measurement operators. As a versatile semi-supervised learning framework, contrastive learning learns useful feature representation by clustering positive samples and dispersing negative samples. It achieves great success since instance discrimination has been proposed in [5]. Since then [6,7] advanced the field by leveraging diverse data augmentation methods and using projection head during the contrastive learning process. [6] used a momentum update mechanism to maintain a negative sample generator, rather than a physical queue of negative examples to reduce the memory consumption.

References

[1] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mc-cann, Marc Louis Klasky, and Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh International Conference on Learning Representations, 2023.

[2]Bradley Efron. Tweedie's formula and selection bias. Journal of the American Statistical Association, 106(496):1602–663 1614, 2011.

[3] Hyungjin Chung, Jeongsol Kim, Sehui Kim, and Jong Chul Ye. Parallel diffusion models of operator and image for blind inverse problems. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6059–6069, 2023.

[4] Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving inverse problems with diffusion models. In The Twelfth International Conference on Learning Representations [5] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via

non-parametric instance discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3733–3742, 2018. [6]Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross 686 Girshick. Momentum contrast for unsupervised visual rep- 687 resentation learning. In Proceedings of the IEEE/CVF con- 688 ference

on computer vision and pattern recognition, pages 689 9729–9738, 2020. [7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge- offrey Hinton. A simple framework for contrastive learning of visual representations. In International conference on ma-chine learning,

pages 1597-1607. PMLR, 2020.

New Technique

We propose CL-DPS, an inverse problem solver using diffusion models for the blind setting. CL-DPS incorporates an auxiliary DNN, trained using MoCo, to serve as a likelihood estimator. Unlike previous blind solvers, which are limited to recovering images only under linear measurements, CL- DPS is capable of recovering images for both linear and non-linear measurements.

Estimating the posterior pt(x(t)|y) requires an estimation of the likelihood pt(y|x(t)). To achieve this, we aim to train an auxiliary DNN offline (prior to applying diffusion models for inverse problem-solving) which is able to estimate the likelihood pt(y|x(t)). Note that at this the time the measurement parameters ψ are unknown. This auxiliary DNN will then be employed during the diffusion- based inverse problem-solving process to adjust the reverse diffusion path accordingly.

$$\mathcal{L}_{p(\boldsymbol{y}|\boldsymbol{x}_t)} = -\log \frac{\exp(\langle f(\boldsymbol{x}_t), f(\boldsymbol{y}) \rangle / \tau)}{\sum_{\tilde{\boldsymbol{y}} \in \mathcal{Y}} \exp(\langle f(\boldsymbol{x}_t), f(\tilde{\boldsymbol{y}}) \rangle / \tau)}.$$

Experimental Results

Figure 7. Results of blind zoom deblurring, a challenging **non-linear** inverse problem: (a) ground truth image, (b) zoom blurred measurement, and restored images using (c) BlindDPS [11], (d) FastEM [35], (e) GibbsDDRM [41], and (f) CL-DPS (ours). Notably, all methods fail catastrophically except for CL-DPS.

	FFHQ (256×256)							AFHQ (256×256)						
Method	Rotation			Zoom			Rotation			Zoom				
	PSNR ↑	FID↓	LPIPS ↓	PSNR ↑	FID↓	LPIPS ↓	PSNR ↑	FID↓	LPIPS ↓	PSNR ↑	FID ↓	LPIPS ↓		
CL-DPS (Ours)	22.74	33.66	0.302	20.68	42.61	0.435	21.46	36.96	0.319	19.63	57.54	0.468		
BlindDPS [11]	16.87	343.76	0.552	16.39	292.91	0.780	13.25	200.46	0.674	11.75	279.57	0.607		
FastEM [35]	15.96	268.43	0.597	<u>18.68</u>	303.25	0.623	11.57	289.19	0.680	<u>15.60</u>	310.06	0.797		
GibbsDDRM [41]	18.43	236.55	0.565	15.45	327.42	0.802	15.24	263.49	0.628	14.57	280.54	0.549		

Table 1. Non-linear blind inverse problems: Blind rotation and zoom deblurring results on the FFHQ and AFHQ datasets for CL-DPS and benchmark methods. CL-DPS successfully restores the input images with high quality, whereas all other methods fail. **Bold** and underlined values denote the best and second-best results, respectively.

	FFHQ (256×256)							AFHQ (256×256)						
Method	Motion			Gaussian			Motion			Gaussian				
	PSNR ↑	FID↓	LPIPS ↓	PSNR ↑	FID↓	LPIPS ↓	PSNR ↑	FID↓	LPIPS ↓	PSNR ↑	FID↓	LPIPS ↓		
CL-DPS (Ours)	22.93	32.44	0.157	24.82	26.64	0.348	22.06	42.25	0.280	23.76	20.56	0.225		
SelfDeblur [45]	10.83	270.0	0.717	11.36	235.4	0.686	9.081	300.5	0.768	11.53	172.2	0.662		
DeblurGANv2 [34]	17.75	220.7	0.571	19.69	185.5	0.529	17.64	186.2	0.597	20.29	86.87	0.523		
Pan_10 [44]	15.53	242.6	0.542	19.94	92.70	0.415	15.34	235.0	0.627	21.41	62.76	0.395		
BlindDPS [11]	22.24	29.49	0.281	24.77	27.36	0.233	20.92	23.89	0.338	23.63	20.54	0.287		
FastEM [35]	24.68	=	0.34	-	-	-	-	=	=	=	=	-		
LatentDEM [56]	22.65	1.—	0.167	, -	-		-	-	-2	i -		-		
CibboDDDM [41]	25 80	29 71	Λ 115				22.01	18 00	0.107					

Table 2. Linear blind inverse problems: Blind motion and Gaussian deblurring results on the FFHQ and AFHQ datasets for CL-DPS and benchmark methods. CL-DPS achieves competitive results compared to other benchmark methods.