A Deep Learning Approach to JPEG Colour Restoration Without Ground Truth

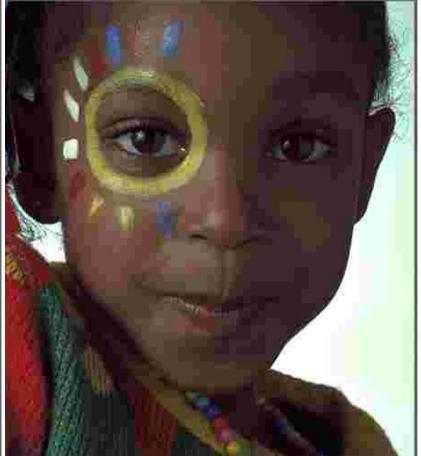
Michael Barrack

Master's In Applied Computing (MScAC), University of Toronto

Motivation

JPEG compression uses Chroma Subsampling to reduce the complexity of colour content, which can significantly degrade colour accuracy, especially at lower quality factors.





Original Image

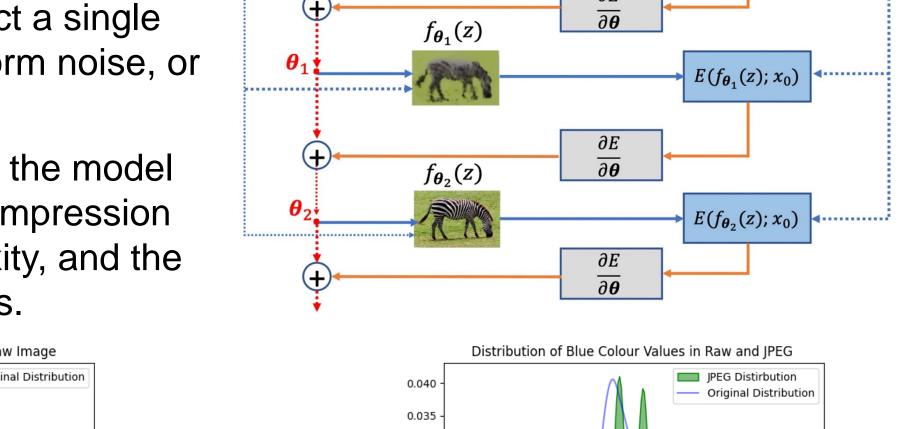
JPEG, Quality = 10

- In recent years there have been investigations into image denoising techniques using Deep Convolutional Neural Networks (CNNs) that do not require the availability clean ground-truth data [1][3]
- The goal of this project is to evaluate the effectiveness of these approaches at recovering the colour content lost during Low-Quality JPEG compression, and to experiment with novel adaptations that may improve their performance in this area

Methodology

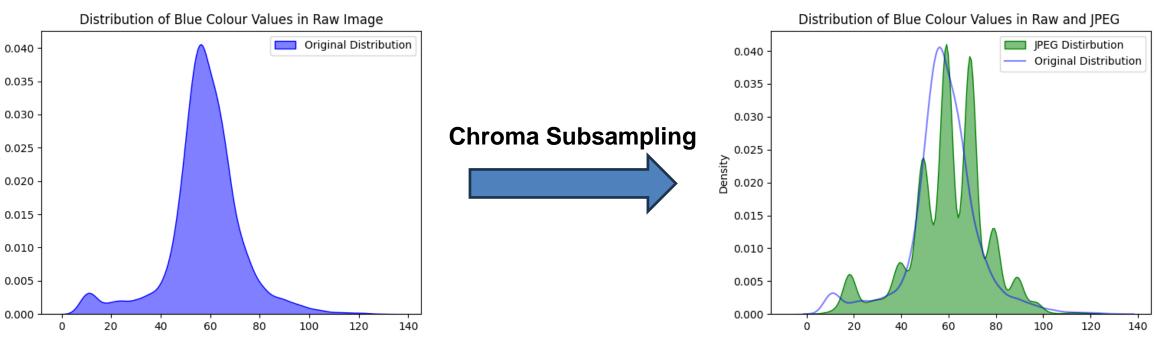
The training structure follows from that used in the related works. A CNN is initialized randomly and optimized to reconstruct a single JPEG from either uniform noise, or itself. [3] [4]

Comparative testing of the model structures included: compression quality, model complexity, and the use of skip connections.



 $f_{\boldsymbol{\theta}_0}(z)$

 $E(f_{\boldsymbol{\theta}_0}(z); x_0$



Based on the observed change in distribution of colour values, it was decided to equip these network structures from Deep Image Prior and Unsupervised Learning with SURE, with a new loss function:

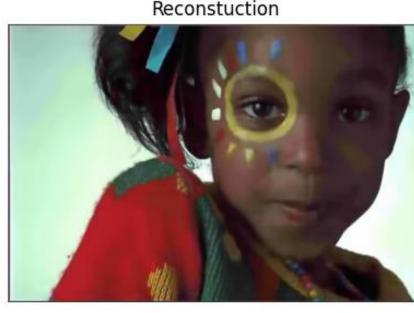
$$Loss(x, \hat{x}) = MSE(x, \hat{x}) + \frac{\lambda}{3} \sum_{C \in \{R, G, B\}} D_{KL}(P_{x_C} || Q_{\widehat{x_C}})$$

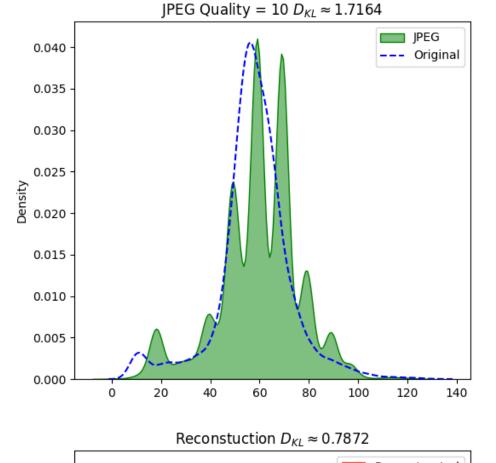
Here, D_{KL} is the Kullback-Liebler Divergence. For each colour band, P_{x_C} is a is a Gaussian distribution defined to have the same mean and variance as the JPEG's distribution, and $Q_{\widehat{x_C}}$ is the distribution in the reconstructed image. The average KL-Divergence value across the three colour bands is weighted against mean-squared error loss by λ . The idea here is to encourage the network to smooth the distribution of colour values.

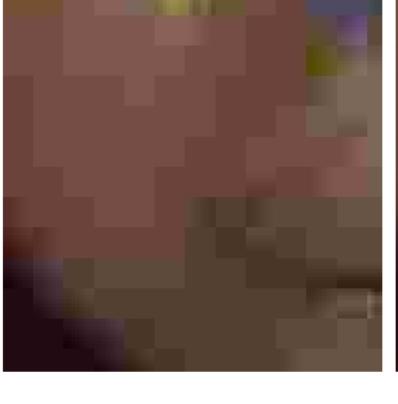
Related Work

- **Learning Image Restoration without** Clean Data [1]: Presents a scheme where a noisy dataset is further distorted, and a model is trained to map these corrupted images to their counterparts.
- Deep Image Prior [3]: This paper focuses on the ability of the structure of a CNN (with and without skip connections) to serve as a prior for image restoration tasks, without requiring any external training data.
- **Unsupervised Learning with Stein's Unbiased Risk Estimator (SURE) [4]:** Building on the work in *Deep Image Prior*, this paper explores the use of SURE as a loss function to prevent overfitting by providing an "unbiased estimate of the MSE", improving model performance without requiring clean ground-truth data.

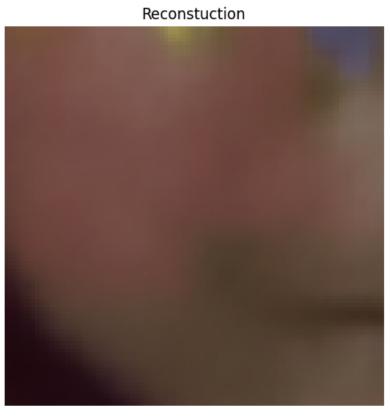
Experimental Results

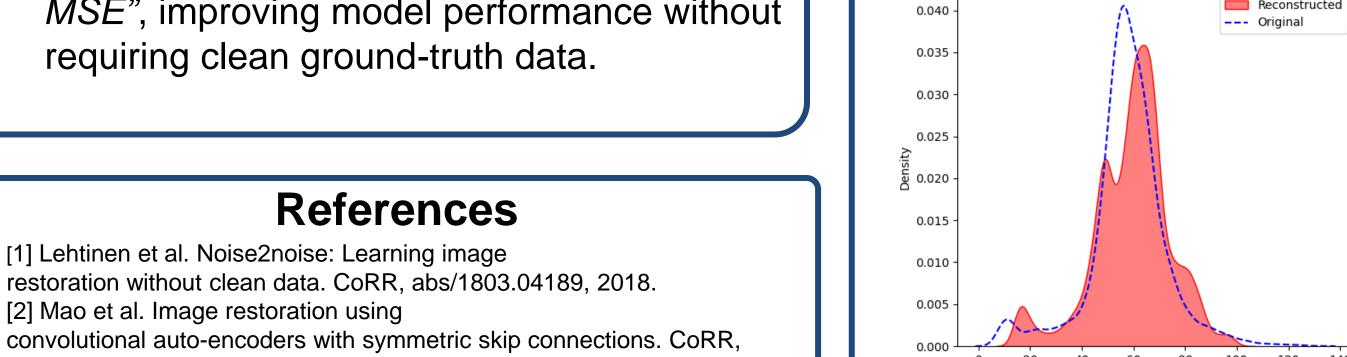


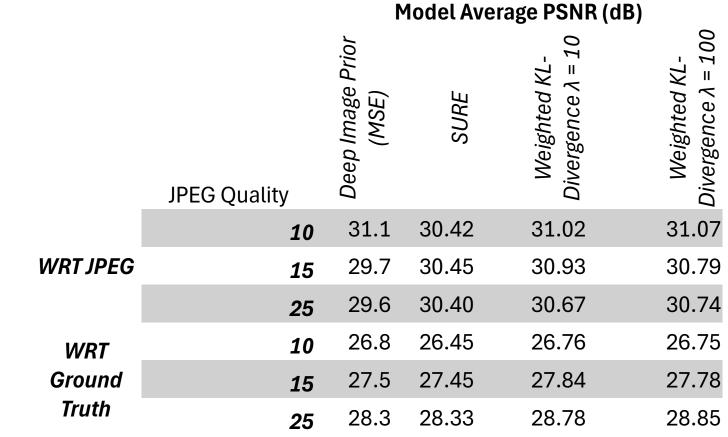




JPEG Quality = 10







References

[1] Lehtinen et al. Noise2noise: Learning image restoration without clean data. CoRR, abs/1803.04189, 2018. [2] Mao et al. Image restoration using

abs/1606.08921, 2016. [3] Ulyanov et al. Deep image prior. CoRR, abs/1711.10925, 2017

[4] Metzler et al. Unsupervised learning with stein's unbiased risk estimator. CoRR, 2020.