# Foosball robot object detection

# Joseph Lundy

Department of Electrical and Computer Engineering, University of Toronto

#### **Motivation**

For a foosball robot, need to track the following in real-time:

- ball position
- foosman position and rotation

#### Challenges

- Foosball frequently occluded by foosmen and rods
- Placing sensors to measure rod angle is costly and results in undesired changes to the foosball table



#### Idea

Use overhead camera to detect and track the ball and foosmen

#### **Previous approach [1]**

- Used color based tracking for ball tracking
- Imprecise, sensitive to different lighting conditions



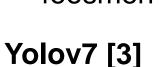


12 13 L 11 15 8 17 10 H

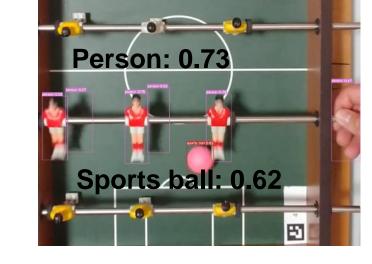
#### **Related Work**

#### Highly reliable fiducial markers [2]

- Used aruco markers for ground truth angle estimation
- Want to avoid modifying table with markers on the foosmen



- Very fast object detector
- Not trained for this application but suitable candidate for transfer learning



## **Segment Anything [4]**

- Very powerful segmentation tool
- Can't be used real-time
- Used SAM2 to compute bounding boxes for training data
- Output very sensitive to initialization



# **Legacy tracking algorithms**

| Name           | Performance                                                                       | FPS |
|----------------|-----------------------------------------------------------------------------------|-----|
| CSRT           | Very good - Tracks ball until very last frames                                    | 44  |
| Boosting       | Mediocre – loses ball after occlusion; tracks foosman poorly                      | 62  |
| KCF            | Very poor - Loses ball and foosman very quickly                                   | 69  |
| MIL            | Mediocre – loses ball immediately; can track foosman                              | 26  |
| TLD            | Good – can track ball throughout, very noisy detection; performs worse on foosman | 29  |
| Median<br>Flow | Poor – loses ball immediately; can track foosman but detection box grows          | 80  |
| MOSSE          | Very poor – loses ball immediately; loses foosman after rotation                  | 80  |

### References

- [1] Joseph Lundy, "Foosball Robot 2.0," Joseph Lundy, Apr. 21, 2022. https://joelundy.wordpress.com/foosball-robot-2-0/
- [2] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
- Marín-Jiménez, "Automatic generation and detection of highly reliable fiducial markers under occlusion," Pattern Recognition, vol. 47, no. 6, pp. 2280-2292, 2014
- [3 N. Ravi et al., "SAM 2: Segment Anything in Images and Videos," arXiv preprint arXiv:2408.00714, 2024
- [4] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, YOLOv7: Trainable bagof-freebies sets new state-of-the-art for real-time object detectors. 2022

#### **New Technique**

#### **General Approach**

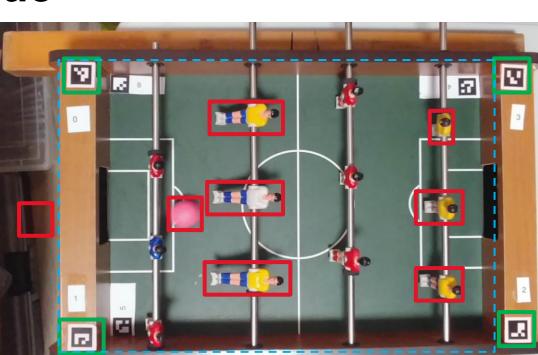
- Train YOLOv7 CNN detector to detect ball and foosmen
- Use linear regression on bounding boxes to compute foosman / rod rotation angle
- Use aruco markers for ground truth angle estimation data

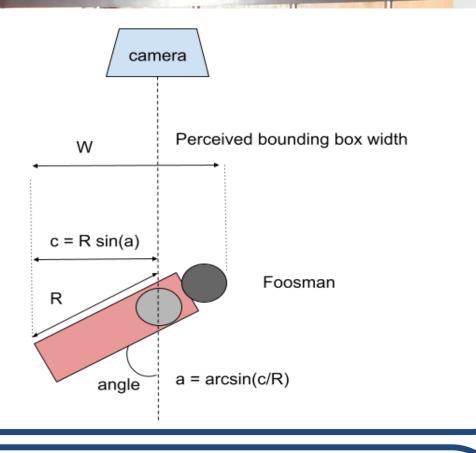
#### Proposed algorithm for tracking

- Detect aruco markers to narrow down area of interest
- Run retrained yolov7-tiny model to get bounding boxes
- Ignore reported objects outside area of interest
- Use Kalman filter and Hungarian algorithm for object tracking
- Estimate measured foosman angle from bounding box
- Apply Kalman filter on angle estimations

#### Proposed approach for angle estimation

- Train Yolov7 CNN model to detect not just foosman location but classify it based on its rotation quadrant
- Use arcsine method on bounding box
- Compute 'full' rotation angle with knowledge of quadrant





Incomplete bounding box

#### **Experimental Results**

#### **Retrained Yolov7 Detection**

|           | Train | Test  | Val   |
|-----------|-------|-------|-------|
| Precision | 0.996 | 0.999 | 0.988 |
| Recall    | 0.991 | 0.989 | 0.968 |

#### **Detection speed**

|              | Inference | NMS    | Total FPS |
|--------------|-----------|--------|-----------|
| Typical vid. | 3 ms      | 0.7 ms | 270       |
| Worst vid.   | 3.3 ms    | 2.5 ms | 172       |

#### Camera view, scene generalization

| Desc.              | All                | Ball               | Foos               |
|--------------------|--------------------|--------------------|--------------------|
| View rotated 90    | P 0.976<br>R 0.929 | P 0.979<br>R 1     | P 0.973<br>R 0.858 |
| Webcam –<br>warped | P 0.827<br>R 0.938 | P 0.655<br>R 0.957 | P 1<br>R 0.92      |
| Dell treet         |                    |                    |                    |

# **False positives**

#### Ball tracking generalization

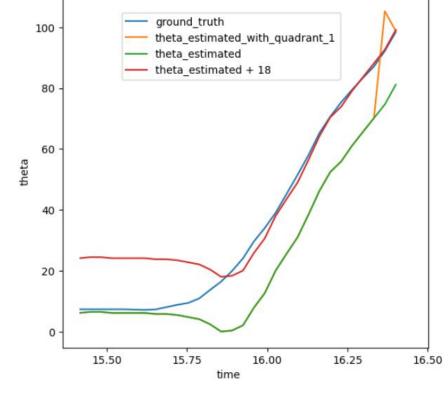
| Color      | Performance                                                                                         | Ball Prec. | Ball Recall |
|------------|-----------------------------------------------------------------------------------------------------|------------|-------------|
| Pink       | Excellent detection and classification; Handles motion blur and occlusions very well                | 0.991      | 1           |
| Orange     | Robust detection but moderate confidence scores (0.46 – 0.7)                                        | 1          | 1           |
| L. Orange  | Fair detection; ball found $\sim$ 70% of time; low confidence (0.2 – 0.4); frequent class confusion | 0.666      | 0.4         |
| Green      | Poor detection; ball found ~ 50%; bounding box is less accurate; class almost always wrong          | 0.998      | 0.5         |
| Blue       | Robust detection; frequent class confusion; sometimes misses when close to foosman                  | 0.778      | 0.7         |
| White      | Robust detection; however ball always confused as foosman                                           | 0          | 0           |
| All colors | (all 60 images)                                                                                     | 0.692      | 0.6         |

#### **Angle Estimation Study**

-25

#### Full 360 estimation if quadrant is known ground truth estimated theta\_estimated\_with\_quadrant\_1 quadrant Max **Estimation Error** Mean (deg) (deg) Quadrant estimated 10.2 24 With linear regression 9.2 29

# Alignment error and non-linearities: **Positive angles**



Alignment error and non-linearities: **Negative angles** 

