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Motivation New Technique

Selective State-Space Model Denoising

. Selective state-space models provide better long-range contextual
capture in comparison to CNNs with better efficiency than attention-based
architectures.[3]

Low-dose CT Imaging

. Computed Tomography (CT) imaging is a
medical imaging technique used to take
cross-sectional images or slices of
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Noisy Image Reconstruction
. The problem of noisy image
reconstruction is typically expressed as

. We used Denomamba [4], an SSM based denoising architecture as the
denoiser within the RED framework and evaluated against other common
CT reconstruction algorithms.
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Related Work

Regularization with Denoising (RED) [1] Reconstructions: LoDoPaB-CT Benchmark
e Directly embed a denoising engine into the

optimization process
e Unlike implicit priors like Plug-and-Play, RED defines a -
regularization term based on the denoising function f Experlmental Results -
The reconstruction is guided by the denoising objective Ground Truth PSNR. 40,44, SSIM. 0.87 "EPSR: 32.60, SO 077
that aims to minimize noise while preserving the image |
structure
A
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Solving Linear Inverse Problems with ADMM [2]
e Simplifies complex optimization problem by splitting
them into smaller subproblems subject to a constraint
e Alternate between solving for each variable while
enforcing the constraint with a dual variable update

Ly(z,2,y) = f(2) + 9(2) + y" (Az + Bz — ¢) + (p/2)|| Az + Bz — 3.

ADMM TV SART FBP
PSNR: 37.58, SSIM: 0.74 PSNR: 37.26, SSIM: 0.82 PSNR: 30.93, SSIM: 0.44
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Solving Linear Inverse Problems with Fixed Point [1]

e Does not split the problem into subproblems

e Directly updates the solution by solving the gradient
condition of the entire objective function

Vil(y,x) + AMx— f(x)) =0
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