Fourier Features for Low-Light Image Enhancement

Jinyu Liu Affiliations, University of Toronto

Motivation

- Low-light imaging presents significant challenges in various applications, including photography, surveillance, and medical imaging.
- Images cannot be enhanced with hardware. For low signal images, a higher ISO, amplifying the noise as well. Higher exposure may introduce motion blur
- Neural networks are a popular postprocessing approach to low-light imaging denoising. However, they are susceptible to bias towards low-frequency components of data towards training [1]. They have difficulty learning the complex, high frequency details of an image.
- In this project, we explore the question: Can encoding Fourier features alongside the image improve model performance in low-light image enhancement?

Related Work

- has been attempted before, mostly for their edge detection and ability to capture high-frequency details. Fourier features have been used as a model prior to ensure repeated details such as vents in a spacecraft are preserved through the denoising processes [2,3]. These models use Fourier features to separate noise from the image structure.
- of 485 training images and 15 testing pairs for low-light enhancement. CIDNet [4] currently has one of the best performances on peak-signal-to-noise ratio on the LOL dataset. CIDNet works by using a novel color space, Horizontal/Vertical-Intensity that decouples brightness from color. It could be an interesting idea to explore the Intensity channel for CIDNet

References

[1] Cao, Yuan, et al. "Towards understanding the spectral bias of deep learning." *arXiv preprint arXiv:1912.01198* (2019).

[2] Yang, Jingfan, et al. "Edge Modeling Activation Free Fourier Network for Spacecraft Image Denoising." arXiv preprint arXiv:2409.07067 (2024).

[3] Li, Xi, et al. "FEUSNet: Fourier Embedded U-Shaped Network for Image Denoising." *Entropy* 25.10 (2023): 1418.

[4] Yan, Qingsen, et al. "You only need one color space: An efficient network for low-light image enhancement." *arXiv preprint arXiv:2402.05809* (2024).

New Technique

Fourier/Intensity Cross Attention Encoding

Architecture Augmentation: We modify the existing architecture of CIDNet by encoding **Fourier features**. Experimentation is done to see where to best encode the Fourier features for the best model results.

Experimental Results

Input Image (Low-light Image)

Ground Truth Image (High-light Image)

Results After Training for 1500 Epochs
Dataset size: 485 Images

Baseline (No modifications) Avg PSNR: 19.8997 Avg SSIM: 0.8182

Middle Fusion Avg PSNR: 22.1694 Avg SSIM: 0.8382

Early Fusion Avg PSNR: 15.3205 Avg SSIM: 0.6869

Late Fusion Avg PSNR: 15.4061 0.6590 Avg SSIM: 0.6590