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Motivation

Diffusion models have revolutionized computer
vision by achieving unprecedented quality,
fidelity, and diversity across various applications.
To extend this success to real-world tasks, the
principles and heuristics of diffusion models must
be adapted to incorporate physical constraints
into their formulation. For example, suppose we
place furniture randomly in a room and want to
sample a neat configuration of the given objects
along with a process to reach this configuration:
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Related Work

e Simplest approach is to use
any diffusion-based algorithm, Po(Xe-1%d)
say DDPM [1], to sample a @
final configuration
Use a path finding algorithm
to move objects through
space to such configuration
e Approach may be intractable
for complex objects and/or
scenes

e Another approach is to setup a
| Markov decision process and
LN . . .

? ® learn a diffusion policy [2]

, Requires a dataset beyond final
*u ¢ configurations, a robot to move
\_ J P the objects, and a problem
specific model with no out of
distribution guarantees
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e A more elegant approach may be to assume
we have some remote control over these
objects and reasonable differentiable
simulations for how these objects interact with
each other and the scene
We could combine the process of denoising to
a final configuration with the process of moving
the objects through space.

We may also wish for
our diffusion model to
support non-Gaussian
distributed equilibriums
(cold diffusion [3]).
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A New Generative Model

e Remove Markov chain “forward process” seen in most diffusion algorithms
e Make use of differentiable physics engine D for each timestep update
e Sample from any distribution g you want (can even be deterministic)
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e Uniformly sample a timestep between 1 and the number of timesteps T (inclusive)
e Stochastically (linearly) interpolate between training examples and sampled noise
e Learn velocity vectors to move backward accounting for physical constraints

Algorithm 1 Train(xo) Algorithm 2 Sampling
1: t ~Unif(1,T), e ~qg 1 Xp~q
2: x¢ + (1— 4)xg+ T€ 2: fort + Tto1ldo
3 xp_1 + (1— E)xo+ e 3 v — M(xy,t)
4: v+ M(x4,t) 4: xt < D(x¢,v)
5: £i_1 < D(x4,v) > Positions from simulation 5. end for
6: Optimize with £(x;_1,%;_1) 6: return x; > Sampled x

Experimental Results
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PSNR (denoising) | SSIM (denoising) | FID (generation)
DDPM 22.84 0.907 29.8
Ours 21.12 0.953 31.1
Advantages

e Matches generation quality and diversity of
DDPM and similar methods

e Ability to sample initial positions from any
distribution you want

e Only need a dataset of final positions

e Paths through space appear, quantitatively and
qualitatively, efficient

e New positions at inference time come from the
real world and not simulation

e (eneralizes to objects and/or environments with
complicated structure

Disadvantages

e Large training time overhead from physics engine

e Lack of experiments and testing compared to
other approaches

e Linear interpolation can fail to produce optimal
paths for scenes with several obstacles
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